Hasonlósági keresés molekulagráfokon: legnagyobb közös részgráf keresése
|
|
- Eszter Kisné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Hasonlósági keresés molekulagráfokon: legnagyobb közös részgráf keresése Kovács Péter ChemAxon Kft., ELTE IK Budapest,
2 Bevezetés Feladat: két molekulagráf legnagyobb közös részgráfjának meghatározása. Alkalmazások: hasonlósági keresés klaszterezés 2D/3D illesztés reakciók elemzése stb. Forrás: P. Englert and P. Kovács. Efficient heuristics for maximum common substructure search. J. Chem. Inf. Model., 55: , IF:
3 Molekulák reprezentációja A hidrogénatomokat nem ábrázoljuk A szénatomok címkéit nem jelenítjük meg Az aromás gyűrűket így ábrázoljuk Molekulagráf irányítatlan, egyszerű, csúcs- és élcímkézett gráf csúcsai az atomokat reprezentálják (pl. C,,, F, Cl, Br stb.) élei a kémiai kötéseket reprezentálják (egyszeres, kétszeres, aromás stb.) a hidrogénatomokat közvetlenül nem reprezentáljuk (általában)
4 Molekulagráfok hasonlósága Mennyire hasonló ez a két molekulagráf? Cl Cl
5 Molekulagráfok hasonlósága Mennyire hasonló ez a két molekulagráf? Cl Cl
6 Molekulagráfok hasonlósága Cl Cl Hasonlóság (Jaccard, Tanimoto): A B A B =
7 Molekulagráfok hasonlósága Cl Cl Hasonlóság (Jaccard, Tanimoto): A B A B =
8 Molekulagráfok hasonlósága Cl Cl Hasonlóság (Jaccard, Tanimoto): A B A B = = m c m 1 +m 2 m c = 0,615
9 Molekulagráfok hasonlósága
10 Molekulagráfok hasonlósága Hasonlóság: 0,958
11 További alkalmazások Klaszterezés
12 További alkalmazások 3D illesztés
13 MCIS MCES MCIS = Maximum Common Induced Subgraph MCES = Maximum Common Edge Subgraph
14 MCIS MCES Maximum Common Induced Subgraph MCIS a közös részgráfnak feszítettnek kell lennie csúcsok közötti leképezéssel definiálható méret = csúcsok száma Maximum Common Edge Subgraph MCES a közös részgráf nem feltétlenül feszített élek közötti leképezéssel definiálható méret = élek száma
15 Visszavezetés a maximális klikk feladatra u 1 v 1 u 2 (u 1,u 2 ) v 2 (v 1,v 2 ) G 1 G 2 G 1 G 2 Direktszorzat-gráf (MCIS feladat) csúcsai a G 1 és G 2 azonos címkéjű csúcsaiból alkotott párok élei ezek kompatibilitását fejezik ki
16 Visszavezetés a maximális klikk feladatra u 1 v 1 u 2 (u 1,u 2 ) v 2 (v 1,v 2 ) G 1 G 2 G 1 G 2 Direktszorzat-gráf (MCIS feladat) csúcsai a G 1 és G 2 azonos címkéjű csúcsaiból alkotott párok élei ezek kompatibilitását fejezik ki (u 1, u 2 ) és (v 1, v 2 ) kompatibilis u 1 v 1, u 2 v 2, valamint u 1 nem szomszédos v 1 -gyel és u 2 nem szomszédos v 2 -vel vagy u 1 -v 1 és u 2 -v 2 is szomszédosak és a közöttük lévő élek címkéje azonos G 1 -ben és G 2 -ben
