Support Vector Machines
|
|
- Szebasztián Bognár
- 5 évvel ezelőtt
- Látták:
Átírás
1 Support Vector Machnes Ormánd Róbert MA-SZE Mest. Int. Kutatócsoport február 17.
2 Előadás vázlata Rövd bevezetés a gép tanulásba Bevezetés az SVM tanuló módszerbe Alapötlet Nem szeparálható eset Kernel módszer
3 Gép tanulás célja: Gép tanulás Olyan algortmus fejlesztése, mely működése során szerzett tapasztalatok alapján képes javítan a saját hatékonyságát Osztályozás feladat: Enttásokat szeretnénk előre rögzített számú, smert kategórákba soroln Az enttások leírása általában valós vektorokkal, jellemzővektorokkal történk Rendelkezésünkre áll egy tanuló adatbázs: Jellemzővektorok Helyes osztálycímkék Cél: olyan modell készítése, mely a tanuló adatbázs feldolgozása után képes a tanítás során nem látott enttásokat s jól osztályozn
4 Osztályozás feladat Jellemző vektorok Osztály címkék ér pontja Színek Legközelebb szomszéd Döntés fa Lneárs elválasztó felület g( x) = w x+ b Nemlneárs elválasztó felület
5 Lneárs osztályozó g(x) egy lneárs függvény: g( x) = w x+ b x 2 w x + b > 0 Ez egy hpersík a jellemzők terében Osztályozás: az alapján, hogy az osztályozandó pont a hpersík melyk oldalán helyezkedk el n w x + b = 0 w x + b < 0
6 anítás: határozzuk meg azt az egyenest, amely a lehető legjobban elválasztja tanítópéldákat és várhatóan a tanítás során nem látott pontokat Lneárs osztályozó x 2 jelentse: +1 jelentse: -1 x 1
7 anítás: határozzuk meg azt az egyenest, amely a lehető legjobban elválasztja tanítópéldákat és várhatóan a tanítás során nem látott pontokat Rengeteg elválasztó egyenes létezk (tanítópéldákra nézve) Melyk ezek közül a legjobb? Lneárs osztályozó x 2 jelentse: +1 jelentse: -1 x 1
8 Support Vector Machne Az a legjobb elválasztó hpersík, amelynek a margója a lehető legnagyobb Margó: az elválasztó síkkal párhuzamos hpersíkokkal meghatározott térrész,amely nem tartalmaz tanító pontokat Maxmáls margó: Az így választott elválasztó felület jól általánosít jelentse: +1 x 2 jelentse: -1 pont mentes zóna margó x 1
9 Support Vector Machne Hogyan határozható meg ez a sík? Adott a tanító halmaz: {( x, y)}, = 1,2, L, n, és Feladat: Azt szeretnénk, hogy a For y =+ 1, wx+ b 1 For y = 1, wx+ b 1 feltételek mellett a margó legyen a lehető legnagyobb x 2 jelentse: +1 jelentse: -1 x 1
10 Support Vector Machne Azokra a pontokra, amk a margót határoló hpersíkra esnek fennáll: + wx + b = 1 wx + b = 1 Ezek segítségével leírható a margó szélessége: + M = ( x x ) n + w = ( x x ) = w 2 w x 2 n x + w x + b = 1 x - x + w x + b = 0 w x + b = -1 Support Vektorok jelentse: +1 jelentse: -1 margó x 1
11 Ezek alapján a következő feladatot kell megoldan: 2 maxmze w s.t For y =+ 1, wx+ b 1 For y = 1, wx + b 1 Azaz: 1 2 mnmze w s.t. 2 y ( wx+ b) 1 Feladat x 2 n x + w x + b = 1 x + jelentse: +1 jelentse: -1 margó w x + b = 0 w x + b = -1 x - x 1
12 Feladat megoldása Kvadratkus programozás feladat lneárs feltételekkel s.t. 1 mnmze 2 w y ( wx+ b) 1 2 maxmze s.t. α 0 1 Lagrange szorzók bevezetése, eredet változok szernt parcáls derváltak 0-vá tétele után: n n n α αα jyy j j = 1 2 = 1 j= 1 n xx, and = 1 α y = 0
13 Feladat megoldása Megmutatható (KK condton alapján), hogy: α ( + ) 1 = 0 A megoldás pedg: ( y wx b ) Azaz, csak a Support vektorok esetében: n α w = α yx = α yx 0 = 1 SV x 2 x + w x + b = 1 x - w x + b = 0 Support Vectors A b pedg az alább egyenletből számítható: x + w x + b = -1 x 1
14 Feladat megoldása Az elválasztó hpersík egyenlete: g( x) = w x+ b= αx x+ b SV A hpersík egyenlete kfejezhető a tanító példák belső szorzataval Az optmalzácó során szntén csak a tanító példák belső szorzatat használtuk!
