Diszkrét matematika 2.
|
|
- Margit Sipos
- 6 évvel ezelőtt
- Látták:
Átírás
1 Diszkrét matematika május Diszkrét matematika előadás Fancsali Szabolcs Levente nudniq Mérai László diái alapján Komputeralgebra Tanszék május 3.
2 Kódolás Diszkrét matematika május Hibakorlátozó kódolás Példa (ISBN (International Standard Book Number) kódolása) Legyen d 1, d 2,..., d n decimális számjegyek egy sorozata (n 10). Egészítsük ki a sorozatot egy n + 1-edik számjeggyel, amelynek értéke d n+1 = n j d j mod 11, j=1 ha az nem 10, különben d n+1 legyen X. Ha valamelyik számjegyet eĺırjuk, akkor az összefüggés nem teljesülhet: d n+1 eĺırása esetén ez nyilvánvaló, j n-re d j helyett d j -t írva pedig az összeg j(d j d j )-vel nőtt, ami nem lehet 11-gyel osztható (Miért?). Azt is észrevesszük, ha j < n esetén d j -t és d j+1 -et felcseréljük: az összeg jd j+1 + (j + 1)d j jd j (j + 1)d j+1 = d j d j+1 -gyel nő, ami csak akkor lehet 11-gyel osztható, ha d j = d j+1. Megjegyzés 2007 óta 13 jegyű. A személyi számnál is használják.
3 Kódolás Diszkrét matematika május Hibakorlátozó kódolás Példa (Paritásbites kód) Egy n hosszú 0-1 sorozatot egészítsünk ki egy n + 1-edik bittel, ami legyen 1, ha a sorozatban páratlan sok 1-es van, különben pedig legyen 0. Ha egy bit megváltozik, akkor észleljük a hibát. Példa (Kétdimenziós paritásellenőrzés) b 0,0 b 0,j b 0,n 1 b 0,n b i,0 b i,j b i,n 1 b i,n b m 1,0 b m 1,j b m 1,n 1 b m 1,n b m,0 b m,j b m,n 1 b m,n Oszlopok és sorok végén paritásbit. Ha megváltozik egy bit, akkor a sor és az oszlop végén jelez az ellenőrző bit, ez alapján tudjuk javítani a hibát. Ha két bit változik meg, akkor észleljük a hibát, de nem tudjuk javítani.
4 Kódolás Diszkrét matematika május Hibakorlátozó kódolás Definíció Egy kód t-hibajelző, ha minden olyan esetben jelez, ha az elküldött és megkapott szó legfeljebb t helyen tér el. Egy kód pontosan t-hibajelző, ha t-hibajelző, de van olyan t + 1-hiba, amit nem jelez. Példa ISBN - 1-hibajelző paritásbites kód - 1-hibajelző kétdimenziós paritásellenőrzés - 2-hibajelző Hiba javításának módjai ARQ (Automatic Retransmission Request) - újraküldés, FEC (Forward Error Correction) - javítható, pl.: kétdimenziós paritásell.
5 Kódolás Diszkrét matematika május Hibakorlátozó kódolás Definíció Legyen A véges ábécé, továbbá u, v A n. Ekkor u és v Hamming-távolsága alatt az azonos pozícióban lévő különböző betűk számát értjük: d(u, v) = {i : 1 i n u i v i }. Példa = d(01110,10101)=4 A L M A A N N A = = d(alma,anna)=2
6 Kódolás Diszkrét matematika május Hibakorlátozó kódolás Álĺıtás A Hamming-távolság rendelkezik a távolság szokásos tulajdonságaival, vagyis tetszőleges u, v, w-re 1) d(u, v) 0; 2) d(u, v) = 0 u = v; 3) d(u, v) = d(v, u) (szimmetria); 4) d(u, v) d(u, w) + d(w, v) (háromszög-egyenlőtlenség). Bizonyítás 1), 2) és 3) nyilvánvaló. 4) Ha u és v eltér valamelyik pozicióban, akkor ott u és w, illetve w és v közül legalább az egyik pár különbözik.