17 Visszavezetés a maximális klikk feladatra u 1 v 1 u 2 (u 1,u 2 ) v 2 (v 1,v 2 ) G 1 G 2 G 1 G 2 Direktszorzat-gráf (MCIS feladat) (u 1, u 2 ) és (v 1, v 2 ) kompatibilis = egy feszített közös részgráfot meghatározó V (G 1 ) V (G 2 ) leképezés egyszerre tartalmazhatja őket
18 Visszavezetés a maximális klikk feladatra u 1 v 1 u 2 (u 1,u 2 ) v 2 (v 1,v 2 ) G 1 G 2 G 1 G 2 Direktszorzat-gráf (MCIS feladat) (u 1, u 2 ) és (v 1, v 2 ) kompatibilis = egy feszített közös részgráfot meghatározó V (G 1 ) V (G 2 ) leképezés egyszerre tartalmazhatja őket következmény: G 1 G 2 klikkjei és a feszített közös részgráfokat meghatározó leképezések kölcsönösen egyértelműen megfeleltethetők egymásnak (és a méretük is azonos)
19 Visszavezetés a maximális klikk feladatra u 1 v 1 u 2 (u 1,u 2 ) v 2 (v 1,v 2 ) G 1 G 2 G 1 G 2 Direktszorzat-gráf (MCIS feladat) (u 1, u 2 ) és (v 1, v 2 ) kompatibilis = egy feszített közös részgráfot meghatározó V (G 1 ) V (G 2 ) leképezés egyszerre tartalmazhatja őket következmény: G 1 G 2 klikkjei és a feszített közös részgráfokat meghatározó leképezések kölcsönösen egyértelműen megfeleltethetők egymásnak (és a méretük is azonos) tehát az MCIS feladat visszavezethető a G 1 G 2 gráfban maximális klikk keresésére
20 Visszavezetés a maximális klikk feladatra Direktszorzat-gráf (MCES feladat) G 1 és G 2 helyett tekintsük az élgráfjaikat: L(G 1 ) és L(G 2 ) L(G 1 ) L(G 2 ) az élpárok kompatibilitását reprezentálja
21 Visszavezetés a maximális klikk feladatra Direktszorzat-gráf (MCES feladat) G 1 és G 2 helyett tekintsük az élgráfjaikat: L(G 1 ) és L(G 2 ) L(G 1 ) L(G 2 ) az élpárok kompatibilitását reprezentálja G 1 és G 2 egy izolált csúcsot nem tartalmazó közös részgráfja (nem felt. feszített) megfeleltethető az L(G 1 ) és L(G 2 ) egy közös feszített részgráfjának fordítva is igaz, feltéve hogy nem történt Y csere (l. később)
22 Visszavezetés a maximális klikk feladatra Direktszorzat-gráf (MCES feladat) G 1 és G 2 helyett tekintsük az élgráfjaikat: L(G 1 ) és L(G 2 ) L(G 1 ) L(G 2 ) az élpárok kompatibilitását reprezentálja G 1 és G 2 egy izolált csúcsot nem tartalmazó közös részgráfja (nem felt. feszített) megfeleltethető az L(G 1 ) és L(G 2 ) egy közös feszített részgráfjának fordítva is igaz, feltéve hogy nem történt Y csere (l. később) következmény: az MCES feladat visszavezethető az L(G 1 ) és L(G 2 ) gráfokon értelmezett MCIS feladatra, tehát az L(G 1 ) L(G 2 ) gráfban maximális klikk keresésére
23 Visszavezetés a maximális klikk feladatra Direktszorzat-gráf előállítása (MCES)
24 Visszavezetés a maximális klikk feladatra Y csere ha G 1 és G 2 izomorfak, akkor nyilván az élgráfjaik is és megfordítva?