15 Support Vector Machne Poztívumok: Lneárs elválasztó felületet határoz meg (egyszerűség) Maxmáls margó krtérum matt, jól általánosít Csak a tanító pontok belső szorzatara van szükség Kérdések: Hogyan tanuljunk olyan tanítóhalmazokon, amk nem szeparálhatóak lneársan? Hogyan tanuljunk nem lneárs összefüggéseket?
16 Nem szeparálható eset Kérdés: M történjen, ha a tanító adatbázs nem szeparálható? x 2 Válasz: Vezessünk be hézag változókat, amk leírják azt, hogy a tanító pontok mlyen messze vannak a w x + b = 1 ξ 1 w x + b = 0 w x + b = -1 ξ 2 megfelelő margótól x 1
17 Nem szeparálható eset Ebben az esetben az alább alakra változk a feladat: s.t. 1 mnmze 2 w y ( wx + b) 1 ξ ξ 0 2 n + C ξ A C paraméterrel szabályozható, hogy a modell mennyre általánosítson: C kcs: a margó maxmalzálás a fontos jó általánosítás, de nagyobb hba = 1 C nagy: a margó maxmalzálás kevésbé fontos kevésbé jól általánosító modell, de ksebb hba
18 Nem lneárs összefüggések tanulása Kérdés:Hogyan tanulható nem lneárs összefüggések Válasz: Kernel trükk alkalmazásával Φ: x φ(x)
19 Nem lneárs összefüggések A kernel trükk. tanulása Csak akkor alkalmazható, ha mnd a tanulás mnd a modell használata megoldható a pontok belső szorzatának felhasználásával A kernel függvény megadja, a transzformált pontok belső szorzatát A transzformácót nem kell ténylegesen elvégezn K( x, x ) φ( x ) φ( x ) j j
20 Köszönjük a fgyelmet!
Gépi tanulás a gyakorlatban SVM
Gépi tanulás a gyakorlatban SVM Klasszifikáció Feladat: előre meghatározott csoportok elkülönítése egymástól Osztályokat elkülönítő felület Osztályokhoz rendelt döntési függvények Klasszifikáció Feladat:
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intellgenca MI Egyszerű döntés. Tanuljuk meg! Dobroweck Tadeusz Eredcs Péter, és mások BME I.E. 437, 463-28-99 dobroweck@mt.bme.hu, http://www.mt.bme.hu/general/staff/tade Neuron doktrna: S.
RészletesebbenIDA ELŐADÁS I. Bolgár Bence október 17.
IDA ELŐADÁS I. Bolgár Bence 2014. október 17. I. Generatív és dszkrmnatív modellek Korábban megsmerkedtünk a felügyelt tanulással (supervsed learnng). Legyen adott a D = {, y } P =1 tanító halmaz, ahol
RészletesebbenGépi tanulás a gyakorlatban. Bevezetés
Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis
Részletesebben1. gyakorlat. Mesterséges Intelligencia 2.
1. gyakorlat Mesterséges Intelligencia. Elérhetőségek web: www.inf.u-szeged.hu/~gulyasg mail: gulyasg@inf.u-szeged.hu Követelmények (nem teljes) gyakorlat látogatása kötelező ZH írása a gyakorlaton elhangzott
RészletesebbenOsztályozó algoritmusok vizsgálata
Osztályozó algortmusok vzsgálata Önálló laboratórum beszámoló Készítette: Kollár Nándor Konzulens: Kupcsk András 2009-2-4 Osztályozás A gép tanulás, adatfeldolgozás területének egyk ága az osztályozás,
RészletesebbenRegresszió. Fő cél: jóslás Történhet:
Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján
RészletesebbenKernel gépek vizsgálata
Kernel gépek vizsgálata Lágler Krisztián 2011. május 12. FYMGQ8 Konzulens : Dr. Horváth Gábor 1 Tartalomjegyzék 1. Feladat kiírás 3 1.1. A kernelfüggvény hiperparamétereinek megválasztása..... 3 2. Bevezetés
RészletesebbenAz entrópia statisztikus értelmezése
Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok
RészletesebbenMinősítéses mérőrendszerek képességvizsgálata
Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek
Részletesebben20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!
SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,
RészletesebbenGépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
RészletesebbenKernel módszerek. 7. fejezet
7. fejezet Kernel módszerek Ebben a fejezetben olyan tanuló rendszerekkel foglalkozunk, amelyek a válaszokat ún. kernel függvények (vagy magfüggvények) súlyozott összegeként állítják elő. A megközelítés
RészletesebbenFuzzy rendszerek. A fuzzy halmaz és a fuzzy logika
Fuzzy rendszerek A fuzzy halmaz és a fuzzy logka A hagyományos kétértékű logka, melyet évezredek óta alkalmazunk a tudományban, és amelyet George Boole (1815-1864) fogalmazott meg matematkalag, azon a
RészletesebbenSVM (közepesen mély bevezetés)
SVM (közepesen mély bevezetés) Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Szabó Adrienn 2013. április 4. Bevezetés Alapötlet Jelölések Maximum margin classier Optimalizálási feladat Tartalom
Részletesebbenoktatási segédlet Kovács Norbert SZE, Gazdálkodástudományi tanszék 2007. október
Fogyasztók a tõkepacon oktatás segédlet Kovács Norbert SZE, Gazdálkodástudomány tanszék 007. október Költségvetés egyenes kamatláb esetén. dõszak fogyasztása A. év fogyasztásának maxmuma költségvetés egyenes
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
RészletesebbenGauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
RészletesebbenSzárítás során kialakuló hővezetés számítása Excel VBA makróval
Szárítás során kalakuló hővezetés számítása Excel VBA makróval Rajkó Róbert 1 Eszes Ferenc 2 Szabó Gábor 1 1 Szeged Tudományegyetem, Szeged Élelmszerpar Főskola Kar Élelmszerpar Műveletek és Környezettechnka
RészletesebbenBEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA
BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BESZÉDTUDOMÁNY Az emberi kommunikáció egyik leggyakrabban használt eszköze a nyelv. A nyelv hangzó változta, a beszéd a nyelvi kommunikáció
RészletesebbenA MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA
A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA KLASSZIKUS DINAMIKA Klasszkus magok mozognak egy elre elkészített potencálfelületen. Potencálfelület
RészletesebbenMATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
RészletesebbenBoros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
RészletesebbenÚj típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
RészletesebbenMatematika M1 1. zárthelyi megoldások, 2017 tavasz
Matematka M. zárthely megoldások, 7 tavasz A csoport Pontozás: + 7 + 7 + 7) + 3 + 6 5 pont.. Lehet-e az ux, y) e 3x cos3y) kétváltozós valós függvény egy regulárs komplex függvény valós része? Ha gen,
RészletesebbenFelügyelt önálló tanulás - Analízis III.
Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:
RészletesebbenKalkulus 2., Matematika BSc 1. Házi feladat
. Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben
RészletesebbenMatematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
RészletesebbenMechanizmusok vegyes dinamikájának elemzése
echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.
Részletesebben1. Parciális függvény, parciális derivált (ismétlés)
Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt
Részletesebben1.Tartalomjegyzék 1. 1.Tartalomjegyzék
1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet
RészletesebbenDifferenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
RészletesebbenRegresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Részletesebbendifferenciálegyenletek
Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y
RészletesebbenAlap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
RészletesebbenMatematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
Részletesebben4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre
4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre Az értékelő függvény létezése (folytatás) p. 1/8 4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre
RészletesebbenBaran Ágnes. Gyakorlat Komplex számok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 33
Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Komplex számok Baran Ágnes Matematika Mérnököknek 1. 2.-4. Gyakorlat 1 / 33 Feladatok 1. Oldja meg az alábbi egyenleteket a komplex számok halmazán! Ábrázolja
RészletesebbenGépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
RészletesebbenOptimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
RészletesebbenBabeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
Részletesebbensin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
RészletesebbenKOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula
KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben
RészletesebbenTémakörök az osztályozó vizsgához. Matematika
Témakörök az osztályozó vizsgához Idegenforgalmi és Informatikus osztályok (9.A/9.B) 1. A halmazok, számhalmazok, ponthalmazok 2. Függvények 3. A számelmélet elemei. Hatványozás. 0 és negatív kitevőjű
RészletesebbenInfobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
RészletesebbenÖsszeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
RészletesebbenNemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
RészletesebbenCARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens
CARE Biztonságos CARE Biztonságos otthonok idős embereknek otthonok idős embereknek 2010-09-02 Dr. Vajda Ferenc Egyetemi docens 3D Érzékelés és Mobilrobotika kutatócsoport Budapesti Műszaki és Gazdaságtudományi
RészletesebbenMeghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.
Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független
RészletesebbenEgyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
RészletesebbenTrigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
RészletesebbenAdatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
Részletesebbend(f(x), f(y)) q d(x, y), ahol 0 q < 1.
Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés
RészletesebbenEgy negyedrendű rekurzív sorozatcsaládról
Egy negyedrendű rekurzív sorozatcsaládról Pethő Attla Emlékül Kss Péternek, a rekurzív sorozatok fáradhatatlan kutatójának. 1. Bevezetés Legyenek a, b Z és {1, 1} olyanok, hogy a 2 4b 2) 0, b 2 és ha 1,
Részletesebben3515, Miskolc-Egyetemváros
Anyagmérnök udományok, 37. kötet, 1. szám (01), pp. 49 56. A-FE-SI ÖVÖZERENDSZER AUMÍNIUMAN GAZDAG SARKÁNAK FEDOGOZÁSA ESPHAD-MÓDSZERRE ESIMAION OF HE A-RIH ORNER OF HE A-FE-SI AOY SYSEM Y ESPHAD MEHOD
Részletesebben17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
RészletesebbenMatematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
RészletesebbenCsima Judit április 9.
Osztályozókról még pár dolog Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. április 9. Csima Judit Osztályozókról még pár dolog 1 / 19 SVM (support vector machine) ez is egy
RészletesebbenBiostatisztika e-book Dr. Dinya Elek
TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok
RészletesebbenVektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,
RészletesebbenMatematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
RészletesebbenPeriodikus figyelésű készletezési modell megoldása általános feltételek mellett
Tanulmánytár Ellátás/elosztás logsztka BME OMIKK LOGISZTIKA 9. k. 4. sz. 2004. júlus augusztus. p. 47 52. Tanulmánytár Ellátás/elosztás logsztka Perodkus fgyelésű készletezés modell megoldása általános
RészletesebbenDifferenciálegyenletek
Differenciálegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, I. félév Losonczi László (DE) Differenciálegyenletek 2011/12 tanév, I. félév 1 /
RészletesebbenBevezetés a programozásba. 3. Előadás Algoritmusok, tételek
Bevezetés progrmozásb 3. Elődás Algortmusok, tételek ISMÉTLÉS Specfkácó Előfeltétel: mlyen körülmények között követelünk helyes működést Utófeltétel: mt várunk kmenettől, m z összefüggés kmenet és bemenet
RészletesebbenAz elektromos kölcsönhatás
TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy
Részletesebben1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
RészletesebbenHely és elmozdulás - meghatározás távolságméréssel
Hely és elmozdulás - meghatározás távolságméréssel Bevezetés A repülő szerkezetek repülőgépek, rakéták, stb. helyének ( koordnátának ) meghatározása nem új feladat. Ezt a szakrodalom részletesen taglalja
RészletesebbenA Newton-Raphson iteráció kezdeti értéktől való érzékenysége
Szénási Eszter SZTE TTIK Matematika BSc, Numerikus matematika projekt 2015. november 30. A Newton-Raphson iteráció kezdeti értéktől való érzékenysége Medencék (attraktorok) színezése 2 Newton_project-szenasi.nb
RészletesebbenRobotika. Kinematika. Magyar Attila
Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc
RészletesebbenDiszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (
FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.
RészletesebbenBékefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció
Közlekedés létesítmények élettartamra vonatkozó hatékonyság vzsgálat módszerenek fejlesztése PhD Dsszertácó Budapest, 2006 Alulírott kjelentem, hogy ezt a doktor értekezést magam készítettem, és abban
RészletesebbenHipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?
