Az állítást nem bizonyítjuk, de a létezést a Paley-féle konstrukció mutatja: legyen H a

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az állítást nem bizonyítjuk, de a létezést a Paley-féle konstrukció mutatja: legyen H a"

Átírás

1 . Blokkrendszerek Definíció. Egy (H, H), H H halmazrendszer t (v, k, λ)-blokkrendszer, ha H = v, B H : B = k, és H minden t elemű részhalmazát H-nak pontosan λ eleme tartalmazza. H elemeit blokkoknak nevezzük. Példa. Egy q rendű projektív sík (pontjaival és egyeneseivel) (q + q +, q +, ) blokkrendszert alkot. Egy t (v, k, λ) blokkrendszer λ = esetén Steiner-rendszer Ha C egy 0-t tartalmazó e-hibajavító perfekt kód GF () n -ben, akkor a C-beli minimális pozitív súlyú kódszavak tartói egy (e + ) (n, e +, ) blokkrendszert adnak. Állítás. A (,, ) blokkrendszer létezik és egyértelmű. Az állítást nem bizonyítjuk, de a létezést a Paley-féle konstrukció mutatja: legyen H a (mod ) maradékosztályok halmaza, S = {0,, 3, 4,, 9} H a kvadratikus maradékok, és legyen H = {S + x x H}. Ekkor (H, H) (,, ) blokkrendszer. Következmény. Mivel egy (,, ) blokkrendszer komplementere (azaz (H, {H \ B B H})) (, 6, 3) blokkrenszer és viszont, ez utóbbi is egyértelmű. Ha H H egy t (v, k, λ) blokkrendszer, és A H, A = a t, akkor (H \ A, {B \ A B H, A B}) egy (t a) (v a, k a, λ) blokkrendszer.. A bináris Golay-kódok GF () felett az x 3 polinom három irreducibilis tényező szorzatára bomlik: x 3 = (x )p(x)q(x), ahol és p(x) = x + x 9 + x 7 + x 6 + x + x + q(x) = x + x 0 + x 6 + x + x 4 + x + Ezen fokú polinomok bármelyikének legfeljebb fokú többszörosei egy [3,, 7] kódot alkotnak, a perfekt bináris Golay-kódot, amit G 3 jelöl. Egy paritásbittel kiegészítve kapjuk a G 4 kibővített bináris Golay-kódot, amelyről belátható, hogy önortogonális, [4,, 8] kód, amelyben minden kódszó súlya 4 többszöröse (vagyis duplán páros). Célunk annak belátása, hogy minden (4,, 8) kód, amely tartalmazza 0-t szügségképpen permutáció-ekvivalens G 4 -gyel. Definíció. Legyen C F n lineáris kód az F test felett. Ekkor a C = {(c 0, c,..., c n ) (c 0,..., c n ) C, kód a C kibővített kódja. n = 0} i=0

2 Tétel. Legyen C GF () n perfekt kód d = e+ távolsággal, és 0 C. Ekkor C súlyeloszlása csak az n, d paraméterektől függ. Bizonyítás. Mivel C perfekt, minden x GF () n szó pontosan egy C-beli kódszótól lesz legfeljebb e távolságra. A háromszög-egyenlőtlenség miatt egy i súlyú kódszótól legfeljebb e távolságra csak i e, i e +,..., i + e, i + e súlyú szavak lehetnek. Az i súlyú szavak száma: ( ) n = C i,i e A i e C i,i A i C i,i+e A i+e i ahol és C i,i k = C i,i+k = e k j=0 e k j=0 ( )( ) n (i k) i k k + j j ( i + k k + j )( ) n (i + k) j ha e i n e, amiből A i+e kifejezhető. Ahhoz, hogy a rekurzió elinduljon, szükség van még az első e tagra, ezek A 0 =, A = A =... = A e = 0, tehát a többi tag is egyértelműen meg van határozva. Például GF () 3 -ban a 3 sugarú Hamming-gömbben 3 k=0 ( ) 3 = 048 = k pont van, így egy (3,, 7) kód perfekt. Erre a fenti rekurzió a következő számokat adja: A 0 = A 3 =, A 7 = A 6 = 3, A 8 = A = 06, és A = A = 88, a többi pedig 0. Lemma. Legyenek x, y GF () n olyanok, hogy 4 w(x) és 4 w(y). Ekkor 4 w(x + y) x y = 0 Bizonyítás. Jelolje c azon helyek számát, ahol mindkét kódszóban -es áll. ekkor x y = c (mod ) és w(x + y) = w(x) + w(y) c, tehát mindkét állítás pontosan akkor igaz, ha c páros. Definíció. Legyen C egy [n, k, d] kód, w 0 < d egy c 0 kódszó súlya. Feltehető, hogy c 0 = (,...,, 0,..., 0), és ekkor C egy generátormátrixa [ ] 0 0 G = A B (blokk-mátrix) alakú, ahol az első sor c 0, az A mátrix (k ) w 0, a B mátrix pedig (k ) (n w 0 ) méretű. A B mátrix által generált kód a reziduális kód. Állítás. A fenti módon kapott reziduális kód paraméterei [n w 0, k, d ], ahol d d w 0