25 Visszavezetés a maximális klikk feladatra Y csere ha G 1 és G 2 izomorfak, akkor nyilván az élgráfjaik is és megfordítva? Tétel (Whitney, 1932): Két összefüggő gráf akkor és csak akkor izomorf, ha az élgráfjaik izomorfak, egyetlen kivételtől eltekintve: K 3 és K 1,3, amelyek nem izomorfak, de az élgráfjaik izomorfak. szerencsére molekulagráfokban a K 3 (háromszög vagy ) részgráf elég ritka K 3 ( gráf) és az élgráfja K 1,3 (Y gráf) és az élgráfja
26 A feladat bonyolultsága az MCIS és MCES feladatok P-nehezek a megfelelő döntési problémák P-teljesek: létezik-e k méretű közös (feszített) részgráf
27 A feladat bonyolultsága az MCIS és MCES feladatok P-nehezek a megfelelő döntési problémák P-teljesek: létezik-e k méretű közös (feszített) részgráf MCES feladat speciális esetei: részgráf-izomorfia (P-teljes) maximális klikk (P-teljes) Hamilton-kör (P-teljes, még max. 3 fokú síkgráfokra is) a max. klikk probléma az MCIS feladatnak is spec. esete
28 Összefüggőség Összefüggő MCES em összefüggő MCES
29 Algoritmus MCES feladatot visszavezetjük a max. klikk feladatra (L(G 1 ) L(G 2 ) gráfban) max. klikk keresésére egy hatékony heurisztikus algoritmust alkalmazunk kidolgoztunk további heurisztikákat, amelyekkel a módszert pontosabbá és gyorsabbá tettük ezekben kihasználjuk a molekulagráfok specialitásait (csúcs- és élcímkék, alacsony fokszám stb.)
30 Reprezentáció Maximum JVM heap size 2500 MB 2000 MB 1500 MB 1000 MB 500 MB Adjacency matrix ew representation 0 MB Atom count Csúcsmátrixos ábrázolás: 3,02 n 4,11 Komplementer gráf tárolása éllistával: 71,42 n 3,11
31 Korai terminálás 0.1 Running time (seconds) Without heuristics With all heuristics Input size (m 1 m 2 )
32 ECFP heurisztika az ún. extended connectivity fingerprint (ECFP) generálási algoritmusán alapuló heurisztika a gráfok csúcsainak környezeteit hash-kódokkal reprezentáljuk előnyben részesítjük olyan csúcsok és élek egymáshoz rendelését, amelyek nagy izomorf környezettel rendelkeznek Cl
33 Leképezés optimalizálása a közös részgráf méretén kívül gyakran fontos az inputgráfok csúcsait és éleit egymáshoz rendelő leképezés is (pl. reakciók elemzése, molekulák illesztése) leképezés szempontjából jelentős csúcsokat azonosítjuk a leképezések összehasonlításához egy heurisztikus értékelő függvényt használunk
34 Hozzárendelés javítása Cl Cl Br Br Szuboptimális leképezés Elvárt leképezés
35 Hozzárendelés javítása Cl Cl Szuboptimális leképezés Cl Cl Elvárt leképezés
36 Hozzárendelés javítása Ez a heurisztika gyakran segít abban is, hogy nagyobb közös részgráfot találjunk Szuboptimális eredmény ptimális eredmény
37 Eredmények 1. példa
38 Eredmények 1. példa Heurisztikák nélkül: Atomok száma: 80 Kötések száma: 78 Komponensek száma: 10 Hasonlóság: 0,71
39 Eredmények 1. példa Heurisztikák nélkül: Atomok száma: 80 Kötések száma: 78 Komponensek száma: 10 Hasonlóság: 0,71 Heurisztikákkal: Atomok száma: 82 Kötések száma: 92 Komponensek száma: 2 Hasonlóság: 0,96
40 Eredmények 2. példa
41 Eredmények 2. példa Heurisztikák nélkül: Atomok száma: 58 Kötések száma: 55 Komponensek száma: 6 Hasonlóság: 0,57
42 Eredmények 2. példa Heurisztikák nélkül: Atomok száma: 58 Kötések száma: 55 Komponensek száma: 6 Hasonlóság: 0,57 Heurisztikákkal: Atomok száma: 59 Kötések száma: 75 Komponensek száma: 1 Hasonlóság: 0,97
43 Eredmények Result size (bond count) Without heuristics With all heuristics Upper bound on the result size (bond count)
Bonyolultságelmélet gyakorlat 06 Gráfos visszavezetések II.