01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó
RészletesebbenFodor Gábor március 17. Fodor Gábor Osztályozás március / 39
Osztályozás Fodor Gábor 2010. március 17. Fodor Gábor (fodgabor@math.bme.hu) Osztályozás 2010. március 17. 1 / 39 Bevezetés 1 Bevezetés 2 Döntési szabályok 3 Döntési fák 4 Bayes-hálók 5 Lineáris szeparálás
RészletesebbenMéréselmélet: 5. előadás,
5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,
RészletesebbenDarupályák ellenőrző mérése
Darupályák ellenőrző mérése A darupályák építésére, szerelésére érvényes 15030-58 MSz szabvány tartalmazza azokat az előírásokat, melyeket a tervezés, építés, műszak átadás során be kell tartan. A geodéza
Részletesebben7. Regisztráció. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (
Kató Zoltán: Ipar Képfeldolgozás 7. Regsztrácó Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZE (http://www.nf.u-szeged.hu/~kato/teachng/ Kató Zoltán: Ipar Képfeldolgozás Kép mozak agyobb
RészletesebbenPasszív és aktív képosztályozás a gépi és emberi tanulás összehasonlításánál
TDK DOLGOZAT 2015 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Távközlési és Médiainformatikai Tanszék Passzív és aktív képosztályozás a gépi és emberi tanulás összehasonlításánál
RészletesebbenÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETRIA Készült a TÁMOP-4..-08//A/KMR-009-004pálázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék az MTA Közgazdaságtudomán Intézet
Részletesebben[1000 ; 0] 7 [1000 ; 3000]
Gépi tanulás (vimim36) Gyakorló feladatok 04 tavaszi félév Ahol lehet, ott konkrét számértékeket várok nem puszta egyenleteket. (Azok egy részét amúgyis megadom.). Egy bináris osztályozási feladatra tanított
RészletesebbenSkálázottan merőleges kamera
Skálázottan merőleges kamera optmáls kalbrácója Hajder Levente MTA SZTAKI Geometra Modellezés és Számítógépes Látás Laboratórum hajder@sztak.hu Absztrakt. A kamera kalbrácó a háromdmenzós számítógépes
RészletesebbenObudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz
Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},
RészletesebbenRelációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor
RészletesebbenBaran Ágnes. Gyakorlat Komplex számok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 16
Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Komplex számok Baran Ágnes Matematika Mérnököknek 1. 1.-2. Gyakorlat 1 / 16 1. Oldja meg az alábbi egyenleteket a komplex számok halmazán! Ábrázolja a megoldásokat
RészletesebbenRE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy
RészletesebbenFELVÉTELI VIZSGA, július 21. Írásbeli próba MATEMATIKÁBÓL A. RÉSZ
BABE -BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 9. július. Írásbeli próba MATEMATIKÁBÓL FONTOS MEGJEGYZÉS: ) Az A. részben megjelen feleletválasztós feladatok esetén
RészletesebbenA térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?
Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]
RészletesebbenA térképen ábrázolt vonal: - sík felület egyenese? - sík felület görbéje? - görbült felület egyenese ( geodetikus )? - görbült felület görbéje?
Előzetes megjegyzés: 1. Az időt nyugodtan mérhetjük méterben. ct [s ] = t [m ] A film kétórás volt. = A film 2.16 milliárd kilométernyi ideig tartott. 2. A tömeget is nyugodtan mérhetjük méterben! GM [kg]
Részletesebben8. Programozási tételek felsoroló típusokra
8. Programozás tételek felsoroló típusokra Ha egy adatot elem értékek csoportja reprezentál, akkor az adat feldolgozása ezen értékek feldolgozásából áll. Az lyen adat típusának lényeges jellemzője, hogy
RészletesebbenGépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
RészletesebbenAlapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka
Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza
RészletesebbenHármas integrál Szabó Krisztina menedzser hallgató. A hármas és háromszoros integrál
Hármas integrál Szabó Krisztina menedzser hallgató A hármas és háromszoros integrál Definició A fizikai meggondolások előzményeként jutunk el a hármas integrál következő értelmezéséhez. Legyen értelmezve
RészletesebbenSzámítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
RészletesebbenMatematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.
Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:
Részletesebbens n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés
A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,
Részletesebben2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése
2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )
RészletesebbenDifferenciaegyenletek
Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2009/10 tanév, I. félév Losonczi László (DE) Differenciaegyenletek 2009/10 tanév, I. félév 1 / 11
RészletesebbenElosztott rendszerek játékelméleti elemzése: tervezés és öszönzés. Toka László
adat Távközlés és Médanformatka Tanszék Budapest Műszak és Gazdaságtudomány Egyetem Eurecom Telecom Pars Elosztott rendszerek játékelmélet elemzése: tervezés és öszönzés Toka László Tézsfüzet Témavezetők:
Részletesebbeny = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)
III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp
RészletesebbenLineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
RészletesebbenLagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását
Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális
Részletesebben