7 Kódolás Diszkrét matematika május Hibakorlátozó kódolás Definíció A K kód távolsága (d(k)) a különböző kódszópárok távolságainak a minimuma. Példa (*) (0,0) (0,0,0,0,0) (0,1) (0,1,1,1,0) (1,0) (1,0,1,0,1) (1,1) (1,1,0,1,1) A kód távolsága Felmerül a kérdés, hogy vajon mi lehetett a kódszó, ha a (0,1,0,0,0) szót kapjuk.
8 Kódolás Diszkrét matematika május Hibakorlátozó kódolás Definíció Minimális távolságú dekódolás esetén egy adott szóhoz azt a kódszót rendeljük, amelyik hozzá a legközelebb van. Több ilyen szó esetén kiválasztunk ezek közül egyet, és az adott szóhoz mindig azt rendeljük. Megjegyzés A dekódolás két részre bontható: a hibajavításnál megpróbáljuk meghatározni, hogy mi volt az elküldött kódszó, majd visszaálĺıtjuk az üzenetet. Mivel az utóbbi egyértelmű, ezért hibajavító kódok dekódolásán legtöbbször csak a hibajavítást értjük. Definíció Egy kód t-hibajavító, ha minden olyan esetben helyesen javít, amikor egy elküldött szó legfeljebb t helyen változik meg. Egy kód pontosan t-hibajavító, ha t-hibajavító, de van olyan t + 1 hibával érkező szó, amit helytelenül javít, vagy nem javít.
9 Kódolás Diszkrét matematika május Hibakorlátozó kódolás Megjegyzés Ha a kód távolsága d, akkor minimális távolságú dekódolással t < d 2 esetén t-hibajavító. Példa Az előző példában szereplő kód pontosan 1-hibajavító. (0,0,0,0,0) (1,0,0,0,1) (1,0,1,0,1) Példa (ismétléses kód) a (a,a,a) d = 3 1-hibajavító, a (a,a,a,a,a) d = 5 2-hibajavító.
10 Kódolás Diszkrét matematika május Hibakorlátozó kódolás Tétel (Singleton-korlát) Ha K A n, A = q és d(k) = d, akkor K q n d+1. Bizonyítás Ha minden kódszóból elhagyunk d 1 betűt (ugyanazokból a pozíciókból), akkor az így kapott szavak még mindig különbözőek, és n d + 1 hosszúak. Az ilyen hosszú szavak száma szerepel az egyenlőtlenség jobb oldalán. Definíció Ha egy kódra a Singleton-korlát egyenlőséggel teljesül, akkor azt maximális távolságú szeparábilis kódnak (MDS-kód) nevezzük. Példa Az n-szeri ismétlés kódja. Ekkor d = n, és K = q.
11 Kódolás Diszkrét matematika május Hibakorlátozó kódolás Tétel (Hamming-korlát) Ha K A n, A = q és K t-hibajavító, akkor K t j=0 ( ) n (q 1) j q n. j Bizonyítás Mivel a kód t-hibajavító, ezért bármely két kódszóra a tőlük legfeljebb t távolságra lévő szavak halmazai diszjunktak (Miért?). Egy kódszótól pontosan j távolságra lévő szavak száma ( ) n j (q 1) j (Miért?), így egy kódszótól legfeljebb t távolságra lévő szavak száma t ( n ) j=0 j (q 1) j. A jobb oldalon az n hosszú szavak száma szerepel (Miért?).
12 Kódolás Diszkrét matematika május Hibakorlátozó kódolás Definíció Ha egy kódra a Hamming-korlát egyenlőséggel teljesül, akkor azt perfekt kódnak nevezzük. Példa (nem perfekt kódra) A (*) kód esetén K = 4, n = 5, q = 2 és t = 1. B.O.= 4 (( ) 5 0 (2 1) 0 + ( 5 1) ) (2 1) 1 = 4(1 + 5) = 24, J.O.= 2 5 = 32. Nem perfekt kód.