3 Bizonyítás. A kapott kódszavak hossza n w 0. Ha a c kódszó vetülete 0, akkor c utolsó n w 0 jegye 0, így a c és c + c 0 kódszavak egyikének súlya legfeljebb w 0 < d, vagyis az illető kódszó a 0. Eszerint c {0, c 0 }, tehát a dimenzió csak eggyel csökkent, azaz k. Ha a c kódszó vetülete w 0 súlyú, a 0 és c 0 szavak egyikétől legfeljebb w + w 0 távolságra lehetett. Mivel ez a távolság legalább d minden kódszóra, d d w 0 Tétel. Legyen C GF () 4 olyan, hogy 0 C és C egy (4,, 8) kód. Ekkor C permutációekvivalens G 4 -gyel. Bizonyítás. C-t tetszőleges helyen kilyukasztva (azaz minden kódszóból az adott indexű elemet elhagyva) egy (3,, 7) perfekt kódhoz jutunk, amiben a fentiek szerint 0, 7, 8,,,, 6 és 3 súlyú kódszavak vannak. Emiatt C-ben csak 0, 8,, 6 és 4 súlyú szavak lehettek, másként alkalmas helyen lyukasztva más súlyú kódszavak is maradnának. Továbbá bármely e GF () 4 vektorral vett e+c eltoltjára ugyanez elmondható, így speciálisan C-ben bármely két kódszó távolsága is csak 0, 8,, 6 és 4 valamelyike lehet. A fenti lemma alapján ekkor C C, így C C. Itt a bal oldalon álló altérnek legalább pontja van, így dim C. Másrészt a tartalmazás miatt dim C dim C = 4 dim C amiből dim C, azaz C = C egy dimenziós altér, tehát C egy [4,, 8] lineáris kód. Tekintsük a C-ből egy súlyú kódszóból kiindulva kapott reziduális kódot. Ez [,, ] kód lesz, mert a fenti állítás szerint legalább a kódszavak d minimális távolsága, a súlyok párosak, a Singleton-korlát szerint viszont d + =. Mivel GF () n -ben a páros súlyú szavak éppen egy kodimenziós alteret alkotnak, a reziduális kód pontosan GF () páros súlyú szavaiból áll. Ennek egy generátormátrixa I. tehát C generátormátrixa választható A I. 0 (blokk-mátrix) alakúnak, ahol A -es mátrix. d = 8 miatt A minden sorában legalább 6 egyes van. Viszont 6-nál több nem lehet, mert a súlyok 4-gyel való oszthatósága miatt ekkor 0 egyes lenne benne, és ilyen sort az elsőhöz adva 4 súlyú kódszót kapnánk. A bármely két sorában a közös -esek száma 3: Ha legfeljebb lenne, akkor a két sor összegében legalább 8 egyes lenne, amiből a c 0 hozzáadásával legfeljebb 6 súlyú kódszót 3

