Fraktál alapú képtömörítés p. 1/26
|
|
- Márta Király
- 5 évvel ezelőtt
- Látták:
Átírás
1 Fraktál alapú képtömörítés Bodó Zalán BBTE Fraktál alapú képtömörítés p. 1/26
2 Bevezetés tömörítések veszteségmentes (lossless) - RLE, Huffman, LZW veszteséges (lossy) - kvantálás, fraktál alapú fraktál alapú képtömörítés alapötlet, stb. definíciók, tételek tömörítési, megjelenítési algoritmus particionálási módszerek Fraktál alapú képtömörítés p. 2/26
3 Veszteséges tömörítők jellemzése tömörítési arány torzulás kódolási és dekódolási idő Hűségi metrikák MSE: MSE(u, u ) = 1 n n 1 j=0 (u j u j )2 RMSE: RMSE(u, u ) = MSE(u, u ) ( ) PSNR: P SNR(u, u ) = 10 log 2 u 10 MSE(u,u ) Fraktál alapú képtömörítés p. 3/26
4 Run Lenght Encoding Σ - ábécé; (σ, n), σ Σ, n {1, 2,...} Fraktál alapú képtömörítés p. 4/26
5 Huffman kódolás S =ábécé; p(s) = k S, s S (megjelenési valószínűség; statisztika) fa megépítése a megjelenési statisztika függvényében; élekhez: 0, 1-et rendelünk ALG: p( ) kiszámolása L = S (L =lista) Fraktál alapú képtömörítés p. 5/26
6 Amíg L! = 0: s 1, s 2 minimális valószínűségű szimbólumok kiválasztása s 1 s 2 beszúrása a fába; s 1 s 2 0 s 1 ; s 1 s 2 1 s 2 vissza L-be: s 1 s 2 ; p(s 1 s 2 ) = p(s 1 ) + p(s 2 ) Amíg vége Fraktál alapú képtömörítés p. 6/26
7 Lempel-Ziv-Welch (LZW) ALG: STRING = input karakter Amíg van input: CHAR = input karakter Ha STRING+CHAR létezik a táblában, akkor STRING = STRING+CHAR Különben Kiír(STRING kódja) Hozzáadjuk a STRING+CHAR-t a táblához STRING = CHAR Ha vége Amíg vége Fraktál alapú képtömörítés p. 7/26
8 Kvantálás valós számok egészként való ábrázolása; veszteséges művelet Pl: x = ; w = 4 kvantálás: round(x w) = 11 visszaalakítás: tárolt érték/w = 11/4 = 2.75 Fraktál alapú képtömörítés p. 8/26
9 Fraktál alapú képtömörítés M.F. Barnsley, A. Jacquin: kép mint transzformáció tárolása [transzformáció paramétereinek tárolása] IFS: {X; w n, n = 1, 2,..., N} W ( ) = N n=1 w n( ) önhasonlóság a képekben (!!!) Jacquin: nem IFS, hanem PIFS: w i : D i R i, úh. i R i = I [R i R j = ], D i I (I-kép) affin transzformációk: Fraktál alapú képtömörítés p. 9/26
10 w i x y z = a i b i 0 c i d i s i x y z + e i f i o i s i - kontraszt-skálázás (contrast scaling) o i - fényesség-eltolás (brightness offset) Fraktál alapú képtömörítés p. 10/26
11 Alapötlet keressünk egy olyan transzformáció-halmazt (kontrakciós tr.h.), melynek fixpontja a kódolni kívánt kép lesz (Barnsley, Jacquin) Fraktál alapú képtömörítés p. 11/26
12 Egy kis elmélet... Metrikus terek Affin transzformációk: w( x) = A x + b Fixpont: f(x f ) = x f Kontrakció: Az f : X X (X, d) metrikus téren értelmezett transzf. kontrakció ha s [0, 1) úh. d(f(x), f(y)) s d(x, y), x, y X Előreiterált: f m (x) Hátraiterált: f ( n) (x) Fraktál alapú képtömörítés p. 12/26
13 IFS Iterált függvényrendszerek (IFS): Legyen (X, d) metrikus tér. A w n : X X, n = 1, 2,..., N kontrakciós leképzések véges halmazát {X; w n, n = 1,..., N} iterált függvényrendszernek nevezzük. Ha w n kontrakciós együtthatója s n, akkor az IFS (W = n w n) kontrakciós együtthatója s = max{s n n = 1,..., N}. Fraktál alapú képtömörítés p. 13/26
14 IFS-tétel Legyen {X; w n, n = 1,..., N} egy s k.e.-val rendelkező IFS. Ekkor az alábbiak szerint definiált W : H(X) H(X) transzformáció N W (B) = w n (B), n=1 minden B-re egy (H(X), h(d)) téren értelmezett kontrakciós leképzés, azaz h(w (B), W (C)) s h(b, C), B, C H(X) Rendelkezik egy egyedi A H(X) fixponttal, amelyre A = W (A) = N n=1 w n(a) teljesül, és A = lim n W n (B), B H(X). Az A halmazt az IFS attraktorának nevezzük. Fraktál alapú képtömörítés p. 14/26
15 Kollázs tétel (Barnsley, 1985) Legyen (X, d) egy TMT. Legyen továbbá T H(X) és ɛ > 0. Válasszunk egy olyan s [0, 1) k.e.-jú {X; w n, n = 1,..., N} IFS-t, melyre N h(t, w n (T )) ɛ Ekkor n=1 h(t, A) ɛ 1 s ahol A az IFS attraktora. Ekvivalens módon h(t, A) (1 s) 1 h(t, N n=1 w n (T )), T Fraktál alapú képtömörítés p. 15/26
16 Képek tömörítése Egy T képre határozzuk meg az R i blokkokat úh. T = R i Hat. meg egy t tolerancia-szintet Minden R i -re: Hat. meg az a D i domain-blokkot, melyre d(r i, D i ) minimális vagy < t Tároljuk el a w i transzformáció és a D i blokk paramétereit Minden vége Fraktál alapú képtömörítés p. 16/26
17 (domain blocks) d (selected domain block) (spatial contraction ) (8 isometries) (affine transformation) (range blocks) r δ r,r r (compute distance) (transformed block) Fraktál alapú képtömörítés p. 17/26
18 Megjelenítés Amíg nem konvergál: Minden eltárolt D i domain-blokkra: Minden pontra D i -ből: Hat. meg a D i -hez tartozó w i transzformációval a pont koordinátáit és pixelintenzitását Rajzoljuk ki a pontot Minden vége Minden vége Amíg vége Fraktál alapú képtömörítés p. 18/26
19 Távolság, s, o D i = {a 1,..., a n }, R i = {b 1,..., b n } R = n i=1 [(s a i + o) b i ] 2 min o = 1 n ( n i=1 b i s n i=1 a i) s = n n i=1 a ib i n i=1 a i n j=1 b j n n i=1 a2 i ( n i=1 a i) 2 távolság (metrika): R Fraktál alapú képtömörítés p. 19/26
20 Particionálások négyzetes ( ) quadtree ( ) HV ( ) hatszög alapú háromszög alapú (Delaunay, stb.) stb. Fraktál alapú képtömörítés p. 20/26
21 1. Négyzetes particionálás Transzformációk (izometriák): azonosság tükrözés Oy-ra tükrözés Ox-re 180 -os forgatás tükrözés y = x-re 90 -os forgatás 270 -os forgatás tükrözés y = x-re Fraktál alapú képtömörítés p. 21/26
22 With fractal image compression, two 2. Quadtree particionálás One is the search strategy used for related to how to effectively partition The development of an Fraktáleffective alapú képtömörítés p. 22/26sea
23 With fractal image compression, two other important issue One is the search strategy used for finding range-doma related to how to effectively partition the range blocks. 3. HV particionálás p ij, i = 0,..., M 1 (sor), j = 0,..., N 1 (oszlop) S i sor = N 1 j=0 p ij S j osz = M 1 i=0 p ij h i = min(i,m i 1) M 1 v j = min(j,n j 1) N 1 max h i, v j ( S i sor Ssor i+1 ) ( ) Sosz j Sosz j+1 The development of an effective search strategy is impor Fraktál alapú képtömörítés p. 23/26
24 Lenna Lena Soderberg (Sjööblom) Fraktál alapú képtömörítés p. 24/26
25 Playboy 1972 November Fraktál alapú képtömörítés p. 25/26
26 Fraktál alapú képtömörítés p. 26/26
Súlyozott automaták alkalmazása
Súlyozott automaták alkalmazása képek reprezentációjára Gazdag Zsolt Szegedi Tudományegyetem Számítástudomány Alapjai Tanszék Tartalom Motiváció Fraktáltömörítés Súlyozott véges automaták Képek reprezentációja
RészletesebbenFraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
Részletesebben1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
RészletesebbenANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
RészletesebbenAlgoritmuselmélet 7. előadás
Algoritmuselmélet 7. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 11. ALGORITMUSELMÉLET 7. ELŐADÁS 1 Múltkori
Részletesebben12. Képtömörítés. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (
12. Képtömörítés Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Miért van szükség tömörítésre? A rendelkezésre álló adattárolási és továbbítási
RészletesebbenInformatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Dr. Kutor László Minimális redundanciájú kódok (2) Szótár alapú tömörítő algoritmusok 2014. ősz Óbudai Egyetem, NIK Dr. Kutor László IRA 8/25/1 Az információ redundanciája
RészletesebbenFraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.
Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint
RészletesebbenInformatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László
RészletesebbenVértesy Gáspár Matematika BSc Alkalmazott matematikus szakirány. Az Okamoto-függvények
Eötvös Loránd Tudományegyetem Természettudományi Kar Vértesy Gáspár Matematika BSc Alkalmazott matematikus szakirány Az Okamoto-függvények Szakdolgozat Témavezető: Keleti Tamás, tanszékvezető egyetemi
RészletesebbenANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Részletesebbendimenziója Szirmay-Kalos László N= 1/r D D= (logn) / (log 1/r) D= (log4) / (log 3) = 1.26 N = 4, r = 1/3 Vonalzó ( l ) db r =1/3 N = 4 r 2 N 2 N m r m
Fraktálok Hausdorff dimenzió Fraktálok N = N = 4 N = 8 Szirmay-Kalos László r = r = r = N= /r D D= (logn) / (log /r) Koch görbe D= (log4) / (log 3) =.6 N = 4, r = /3 Nem önhasonló objektumok dimenziója
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenFRAKTÁLGEOMETRIA. Példák fraktálokra I. Czirbusz Sándor február 1. Komputeralgebra Tanszék ELTE Informatika Kar
Példák fraktálokra I Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. február 1. Vázlat 1 Mi a fraktál? 2 A konstrukció Egyszerű tulajdonságok Triadikus ábrázolás Transzlációk
RészletesebbenAdatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
RészletesebbenFolytonos görbék Hausdorff-metrika Mégegyszer a sztringtérről FRAKTÁLGEOMETRIA. Metrikus terek, Hausdorff-mérték. Czirbusz Sándor
Metrikus terek, Hausdorff-mérték Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. március 22. Vázlat 1 Folytonos görbék Affin függvények Definíciók A Koch-görbe A Cantor-halmaz
RészletesebbenNagyméretű Adathalmazok Kezelése
Nagyméretű Adathalmazok Kezelése Idősorok Elemzése Márta Zsolt BME-SZIT (Hallgató) 2011.04.01 Márta Zsolt (BME-SZIT (Hallgató)) Idősorok Elemzése 2011.04.01 1 / 34 Tartalom 1 Bevezetés 2 Hasonlósági mértékek
RészletesebbenFunkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
RészletesebbenFraktálok és számítógépes grafika
Fraktálok és számítógépes grafika - Szakdolgozat - Készítette: Mansaré Anna Manty (Matematika BSc, Elemző szakirány) Témavezető: Buczolich Zoltán (Analízis Tanszék, Matematikai Intézet) Eötvös Loránd Tudományegyetem
RészletesebbenTérbeli transzformációk, a tér leképezése síkra
Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle
RészletesebbenFraktálok. Klasszikus fraktálpéldák I. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék
Fraktálok Klasszikus fraktálpéldák I Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 86 Bevezetés. 2 of 86 TARTALOMJEGYZÉK Bevezetés. Az önhasonlóságról intuitív módon Klasszikus
Részletesebbenf(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
RészletesebbenOptimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
RészletesebbenMetrikus terek, többváltozós függvények
Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész
RészletesebbenCsoportosítás. Térinformatikai műveletek, elemzések. Csoportosítás. Csoportosítás
Csoportosítás Térinformatikai műveletek, elemzések Leíró (attribútum) adatokra vonatkozó kérdések, műveletek, elemzések, csoportosítások,... Térbeli (geometriai) adatokra vonatkozó kérdések, műveletek
RészletesebbenEgybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.
Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenKoós Dorián 9.B INFORMATIKA
9.B INFORMATIKA Számítástechnika rövid története. Az elektronikus számítógép kifejlesztése. A Neumann-elv. Információ és adat. A jel. A jelek fajtái (analóg- és digitális jel). Jelhalmazok adatmennyisége.
RészletesebbenAlapfogalmak a Diszkrét matematika II. tárgyból
Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések
RészletesebbenA fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
RészletesebbenAlgoritmuselmélet 12. előadás
Algoritmuselmélet 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Április 9. ALGORITMUSELMÉLET 12. ELŐADÁS 1 Turing-gépek
RészletesebbenVektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
RészletesebbenHibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós
Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott
RészletesebbenValószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
RészletesebbenFRAKTÁLGEOMETRIA Feladatok. Czirbusz Sándor április 16. A feladatok végén zárójelben a feladat pontértéke található.
FRAKTÁLGEOMETRIA Feladatok Czirbusz Sándor 010. április 16. I. rész Feladatok A feladatok végén zárójelben a feladat pontértéke található. 1. Példák fraktálokra 1.1. A Cantor - halmaz 1.1.1. Feladat. Igazoljuk,
RészletesebbenHierarchikus skálafüggetlen gráfok generálása fraktálokkal
Hierarchikus skálafüggetlen gráfok generálása fraktálokkal Komjáthy Júlia Simon Károly Sztochasztika Tanszék Matematika Intézet Budapesti Műszaki és Gazdaságtudományi Egyetem www.math.bme.hu/~komyju www.math.bme.hu/~simonk
RészletesebbenLeképezések. Leképezések tulajdonságai. Számosságok.
Leképezések Leképezések tulajdonságai. Számosságok. 1. Leképezések tulajdonságai A továbbiakban legyen A és B két tetszőleges halmaz. Idézzünk fel néhány definíciót. 1. Definíció (Emlékeztető). Relációknak
RészletesebbenKÓDOLÁSTECHNIKA PZH. 2006. december 18.
KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2016. ősz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2016.
RészletesebbenGeorg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló
láttuk, hogy a Lorenz egyenletek megoldásai egy nagyon bonyolult halmazt alkottak a fázistérben végtelenül komplex felület fraktál: komplex geometriai alakzatok, melyeknek elemi kis skálán is van finomszerkezete
RészletesebbenRelációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor
Részletesebben1. feladatsor Komplex számok
. feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4
RészletesebbenMohó algoritmusok. Példa:
Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.
RészletesebbenSzámításelmélet. Második előadás
Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi
RészletesebbenFELVÉTELI VIZSGA, szeptember 12.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy
RészletesebbenElőfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
RészletesebbenFraktálok és káosz. Szirmay-Kalos László
Fraktálok és káosz Szirmay-Kalos László A természet geometriája Euklideszi geometria metrikus Sima egyenesre/síkra épít (analízis: differenciálás) Kicsiben mindenki lineáris: Skálafüggőség Méret lényeges
RészletesebbenMultimédia alapú fejlesztéseknél gyakran használt veszteséges képtömörítő eljárások pszichovizuális összehasonlítása
Multimédia alapú fejlesztéseknél gyakran használt veszteséges képtömörítő eljárások pszichovizuális összehasonlítása Berke József 1 - Kocsis Péter 2 - Kovács József 2 1 - Pannon Agrártudományi Egyetem,
RészletesebbenAlgoritmuselmélet 6. előadás
Algoritmuselmélet 6. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 4. ALGORITMUSELMÉLET 6. ELŐADÁS 1 Hash-elés
RészletesebbenHaladó lineáris algebra
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2019. május 3. 1. Diszkrét matematika 2. 10. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Mérai László diái alapján Komputeralgebra Tanszék 2019. május
RészletesebbenGauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
RészletesebbenMatematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)
Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.
RészletesebbenBevezetés az algebrába 2 Vektor- és mátrixnorma
Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.
RészletesebbenNumerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
RészletesebbenOptimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
RészletesebbenFüggvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA
Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA Alapvető fogalmak: Függvény fogalma Függvény helyettesítési értéke (függvényérték) Függvény grafikonja A
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenGazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
RészletesebbenLagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
RészletesebbenMérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik
Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer
RészletesebbenCsempe átíró nyelvtanok
Csempe átíró nyelvtanok Tile rewriting grammars Németh L. Zoltán Számítástudomány Alapjai Tanszék SZTE, Informatikai Tanszékcsoport 1. előadás - 2006. április 10. Képek (pictures) I. Alapdefiníciók ábécé:
RészletesebbenOpkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
RészletesebbenFormális nyelvek - 9.
Formális nyelvek - 9. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Véges
RészletesebbenNUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK
NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK Szerkesztette: Balogh Tamás 04. január 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el!
RészletesebbenSorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján
Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:
RészletesebbenLINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
Részletesebben3. el adás: Determinánsok
3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns
RészletesebbenMatematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
RészletesebbenFraktál alapú képtömörítés
Debreceni Egyetem Informatikai Kar Fraktál alapú képtömörítés Káosz és fraktálok programozói szemmel Témavezető: Dr. Fazekas Gábor egyetemi docens Készítette: Tilki Csaba programtervező matematikus Debrecen
RészletesebbenAz osztályozóvizsgák követelményrendszere 9. évfolyam
Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és
RészletesebbenNagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.
Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =
RészletesebbenSzámsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
RészletesebbenEGYVÁLTOZÓS FÜGGVÉNYEK FOLYTONOSSÁGA ÉS HATÁRÉRTÉKE
EGYVÁLTOZÓS FÜGGVÉNYEK FOLYTONOSSÁGA ÉS HATÁRÉRTÉKE BÁTKAI ANDRÁS Ennek a jegyzetnek az elsődleges célja, hogy a matematika tanárszakos analízis előadást kísérje és a vizsgára készülést segítse. A jegyzet
RészletesebbenRE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy
RészletesebbenAz Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai Dr. Kutor László Az üzenet információ-tartalma és redundanciája Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html
RészletesebbenAz információelmélet alapjai, biológiai alkalmazások. 1. A logaritmusfüggvény és azonosságai
Az információelmélet alapjai, biológiai alkalmazások 1. A logaritmusfüggvény és azonosságai 2 k = N log 2 N = k Például 2 3 = 8 log 2 8 = 3 10 4 = 10000 log 10 10000 = 4 log 2 2 = 1 log 2 1 = 0 log 2 0
RészletesebbenNorma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei
Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:
RészletesebbenA logaritmusfüggvény definíciója, grafikonja, jellemzői MATEMATIKA 11. évfolyam középszint
TÁMOP-..4-08/2-2009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben A logaritmusfüggvény definíciója, grafikonja, jellemzői MATEMATIKA. évfolyam középszint
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Részletesebbendefiniálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként.
Számításelmélet Kiszámítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést, amire számítógéppel szeretnénk megadni a választ. (A matematika nyelvén precízen megfogalmazott
RészletesebbenMATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
RészletesebbenVektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
RészletesebbenFeladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados
RészletesebbenSZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM
SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM A vizsga szerkezete: A vizsga írásbeli és szóbeli vizsgarészből áll. 1.) Írásbeli vizsga Időtartama: 45 perc Elérhető pontszám: 65 pont Feladattípusok:
RészletesebbenZárthelyi dolgozat feladatainak megoldása 2003. õsz
Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység
RészletesebbenSzámítógépes Modellezés 11. Differenciálegyenletes modellek. Inga
Számítógépes Modellezés Differenciálegyenletes modellek Inga Tekintsük a következő egyparaméteres differenciálegyenletes modellt: Φ' Ω, Ω' g l sin Φ, l 0, g 9.8. Keresd meg az egyensúlyi helyzetet. Oldd
RészletesebbenOsztályozó és Javító vizsga témakörei matematikából 9. osztály
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,
RészletesebbenLineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
RészletesebbenBOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai
BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A
RészletesebbenSzámítási feladatok a Számítógépi geometria órához
Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát
Részletesebbenx, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.
Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak
RészletesebbenMatematika osztályozó vizsga témakörei 9. évfolyam II. félév:
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény
RészletesebbenA következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
Részletesebben