13 Kódolás Diszkrét matematika május A kód távolságának és hibajelző képességének kapcsolata Tekintsünk egy kódot, aminek a távolsága d. Ha egy elküldött kódszó legalább 1, de d-nél kevesebb helyen sérül, akkor az így kapott szó biztosan nem kódszó, mivel két kódszó legalább d helyen különbözik. Tehát legfeljebb d 1 hiba esetén a kód jelez. A kódban van két olyan kódszó, amelyek távolsága d, és ha az egyiket küldik, és ez úgy változik meg, hogy éppen a másik érkezik meg, akkor d hiba történt, de nem vesszük észre. Tehát van olyan d hiba, amit a kód nem tud jelezni. Ezáltal a kód pontosan d 1-hibajelző.
14 Kódolás Diszkrét matematika május A kód távolságának és hibajavító képességének kapcsolata Legyen a kód távolsága továbbra is d, és tegyük fel, hogy minimális távolságú dekódolást használunk. t < d 2 hiba esetén biztosan jól javítunk, hiszen a háromszög-egyenlőtlenség miatt az eredetileg elküldött kódszótól különböző bármely kódszó biztosan d 2 -nél több helyen tér el a vett szótól (Miért?). Másrészt legyenek u és w olyan kódszavak, amelyek távolsága d, és legyen v az a szó, amit úgy kapunk u-ból, hogy azon d pozícióból, amelyekben eltérnek, t d 2 helyre a w megfelelő pozíciójában lévő betűt írjuk. Ekkor v az u-tól t helyen, míg w-től d t d 2 t helyen különbözik. Ha a kód t-hibajavító lenne, akkor v-t egyrészt u-ra, másrészt w-re kellene javítania. Ezáltal a kód pontosan d 1 2 -hibajavító.
15 Kódolás Diszkrét matematika május Definíció Legyen F véges test. Ekkor az F elemeiből képzett rendezett n-esek a komponensenkénti összeadással, valamint az n-es minden elemének ugyanazzal az F-beli elemmel való szorzásával egy F feletti n-dimenziós F n lineáris teret alkotnak. Ennek a térnek egy tetszőleges altere egy lineáris kód. Megjegyzés Itt F elemei a betűk, és F n elemei a szavak, az altér elemei a kódszavak. Jelölés Ha az altér k-dimenziós, a kód távolsága d, a test elemeinek a száma pedig q, akkor [n, k, d] q kódról beszélünk. Ha nem lényeges d és q értéke, akkor elhagyjuk őket a jelölésből, és [n, k]-t írunk.
16 Kódolás Diszkrét matematika május Megjegyzés Egy [n, k, d] q kód esetén a Singleton-korlát alakja egyszerűsödik: q k q n d+1 k n d + 1. Példa 1) A (*) kód egy [5, 2, 3] 2 kód: (0,0) (0,0,0,0,0) (0,1) (0,1,1,1,0) (1,0) (1,0,1,0,1) (1,1) (1,1,0,1,1)
17 Kódolás Diszkrét matematika május Példa folyt. 2) F q felett az ismétléses kód: pl. a háromszori ismétlés kódja: a (a, a, a). Ez egy [3, 1, 3] q kód. 3) Paritásbites kód (ha páros sok egyesre egészítünk ki): (b 1, b 2,..., b k ) (b 1, b 2,..., b k, k j=1 b j). Ez egy [n, n 1, 2] 2 kód. Definíció Az F ábécé feletti n hosszú u F n szó súlya alatt a nem-nulla koordinátáinak a számát értjük, és w(u)-val jelöljük. Egy K kód súlya a nem-nulla kódszavak súlyainak a minimuma: w(k) = min u 0 w(u).