onyolultságelmélet gyakorlat 06 Gráfos visszavezetések II. 1. Feladat Mutassuk meg, hogy a n/-hosszú kör probléma NP-nehéz! n/-hosszú kör Input: (V, ) irányítatlan gráf Output: van-e G-ben a csúcsok felén
Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Gráfelméleti feladatok programozóknak
Gráfelméleti feladatok programozóknak Nagy-György Judit 1. Lehet-e egy gráf fokszámsorozata 3, 3, 3, 3, 5, 6, 6, 6, 6, 6, 6? 2. Lehet-e egyszer gráf fokszámsorozata (a) 3, 3, 4, 4, 6? (b) 0, 1, 2, 2, 2,
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
ELTE IK Esti képzés tavaszi félév. Tartalom
Diszkrét Matematika 2 vizsgaanyag ELTE IK Esti képzés 2017. tavaszi félév Tartalom 1. Számfogalom bővítése, homomorfizmusok... 2 2. Csoportok... 9 3. Részcsoport... 11 4. Generátum... 14 5. Mellékosztály,
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF
Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Gráf- és részgráf-izomorfizmus problémák kémiai adatbázisokban. Diplomamunka
Eötvös Loránd Tudományegyetem Természettudományi Kar Gráf- és részgráf-izomorfizmus problémák kémiai adatbázisokban Diplomamunka Témavezető: Dr. Tichler Krisztián ELTE IK Algoritmusok és Alkalmazásaik
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik
Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei
Számítástudomány alapjai Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei 90. A konvex poliéder egyes lapjait határoló élek száma legyen k! Egy konvex poliéder egy tetszőleges
Gráfelméleti alapfogalmak
1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont
Számítógép hálózatok, osztott rendszerek 2009
Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc
1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007
Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot
Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a
Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,
Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető.
Gráf csúcsainak színezése Kromatikus szám 2018. Április 18. χ(g) az ún. kromatikus szám az a szám, ahány szín kell a G gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédok más színűek legyenek. 2 The
Közösségek keresése nagy gráfokban
Közösségek keresése nagy gráfokban Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2011. április 14. Katona Gyula Y. (BME SZIT) Közösségek
Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.
Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
SzA II. gyakorlat, szeptember 18.
SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz
1. tétel - Gráfok alapfogalmai
1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési
Síkbarajzolható gráfok Április 26.
Síkbarajzolható gráfok 2017. Április 26. Síkgráfok Egy gráf síkgráf=síkba rajzolható gráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. Ha egy gráf lerajzolható a síkba,
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
III. Gráfok. 1. Irányítatlan gráfok:
III. Gráfok 1. Irányítatlan gráfok: Jelölés: G=(X,U), X a csomópontok halmaza, U az élek halmaza X={1,2,3,4,5,6}, U={[1,2], [1,4], [1,6], [2,3], [2,5], [3,4], [3,5], [4,5],[5,6]} Értelmezések: 1. Fokszám:
NeMa: Fast Graph Search with Label Similarity
NeMa: Fast Graph Search with Label Similarity (NeMa: Gyors gráfkeresés címke hasonlóság alapján) Arijit Khan, Yinghui Wu, Charu C. Aggarwal, Xifeng Yan Pillinger János, Németh Bence, Bereczki Gábor November
Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3
Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó
Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem. I. B. 137/b március 16.