4 kapnánk, ha viszont legalább 4 közös egyes lenne, akkor az összegben legfeljebb 4 egyest találnánk, ami ismét legfeljebb 6 súlyú kódszót eredményezne. Ezzel beláttuk, hogy A egy (, 6, 3) blokkrendszer illeszkedési mátrixa, ami permutáció erejéig egyértelmű. Golay-kód egy szisztematikus rea- Megjegyzés. Ily módon egyben megadtuk a [4,, 8] lizációját. Állítás. [4,, 8] -ben a kódszavak tartói (4, 8, ) blokkrendszert alkotnak. Bizonyítás. pontot legfeljebb kódszó tartója tartalmazhat, mert ha c, c két 8 súlyú kódszó lenne legalább közös -essel, akkor az összegük súlya legfeljebb 6 lenne. Az összes ötösök száma ( ) ( 4, egy 8 súlyú kódszó pedig 8 ) ötöst fed le, amelyek mind különböznek, és ( 4 ) ( 8 ) = éppen a 8 súlyú kódszavak száma. = 79 Megjegyzés. A blokkrendszereknél látott módon kaphatunk ebből (4, 8, ), 4 (3, 7, ) és 3 (, 6, ) blokkrendszereket (Witt-féle blokkrendszerek) és (,, ) blokkrendszert, ami a 4 rendű projektív sík ( = , = 4 + ) 3. További konstrukciók 3.. Turyn-konstrukció Hamming-kódból Legyen H a [7, 4, 3] Hamming-kód. Ennek egy előállítása a következő: számozzuk a Fanosíkot az. ábrának megfelelően. Ekkor a sík részhalmazait GF () 7 -beli kódszavaknak is tekinthetjük a karakterisztikus vektorokon keresztül. A kódszavak legyenek a következőkből kapottak: az üres halmaz, az egyenesek, és ezek komplementerei. Legyen H a H-ból a kódszavak ábra. A Fano-sík (P G(, )). megfordításával kapott kód, H, H az ezekből paritásbit hozzáadásával kapott kódok, ezekre H H = {(0, 0, 0, 0, 0, 0, 0, 0), (,,,,,,, )}. Az is belátható, hogy H H és H H Állítás. Legyen C = {(a + x, b + x, a + b + x) a, b H, x H. Ekkor C a G 4 Golay-kód. 4

5 Bizonyítás. Ekkor a (a, 0, a), (0, b, b) és (x, x, x) alakú elemek bázist alkotnak, ahol a és b H egy bázisán futnak végig, x pedig H egy bázisán. Ebből leolvashatjuk, hogy dim C = és C C, mert H és H önortogonális és (a, 0, a) (x, x, x) = a x+a x = 0 és (0, b, b) (x, x, x) = 0 Mivel H és H duplán páros és C önortogonális, C is duplán páros. Ha egy kódszó súlya 4 lenne, akkor az egyik nyolcasban 0 a súly, tehát x {(0,..., 0), (,..., )}. Feltehető, hogy x = (0,..., 0). Ha a = 0 vagy b = 0 (de nem mindkettő), akkor a súly legalább 8, mert a másik kétszer szerepel. Ha viszont a 0, b 0, akkor a és b is része a kódszónak, így a súly ismét legalább Ikozaéderből Tekintsük az ikozaéder csúcsaiból és éleiből alkotott gráfot (. ábra). Legyen az adjacenciamátrixban az és 0 felcserélésével kapott mátrix N és G = [ I N ]. ábra. Az ikozaéder-gráf. Állítás. G a G 4 Golay-kód generátormátrixa. Bizonyítás. G minden sora ortogonális önmagára, mert egy csúcsnak szomszédja van, így a sorok súlya 6. Két sor skalárszorzata a megfelelő csúcsok közös szomszédjainak száma (mod ), ami antipodális csúcsokra 0, szomszédosakra és (gráfelméleti) távolságúakra. A kódszavak súlya 4 sem lehet: az első illetve második -es részbe eső súlyok szerint lehetőség volna, az egyik tag az összeadott sorok számat adja meg a szisztematikusság miatt, ez lehet 0,,, 3, 4. 0 sor összege a nullvektor, a sorok súlya 8, két sor összege legalább = súlyú, mert a közös egyesek száma legfeljebb. 3 vagy 4 sor összegében a második -es nem vagy 0 súlyú. Következmény. A G által generált kód ortogonálisának generátormátrixa G = [ N I ] mert N = N T. de a kód önortogonális, tehát a két mátrix ugyanazt a kódot generálja, tehát ez a kód automorfizmuscsoportja a koordinátákon tranzitív módon hat, mert a lyukasztott kódra ez igaz. Ebből az is adódik, hogy G 3 egyértelmű.