18 Kódolás Diszkrét matematika május Megjegyzés Egy szó súlya megegyezik a 0-tól vett távolságával: w(u) = d(u, (0, 0,..., 0)). Álĺıtás Ha K lineáris kód, akkor d(k) = w(k). Bizonyítás d(u, v) = w(u v) (Miért?), és mivel K linearitása miatt u, v K esetén u v K, ezért a minimumok is megegyeznek (Miért?).
19 Kódolás Diszkrét matematika május Lineáris kód esetén a kódolás elvégezhető mátrixszorzással. Definíció Legyen G : F k q F n q egy teljes rangú lineáris leképzés, illetve G F n k q hozzá tartozó mátrix. K = Im(G) esetén G-t a K kód generátormátrixának nevezzük. a m 1 m 2. g 11 g 12 g 1k g 21 g 22 g 2k g n1 g n2 g nk m k c 1 c 2. c n
20 Kódolás Diszkrét matematika május Példa 1) A (*) kód egy generátormátrixa: G = ) A háromszori ismétlés kódjának egy generátormátrixa: G = 1 1 1
21 Kódolás Diszkrét matematika május Példa folyt. 3) A paritásbites kód egy generátormátrixa: G =
22 Kódolás Diszkrét matematika május Definíció Egy [n, k, d] q kódnak H F (n k) n q Hv = 0 v kódszó. Megjegyzés mátrix az ellenőrző mátrixa, ha A G mátrixhoz tartozó kódolásnak H pontosan akkor ellenőrző mátrixa, ha Ker(H) = Im(G) Példa 1) A (*) kód egy ellenőrző mátrixa: H =
23 Kódolás Diszkrét matematika május Példa folyt. 2) A háromszori ismétlés kódjának egy ellenőrző mátrixa: ( ) H = ) A paritásbites kód egy ellenőrző mátrixa: H = ( )
24 Kódolás Diszkrét matematika május Definíció Ha a kódszavak első k betűje megfelel az eredeti kódolandó szónak, akkor szisztematikus kódolásról beszélünk. Ekkor az első k karakter az üzenetszegmens, az utolsó n k pedig a paritásszegmens. Példa 1) A háromszori ismétlés kódja: ( a, a, a ) }{{} üz.sz. }{{} par.sz. 2) A paritásbites kód: n 1 (b 1, b 2,..., b n 1, b j ) }{{} j=1 üz.sz. }{{} par.sz.
25 Kódolás Diszkrét matematika május Megjegyzés Szisztematikus kódolás esetén könnyen tudunk dekódolni: a paritásszegmens elhagyásával megkapjuk a kódolandó szót. Megjegyzés Egy szisztematikus kód generátormátrixa speciális alakú: ( ) Ik G =, P ahol I k F k k q egységmátrix, továbbá P F (n k) k q.
26 Kódolás Diszkrét matematika május Álĺıtás Legyen G F n k q egy szisztematikus kód generátormátrixa: ( ) Ik G =. Ekkor H = ( ) P I P n k ellenőrző mátrixa a kódnak. Bizonyítás H G = ( ( ) ) Ik P I n k = P + P = 0 F (n k) k q P (H G) ij = k l=1 ( P) il (I k ) lj + n k l=1 (I n k) il (P) lj = p ij + p ij = 0. Tehát bármely u kódolandó szóra H(Gu) = (HG)u = 0u = 0, vagyis Im(G) Ker(H), amiből dim(im(g)) dim(ker(h)). dim(im(g)) = k és dim(ker(h)) k miatt viszont dim(im(g)) dim(ker(h)) is teljesül, így Im(G) = Ker(H). Példa Ld. korábban.
27 Kódolás Diszkrét matematika május A kód távolsága leolvasható az ellenőrző mátrixból. Álĺıtás Legyen H egy [n, k] kód ellenőrző mátrixa. A H-nak pontosan akkor van l darab lineárisan összefüggő oszlopa, ha van olyan kódszó, aminek a súlya legfeljebb l. Bizonyítás Legyen H = ( ) h 1 h 2 h n. = Ekkor l j=1 u j h lj = 0. Tekintsük azt a vektort, aminek az l j -edik koordinátája u j, a többi pedig 0. Ez egyrészt kódszó lesz (Miért?), másrészt a súlya legfeljebb l. = Legyen u = (u 1, u 2,..., u n ) T az a kódszó, aminek a súlya l. Ekkor H-nak az u nem-nulla koordinátáinak megfelelő oszlopai lineárisan összefüggőek.
28 Kódolás Diszkrét matematika május Következmény A kód távolsága a legkisebb pozitív egész l, amire létezik az ellenőrző mátrixnak l darab lineárisan összefüggő oszlopa. Példa A (*) kód esetén: H = Egyik oszlopvektor sem a nullvektor, így nincs 1 darab lineárisan összefüggő oszlop. Egyik oszlopvektor sem többszöröse egy másiknak, így nincs 2 darab lineárisan összefüggő oszlop. Az 1., 3. és 5. oszlopok lineárisan összefüggőek, így a kód távolsága 3.
29 Kódolás Diszkrét matematika május A H ellenőrző mátrix segítségével dekódolni is lehet. Definíció Adott v F n q esetén az s = Hv F n k q vektort szindrómának nevezzük. Megjegyzés A v pontosan akkor kódszó, ha s = 0. Definíció Legyen c a kódszó, v a vett szó. Az e = v c a hibavektor. Álĺıtás Hv = He. Bizonyítás Hv = H(c + e) = Hc + He = 0 + He = He
30 Kódolás Diszkrét matematika május A dekódolás elve: v-ből kiszámítjuk a Hv szindrómát, ami alapján megbecsüljük az e hibavektort, majd meghatározzuk c-t a c = v e képlet segítségével. Definíció Valamely e hibavektorhoz tartozó mellékosztály az {e + c : c kódszó} halmaz. Megjegyzés Az e = 0-hoz tartozó mellékosztály a kód. Álĺıtás Az azonos mellékosztályban lévő szavak pontosan az azonos szindrómájú szavak. Bizonyítás Meggondolni...
31 Kódolás Diszkrét matematika május Definíció Minden s szindróma esetén legyen e s az a minimális súlyú szó, melynek s a szindrómája. Ez az s szindrómához tartozó mellékosztály-vezető, a mellékosztály elemei e s + c alakúak, ahol c K kódszó. Szindrómadekódolás Adott v esetén tekintsük az s = Hv szindrómát, és az e s mellékosztály-vezetőt. Dekódoljuk v-t c = v e s -nek. Álĺıtás Legyen c a kódszó, v = c + e a vett szó, ahol e a hiba, és w(e) < d/2, ahol d a kód távolsága. Ekkor a szindrómadekódolás a minimális távolságú dekódolásnak felel meg.
32 Kódolás Diszkrét matematika május Bizonyítás Egyrészt a korábbi álĺıtás alapján s = Hv = He, másrészt e s definíciója miatt s = He s. Ezért e és e s ugyanabban a mellékosztályban van, továbbá w(e s ) w(e). w(e e s ) = d(e, e s ) d(e, 0) + d(0, e s ) = w(e) + w(e s ) < d. De H(e e s ) = 0 miatt e e s kódszó (Miért?), így e = e s. Példa Tekintsük a (*) kódot. v = (1, 1, 0, 1, 1) T esetén Hv = 0, így v kódszó. v = (1, 1, 0, 0, 1) T esetén Hv = (0, 1, 0) T = s. Mi az s-hez tartozó mellékosztály-vezető? A (0, 0, 0, 1, 0) T súlya 1, és a szindrómája a keresett (0, 1, 0) T, így ez lesz a mellékosztály-vezető. c = v e s = (1, 1, 0, 0, 1) T (0, 0, 0, 1, 0) T = (1, 1, 0, 1, 1) T
33 Kódolás Diszkrét matematika május Emlékeztető (Hamming-korlát) Ha K A n, A = q és K t-hibajavító, akkor K t j=0 ( ) n (q 1) j q n. j Egyenlőség esetén perfekt kódról beszélünk. Definíció Az 1-hibajavító perfekt lineáris kódot Hamming-kódnak nevezzük. Emlékeztető A kód távolsága a legkisebb pozitív egész l, amire létezik az ellenőrző mátrixnak l darab lineárisan összefüggő oszlopa.
34 Kódolás Diszkrét matematika május Ha egy olyan bináris kódot készítünk, amelyre a H ellenőrző mátrix oszlopainak a különböző nemnulla, r hosszú vektorokat választjuk, akkor egy 1-hibajavító kódot kapunk (Miért?). Ekkor a Hamming-korlát alakja: 2 k (1 + n) 2 n. Egyenlőség esetén n = 2 n k 1, és pont ennyi n k hosszú, nemnulla vektor van. n = 2 r 1 esetén k = n log(n + 1), így a megfelelő (n, k) párok: n k Dekódolás Hamming-kód esetén: Ha csak 1 hiba van, akkor a hibavektornak csak egy koordinátája 1, a többi 0, így a szindróma az ellenőrző mátrix valamely oszlopa lesz. Ennek az oszlopnak megfelelő koordinátája hibás az üzenetben.
35 Kódolás Diszkrét matematika május Példa n = 7, k = 4 és H = G = v = (1, 1, 0, 0, 1, 1, 1) T esetén Hv = (0, 1, 1) T = s, ami a H 2. oszlopa, így a 2. koordináta romlott el, vagyis a küldött kódszó c = (1, 0, 0, 0, 1, 1, 1) T.
36 Kódolás Diszkrét matematika május Megjegyzés A [7, 4]-es Hamming-kódot egy paritásbittel kiegészítve kapjuk a teletextnél használt kódolást. A [15, 11]-es Hamming-kódot egy paritásbittel kiegészítve a műholdas műsorszórásnál (DBS) használják. Definíció A K F n q kód ciklikus, ha minden (u 1, u 2,..., u n 1, u n ) K esetén (u 2, u 3,..., u n, u 1 ) K. Példa K = {000, 101, 110, 011, 111} bináris kód ciklikus. Megjegyzés Ez nem lineáris kód: = 010 K.
37 Kódolás Diszkrét matematika május Hibakorlátozó kódolás, Lineáris kódolás Eddig tartott a tizenegyedik kis témakör. Ebből a témakörből május :15-10:30 között lesz két villámkérdés és a harmadik nagy témakörből (a kódelméleti két kis témakörből) a bizonyításra vonatkozó kérdés.
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2016. ősz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2016.
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.
Hibajavító kódok május 31. Hibajavító kódok 1. 1
Hibajavító kódok 2007. május 31. Hibajavító kódok 1. 1 Témavázlat Hibajavító kódolás Blokk-kódok o Hamming-távolság, Hamming-súly o csoportkód o S n -beli u középpontú t sugarú gömb o hibajelzı képesség
Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós
Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott
A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk
1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán
Kódelméleti és kriptográai alkalmazások
Kódelméleti és kriptográai alkalmazások Wettl Ferenc 2015. május 14. Wettl Ferenc Kódelméleti és kriptográai alkalmazások 2015. május 14. 1 / 11 1 Hibajavító kódok 2 Általánosított ReedSolomon-kód Wettl
KÓDOLÁSTECHNIKA PZH. 2006. december 18.
KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)
Hamming-kód. Definíció. Az 1-hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F 2 fölötti vektorokkal foglalkozunk.
Definíció. Hamming-kód Az -hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F fölötti vektorokkal foglalkozunk. Hamming-kód készítése: r egész szám (ellenırzı jegyek száma) n r a kódszavak hossza
A kódok típusai Kódolás: adatok megváltoztatása. Dekódolás: a megváltoztatott adatból az eredeti visszanyerése.
1. Hibajavító kódok A kódok típusai Kódolás: adatok megváltoztatása. Dekódolás: a megváltoztatott adatból az eredeti visszanyerése. Célok Titkosírás (kriptográfia). A megváltoztatott adat illetéktelenek
Az állítást nem bizonyítjuk, de a létezést a Paley-féle konstrukció mutatja: legyen H a
. Blokkrendszerek Definíció. Egy (H, H), H H halmazrendszer t (v, k, λ)-blokkrendszer, ha H = v, B H : B = k, és H minden t elemű részhalmazát H-nak pontosan λ eleme tartalmazza. H elemeit blokkoknak nevezzük.
Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1
Lieáris kódok Defiíció. Legye SF q. Ekkor S az F q test feletti vektortér. K lieáris kód, ha K az S k-dimeziós altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor.
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Hibadetektáló és javító kódolások
Hibadetektáló és javító kódolások Számítógépes adatbiztonság Hibadetektálás és javítás Zajos csatornák ARQ adatblokk meghibásodási valószínségének csökkentése blokk bvítése redundáns információval Hálózati
Bevezetés az algebrába 2 Lineáris algebra alkalmazásai
Bevezetés az algebrába 2 Lineáris algebra alkalmazásai Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M
Alapfogalmak a Diszkrét matematika II. tárgyból
Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések
Bevezetés az algebrába 2
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Alkalmazások H607 2017-05-10 Wettl Ferenc ALGEBRA
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
1. Gráfok alapfogalmai
1. Gráfok alapfogalmai Definiáld az irányítatlan gráf fogalmát! Definiáld az illeszkedik és a végpontja fogalmakat! Definiáld az illeszkedési relációt! Definiáld a véges/végtelen gráf fogalmát! Definiáld
Visontay Péter (sentinel@sch.bme.hu) 2002. január. 1. Alapfogalmak
Kódelmélet összefoglaló Visontay Péter (sentinel@schbmehu) 2002 január 1 Alapfogalmak Kódolás: a k hosszú u üzenetet egy n hosszú c kódszóba képézzük le Hibák: a csatorna két végén megjelenő c bemeneti
Diszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika II. feladatok
Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Aleksziev Rita Antónia Matematika BSc Alkalmazott matematikus szakirány. Golay-kódok
Eötvös Loránd Tudományegyetem Természettudományi Kar Aleksziev Rita Antónia Matematika BSc Alkalmazott matematikus szakirány Golay-kódok Szakdolgozat Témavezető: Szőnyi Tamás Számítógéptudományi Tanszék
13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem
1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 7. gyakorlat Gyakorlatvezet : Bogya Norbert 2012. március 26. Ismétlés Tartalom 1 Ismétlés 2 Koordinátasor 3 Bázistranszformáció és alkalmazásai Vektorrendszer rangja Mátrix
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}
3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi
Lineáris kódok. sorvektor. W q az n dimenziós s altere. 3. tétel. t tel. Legyen K [n,k,d] kód k d (k 1). Ekkor d(k)=w(k)
Defiíci ció. Legye S=F q. Ekkor S az F q test feletti vektortér. r. K lieáris kód, k ha K az S k-dimeziós s altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor. W
Diszkrét matematika 1.
Diszkrét matematika 1. 201. ősz 1. Diszkrét matematika 1. 1. előadás Mérai László diái alapján Komputeralgebra Tanszék 201. ősz Kombinatorika Diszkrét matematika 1. 201. ősz 2. Kombinatorika Kombinatorika
Kódoláselmélet. (Humann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.)
Kódoláselmélet. (Humann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.) 1 Kommunikáció során az adótól egy vev ig viszünk át valamilyen adatot egy csatornán keresztül.
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest
FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest 2007-07-25 A 2. és a 4. fejezet feladatai megoldva megtalálhatók a Testb vítés, véges testek;
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. március 9. 1. Diszkrét matematika 2. 4. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. március 9. Gráfelmélet Diszkrét
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
1. feladatsor Komplex számok
. feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós
Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest
9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35
9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen
Diszkrét matematika 1.
Diszkrét matematika 1. 2017. ősz 1. Diszkrét matematika 1. 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék
Hibajavítás, -jelzés. Informatikai rendszerek alapjai. Horváth Árpád november 24.
Hibajavítás és hibajelzés Informatikai rendszerek alapjai Óbudai Egyetem Alba Regia M szaki Kar (AMK) Székesfehérvár 2016. november 24. Vázlat 1 Hibákról 2 Információátvitel diagrammja forrás csatorna
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Diszkrét matematika alapfogalmak
2014 tavaszi félév Diszkrét matematika alapfogalmak 1 GRÁFOK 1.1 GRÁFÁBRÁZOLÁSOK 1.1.1 Adjacenciamátrix (szomszédsági mátrix) Szomszédok felsorolása, csak egyszerű gráfok esetén használható 1.1.2 Incidenciamátrix
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Mátrixok, mátrixműveletek
Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Elemi matematika szakkör
Elemi matematika szakkör Kolozsvár, 2015. október 5. 1.1. Feladat. Egy pozitív egész számot K tulajdonságúnak nevezünk, ha számjegyei nullától különböznek és nincs két azonos számjegye. Határozd meg az
6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió
6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. október 12. 1. Diszkrét matematika 2. 5. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. október 12. Diszkrét matematika
Labancz Norbert. Hibajavító kódolás
Eötvös Loránd Tudományegyetem Természettudományi kar Labancz Norbert Matematika BSc Alkalmazott matematikus szakirány Hibajavító kódolás Szakdolgozat Témavezet : Dr. Hermann Péter egyetemi docens Algebra
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Miller-Rabin prímteszt
Az RSA titkosítás Nyílt kulcsú titkosításnak nevezünk egy E : A B és D : B A leképezés-párt, ha bármely a A-ra D(E(a)) = a (ekkor E szükségképpen injektív leképezés), E ismeretében E(a) könnyen számítható,
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 5. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Számfogalom bővítése Diszkrét matematika I. középszint
Összeállította: dr. Leitold Adrien egyetemi docens
Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,
Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla
Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Mohó algoritmusok. Példa:
Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján
A számítástudomány alapjai
A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!
1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +
Bevezetés az algebrába 2 Vektor- és mátrixnorma
Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.
LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40
LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
I. VEKTOROK, MÁTRIXOK
217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli
Algoritmuselmélet 18. előadás
Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
Kódelmélet. Tartalomjegyzék. Jelölések. Wettl Ferenc V A. Függelék: Véges testek 21
Kódelmélet Wettl Ferenc V0.5024 Tartalomjegyzék. Zajmentes csatorna, forráskód 2.. Entrópia = információ = bizonytalanság... 2.2. Feltételes entrópia............... 3.3. Egyértelm dekódolhatóság..........
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.
1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége
Mat. A2 3. gyakorlat 2016/17, második félév
Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0
Az informatikai biztonság matematikai alapjai HIBAKORLÁTOZÁS
Az informatikai biztonság matematikai alapjai Gonda János HIBAKORLÁTOZÁS ELTE IKKK Budapest, 2007 A projekt az EU társfinanszírozásában az Európa terv keretében valósul meg. GVOP-3.2.2.-2004-07-0005/3.0
Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes
1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz
Számítógépes Hálózatok
Számítógépes Hálózatok 4. Előadás: Adatkapcsolati réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring 2016 by S. Laki Adatkapcsolati
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Kódolástechnika. Buttyán Levente Györfi László Győri Sándor Vajda István december 18.
Kódolástechnika Buttyán Levente Györfi László Győri Sándor Vajda István 2006. december 18. Tartalomjegyzék Előszó 5 1. Bevezetés 7 2. Hibajavító kódolás 9 2.1. Kódolási alapfogalmak.......................