Bevezetés a Számításelméletbe II. 6. előadás Sali Attila Budapest Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tsz. I. B. 7/b sali@cs.bme.hu 004 március 6. A kritikus út
Társadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 5. el adás Közösségszerkezet El adó: London András 2017. október 16. Közösségek hálózatban Homofília, asszortatívitás Newman modularitás Közösségek hálózatban
Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma
Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit
Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t
Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN
infokommunikációs technológiák MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN Készítette: Árgilán Viktor, Dr. Balogh János, Dr. Békési József, Dávid Balázs, Hajdu László, Dr. Galambos Gábor, Dr. Krész
2. Visszalépéses stratégia
2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. március 9. 1. Diszkrét matematika 2. 4. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. március 9. Gráfelmélet Diszkrét
Hatékony algoritmusok kémiai gráfok részgráf-izomorfia vizsgálatára. BSc szakdolgozat
Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Hatékony algoritmusok kémiai gráfok részgráf-izomorfia vizsgálatára BSc szakdolgozat Témavezetők: Dr. Tichler Krisztián
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
Modern irányzatok a bonyolultságelméletben: éles korlátok és dichotómia tételek
Modern irányzatok a bonyolultságelméletben: éles korlátok és dichotómia tételek Marx Dániel Paraméteres Algoritmusok és Bonyolultság Kutatócsoport Informatikai Kutatólaboratórium SZTAKI 05. június 5. Kombinatorikus
end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
Bonyolultságelmélet. Monday 10 th October, 2016, 17:44
Monday 10 th October, 2016, 17:44 NP-teljes gráfelméleti problémák Tétel A Hamilton-Út probléma NP-teljes. NP-teljes gráfelméleti problémák Tétel A Hamilton-Út probléma NP-teljes. Ötlet,,Értékválasztó
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
Számítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
definiálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként.
Számításelmélet Kiszámítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést, amire számítógéppel szeretnénk megadni a választ. (A matematika nyelvén precízen megfogalmazott
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Bonyolultságelmélet. Monday 26 th September, 2016, 18:50
Bonyolultságelmélet Monday 26 th September, 2016, 18:50 A kiszámítás modelljei 2 De milyen architektúrán polinom? A kiszámításnak számos (matematikai) modellje létezik: Általános rekurzív függvények λ-kalkulus
A részgráf-izomorfia probléma adatbázisokban
A részgráf-izomorfia probléma adatbázisokban BSc szakdolgozat Témavezetők: Dr. Tichler Krisztián ELTE IK Algoritmusok és Alkalmazásaik Tanszék adjunktus Készítette: Vigula Mónika Matematika BSc Alkalmazott
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. október 12. 1. Diszkrét matematika 2. 5. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. október 12. Diszkrét matematika
Diszkrét matematika II. feladatok
Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden
Számítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden
Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK
30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá
Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
7. Régió alapú szegmentálás
Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára. Ramsey-gráfok
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Ramsey-gráfok Előadó: Hajnal Péter 1.hét 1. Ramsey-számok Definíció. Legyen Ram(G) = max{ω(g), α(g)} = max{ω(g), ω(g)}, azaz a legnagyobb halmaz
Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus
Csíkszereda IRT-. kurzus 3. Előadás: A mohó algoritmus 1 Csíkszereda IRT. kurzus Bevezetés Az eddig tanult algoritmus tipúsok nem alkalmazhatók: A valós problémák nem tiszta klasszikus problémák A problémák
Gráfalgoritmusok ismétlés ősz
Gráfalgoritmusok ismétlés 2017. ősz Gráfok ábrázolása Egy G = (V, E) gráf ábrázolására alapvetően két módszert szoktak használni: szomszédsági listákat, illetve szomszédsági mátrixot. A G = (V, E) gráf
Gráfelméleti feladatok. c f
Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
Érdekes informatika feladatok
A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket
Programozás alapjai II. (7. ea) C++
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók
Szalai Péter. April 17, Szalai Péter April 17, / 36