6 3.3. Conway-féle konstrukció Tekintsük GF (4) = {0,, ω, ω = ω = ω + } felett a következő mátrix által generált kódot (hexakód): G = 0 0 ω ω 0 0 ω ω 0 0 A kód tehát H = {(a, b, c, f(), f(ω), f(ω) f(x) = ax + bx + c}. Belátható, hogy ebben csak 0, 4 és 6 súlyú kódszavak vannak. Ekkor G 4 elemei 4 6-os GF () elemű mátrixok formájában írhatók a következő módon: legyenek a mátrix sorai az m 0, m, m, m 3 GF () 6 -beli vektorok. Egy ilyen mátrix pontosan akkor kódszó, ha. m 0 paritása megegyezik az összes oszlop paritásával. m + ωm + ωm 3 H Itt m 0 és m + ωm + ωm 3 H tetszőlegesen megválasztható egymástól függetlenül, és ez egyértelműen meghatároz egy kódszót Pasquier-féle konstrukció Tekintsük azt a [8, 4, ] 8 kódot, ami a GF ( 3 ) feletti legfeljebb 3 fokú polinomokból kapott primitív Reed-Solomon kód kibővítése (paritással, vagy a 0-ban is kiértékelve, ez ugyanazt adja), azaz C = {(f(), f(α), f(α ),..., f(α 6 ), f(0)) f GF ( 3 )[x], deg f < 4} ahol α primitív 7. egységgyök Mivel két legfeljebb harmadfokú polinom szorzata legfeljebb hatodfokú, és egy ilyen összes függvényértékének összege 0, az így kapott kód önortogonális. Egy GF ()-bázist rögzítve GF ( 3 ) elemeit tekinthetjük három hosszú GF ()-beli sorozatoknak. Alkalmas bázist választva a fenti kód elemei éppen a G 4 kódszavait adják. 3.. Mohó algoritmussal A G 4 kibővített Golay-kódban bármely két kódszó távolsága legalább 8. Meglepő módon egyedül ennek felhasználásával is megkaphatjuk a kódszavakat mohó algoritmus segítségével. Tekintsük ugyanis minden lépésben a GF () 4 -ben lexikografikusan rendezve első olyan szót, ami minden korábban kiválasztott kódszótól legalább 8 távolságra van. Az üres halmazból indulva így éppen a G 4 kódhoz jutunk. 4. A ternáris Golay-kódok A bináris esethez hasonló állítás igaz a három elemű test felett: a (, 3 6, ) 3 perfekt kód egyértelmű, de ezt nehezebb belátni. Ezt a kódot G -gyel jelöljük, és ez [, 6, ] 3 lineáris kód. G és G = G. a perfekt illetve kibővített ternáris Golay-kódok. 6

7 A perfekt ternáris Golay-kód egy generátormátrixa a következőképp áll elő: Legyen S az az mátrix, aminek i, j eleme a Legendre-szimbólummal felírva ( ) i j (S ) i,j = azaz S = Erre S S T = I J, ahol J n a csupa -esből álló n n mátrix. Ekkor G ill. G egy generátormátrixa 0 G = I 6 S ill. G = G. A fenti egyenlőség alapján belátható, hogy G önortogonális. Ebben a kódban minden kódszó súlya 3 többszöröse és az is megmutatható, hogy nincs 3 súlyú kódszó, tehát G egy [, 6, 6] 3 kód. A bináris esethez hasonlóan ezt a kódot is megkonstruálhatjuk Hamming-kód segítségével. Legyen a [4,, 3] 3 Hamming-kód ellenőrzőmátrixa a H 4-es mátrix. Ekkor a kibővített ternáris Golay-kód egy generátormátrixa [ ] J4 + I G = 4 I 4 I 4 0 H H 7

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Aleksziev Rita Antónia Matematika BSc Alkalmazott matematikus szakirány. Golay-kódok

Aleksziev Rita Antónia Matematika BSc Alkalmazott matematikus szakirány. Golay-kódok Eötvös Loránd Tudományegyetem Természettudományi Kar Aleksziev Rita Antónia Matematika BSc Alkalmazott matematikus szakirány Golay-kódok Szakdolgozat Témavezető: Szőnyi Tamás Számítógéptudományi Tanszék

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2019. május 3. 1. Diszkrét matematika 2. 10. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Mérai László diái alapján Komputeralgebra Tanszék 2019. május

Részletesebben

Hadamard-mátrixok Előadó: Hajnal Péter február 23.

Hadamard-mátrixok Előadó: Hajnal Péter február 23. Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus

Részletesebben

Kódelméleti és kriptográai alkalmazások

Kódelméleti és kriptográai alkalmazások Kódelméleti és kriptográai alkalmazások Wettl Ferenc 2015. május 14. Wettl Ferenc Kódelméleti és kriptográai alkalmazások 2015. május 14. 1 / 11 1 Hibajavító kódok 2 Általánosított ReedSolomon-kód Wettl

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Alkalmazások H607 2017-05-10 Wettl Ferenc ALGEBRA

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Hamming-kód. Definíció. Az 1-hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F 2 fölötti vektorokkal foglalkozunk.

Hamming-kód. Definíció. Az 1-hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F 2 fölötti vektorokkal foglalkozunk. Definíció. Hamming-kód Az -hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F fölötti vektorokkal foglalkozunk. Hamming-kód készítése: r egész szám (ellenırzı jegyek száma) n r a kódszavak hossza

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

Alapfogalmak a Diszkrét matematika II. tárgyból

Alapfogalmak a Diszkrét matematika II. tárgyból Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

Bevezetés az algebrába 2 Lineáris algebra alkalmazásai

Bevezetés az algebrába 2 Lineáris algebra alkalmazásai Bevezetés az algebrába 2 Lineáris algebra alkalmazásai Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M

Részletesebben

Hibajavító kódok május 31. Hibajavító kódok 1. 1

Hibajavító kódok május 31. Hibajavító kódok 1. 1 Hibajavító kódok 2007. május 31. Hibajavító kódok 1. 1 Témavázlat Hibajavító kódolás Blokk-kódok o Hamming-távolság, Hamming-súly o csoportkód o S n -beli u középpontú t sugarú gömb o hibajelzı képesség

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2016. ősz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2016.

Részletesebben

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest 2007-07-25 A 2. és a 4. fejezet feladatai megoldva megtalálhatók a Testb vítés, véges testek;

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)

Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel) Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik

Részletesebben

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma. Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás március 24.

Klasszikus algebra előadás. Waldhauser Tamás március 24. Klasszikus algebra előadás Waldhauser Tamás 2014. március 24. Irreducibilitás 3.33. Definíció. A p T [x] polinom irreducibilis, ha legalább elsőfokú, és csak úgy bontható két polinom szorzatára, hogy az

Részletesebben

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 13. Előadás

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 13. Előadás Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 13. Előadás Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2009. december 7. Gráfok sajátértékei Definíció. Egy G egyszerű gráf sajátértékei az A G

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:...

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:... 1. Feladat. Döntse el, hogy igaz vagy hamis. Név:........................................... (1) (1 3) = (3 1). (hamis) () (1 ) = ( 1). (igaz). Feladat. Döntse el, hogy igaz vagy hamis. Név:...........................................

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Mat. A2 3. gyakorlat 2016/17, második félév

Mat. A2 3. gyakorlat 2016/17, második félév Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1

Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1 Lieáris kódok Defiíció. Legye SF q. Ekkor S az F q test feletti vektortér. K lieáris kód, ha K az S k-dimeziós altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor.

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Klasszikus algebra előadás. Waldhauser Tamás április 14. Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35 9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen

Részletesebben

13.1.Állítás. Legyen " 2 C primitív n-edik egységgyök és K C olyan számtest, amelyre " =2 K, ekkor K(") az x n 1 2 K[x] polinomnak a felbontási teste

13.1.Állítás. Legyen  2 C primitív n-edik egységgyök és K C olyan számtest, amelyre  =2 K, ekkor K() az x n 1 2 K[x] polinomnak a felbontási teste 13. GYÖKB½OVÍTÉS GALOIS CSOPORTJA, POLINOMOK GYÖKEINEK ELÉRHET½OSÉGE 13.1.Állítás. Legyen " 2 C primitív n-edik egységgyök és K C olyan számtest, amelyre " =2 K, ekkor K(") az x n 1 2 K[x] polinomnak a

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot. Hány összefüggő, illetve reguláris van közöttük? 2. Hány olyan, páronként

Részletesebben

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest

Részletesebben

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j) Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Diszkrét matematika alapfogalmak

Diszkrét matematika alapfogalmak 2014 tavaszi félév Diszkrét matematika alapfogalmak 1 GRÁFOK 1.1 GRÁFÁBRÁZOLÁSOK 1.1.1 Adjacenciamátrix (szomszédsági mátrix) Szomszédok felsorolása, csak egyszerű gráfok esetén használható 1.1.2 Incidenciamátrix

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

Totókulcsok, kódok és véges geometriák

Totókulcsok, kódok és véges geometriák Totókulcsok, kódok és véges geometriák Szakdolgozat Készítette: Oli Barbara Szak: Matematika BSc Tanári Szakirány Témavezető: Kiss György Ph.D egyetemi docens Geometriai Tanszék Eötvös Loránd Tudományegyetem

Részletesebben

Színes papíroktól a narancspakolásig a blokkrendszerek szimmetrikus világa

Színes papíroktól a narancspakolásig a blokkrendszerek szimmetrikus világa XIV. Bolyai Konferencia 2009. Március 14. Bodnár József IV. matematikus, ELTE TTK Eötvös Collegium Színes papíroktól a narancspakolásig a blokkrendszerek szimmetrikus világa 1873-ban Émile Mathieu kivételes

Részletesebben

A parciális törtekre bontás?

A parciális törtekre bontás? Miért működik A parciális törtekre bontás? Borbély Gábor 212 június 7 Tartalomjegyzék 1 Lineáris algebra formalizmus 2 2 A feladat kitűzése 3 3 A LER felépítése 5 4 A bizonyítás 6 1 Lineáris algebra formalizmus

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

Labancz Norbert. Hibajavító kódolás

Labancz Norbert. Hibajavító kódolás Eötvös Loránd Tudományegyetem Természettudományi kar Labancz Norbert Matematika BSc Alkalmazott matematikus szakirány Hibajavító kódolás Szakdolgozat Témavezet : Dr. Hermann Péter egyetemi docens Algebra

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis. 1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan

Részletesebben

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében? Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?

Részletesebben

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2. TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok

Részletesebben

A kódok típusai Kódolás: adatok megváltoztatása. Dekódolás: a megváltoztatott adatból az eredeti visszanyerése.

A kódok típusai Kódolás: adatok megváltoztatása. Dekódolás: a megváltoztatott adatból az eredeti visszanyerése. 1. Hibajavító kódok A kódok típusai Kódolás: adatok megváltoztatása. Dekódolás: a megváltoztatott adatból az eredeti visszanyerése. Célok Titkosírás (kriptográfia). A megváltoztatott adat illetéktelenek

Részletesebben

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet! 1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +

Részletesebben

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk 1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

1. ábra ábra

1. ábra ábra A kifejtési tétel A kifejtési tétel kimondásához először meg kell ismerkedni az előjeles aldetermináns fogalmával. Ha az n n-es A mátrix i-edik sorának és j-edik oszlopának kereszteződésében az elem áll,

Részletesebben

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit

Részletesebben

LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév

LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I éves nappali programtervező informatikus hallgatóknak 2010-2011 évi tanév I félév Vektoriális szorzat és tulajdonságai bizonyítás nélkül: Vegyes szorzat és tulajdonságai

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Diszkrét Matematika MSc hallgatók számára. 4. Előadás

Diszkrét Matematika MSc hallgatók számára. 4. Előadás Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2012. február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

1. Mit jelent az, hogy egy W R n részhalmaz altér?

1. Mit jelent az, hogy egy W R n részhalmaz altér? Az informatikus lineáris algebra dolgozat B részének lehetséges kérdései Az alábbi listában azok a definíciók és állítások, tételek szerepelnek, melyeket a vizsgadolgozat B részében kérdezhetünk. A válaszoknál

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

11. előadás. Konvex poliéderek

11. előadás. Konvex poliéderek 11. előadás Konvex poliéderek Konvex poliéder 1. definíció: Konvex poliédernek nevezzük a térben véges sok, nem egysíkú pont konvex burkát. 2. definíció: Konvex poliédernek nevezzük azokat a térbeli korlátos

Részletesebben

1. Bevezetés A félév anyaga. Lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Logika és számításelmélet. 11. előadás

Logika és számításelmélet. 11. előadás Logika és számításelmélet 11. előadás NP-teljesség Emlékeztetőül: NP-teljes nyelv Egy L probléma NP-teljes (a polinom idejű visszavezetésre nézve), ha L NP L NP-nehéz, azaz minden L NP esetén L p L. Azaz

Részletesebben

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer 8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Alkalmazások H607 2018-05-14 Wettl Ferenc ALGEBRA

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák

Részletesebben