Szociális hálók Szalai Péter April 17, 2015 Szalai Péter April 17, 2015 1 / 36 Miről lesz szó? 1 Megfigyelések Kis világ Power-law Klaszterezhetőség 2 Modellek Célok Erdős-Rényi Watts-Strogatz Barabási
Struktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus
GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,
1. Szerencsére elmúlt a veszély, pánikra semmi ok. Luke Skywalker ugyan kivont lézerkarddal ment órára a jediképzőben, de a birodalmi gárda
1. ZH 2012. X. 11. 15 Mobiltelefon még kikapcsolt állapotban sem lehet a padon vagy a hallgató kezében. Minden egyes feladat helyes megoldása 10 pontot ér. A dolgozatok értékelése: 0-23 pont: 1, 24-32
SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL
infokommunikációs technológiák SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL Dr. Jaskó Szilárd Pannon Egyetem, MIK, Nagykanizsai kampusz Kanizsa Felsőoktatásáért Alapítvány 2015 VIRTUÁLIS STRUKTÚRA 2 VIRTUÁLIS
Logika és számításelmélet. 11. előadás
Logika és számításelmélet 11. előadás NP-teljesség Emlékeztetőül: NP-teljes nyelv Egy L probléma NP-teljes (a polinom idejű visszavezetésre nézve), ha L NP L NP-nehéz, azaz minden L NP esetén L p L. Azaz
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók
Adatbányászat: Klaszterezés Haladó fogalmak és algoritmusok
Adatbányászat: Klaszterezés Haladó fogalmak és algoritmusok 9. fejezet Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton Logók és támogatás A tananyag a TÁMOP-4.1.2-08/1/A-2009-0046
Adatszerkezetek II. 1. előadás
Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf
DISZKRÉT MATEMATIKA 2
DISZKRÉT MATEMATIKA 2 KÉRDÉSEK Készítette: Molnár Krisztián (MOKOABI.ELTE) Aktualizálva: 2011. június 28. (1.) Mely tétel alapján számolhatjuk ki véges sok egész szám legnagyobb közös osztóját prímfelbontás
Alapfogalmak a Diszkrét matematika II. tárgyból
Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések
2. csoport, 8. tétel: Gráfok
Utolsó javítás: 2009. február 16. Áttekintés A gráfelmélet születése 1 A gráfelmélet születése 2 Csúcsok és élek Fokszámok Komplementer Izomorfia 3 Séták, utak, körök, összefüggőség Gráfbejárások Fagráfok
Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:
Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)
Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 13. Előadás
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 13. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2009. december 7. Gráfok sajátértékei Definíció. Egy G egyszerű gráf sajátértékei az A G
Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39
Kémiai kötés 12-1 Lewis elmélet 12-2 Kovalens kötés: bevezetés 12-3 Poláros kovalens kötés 12-4 Lewis szerkezetek 12-5 A molekulák alakja 12-6 Kötésrend, kötéstávolság 12-7 Kötésenergiák Általános Kémia,
Mesterséges Intelligencia I. (I602, IB602)
Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) harmadik (2008. szeptember 15-i) előadásának jegyzete Készítette: Papp Tamás PATLACT.SZE KPM V. HEURISZTIKUS FÜGGVÉNYEK ELŐÁLLÍTÁSA Nagyon fontos
SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 10. ÉVFOLYAM SZÁMÁRA
SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 10. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 3 = 111 A tanmenet 100 óra beosztását tartalmazza. A dolgozatok írása és javítása ezeken felül 8 órát
23. SZÉLESSÉGI BEJÁRÁS
23. SZÉLESSÉGI BEJÁRÁS A bejárási algoritmusok feladata általában a gráf csúcsainak végiglátogatása valamilyen stratégia szerint. A bejárás gyakran azért hajtjuk végre, mert adott tulajdonságú csúcsot
HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: (
HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör Teljes gráf: Páros gráf, teljes páros gráf és Hamilton kör/út Hamilton kör: Minden csúcson áthaladó kör Hamilton kör Forrás: (http://www.math.klte.hur/~tujanyi/komb_j/k_win_doc/g0603.doc
Gráfelméleti heurisztikák alkalmazása hibatűrő hálózatok tervezésénél Radics Norbert Nokia Siemens Networks
Gráfelméleti heurisztikák alkalmazása hibatűrő hálózatok tervezésénél Radics Norbert Nokia Siemens Networks Nokia Siemens Networks Hálózattervezés A többrétegű gerinchálózatok tervezése, mint mérnöki feladat
Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
bármely másikra el lehessen jutni. A vállalat tudja, hogy tetszőlegesen adott
. Minimális súlyú feszítő fa keresése Képzeljük el, hogy egy útépítő vállalat azt a megbízást kapja, hogy építsen ki egy úthálózatot néhány település között (a települések között jelenleg nincs út). feltétel
Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.
Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás