Mesterséges Intelligencia MI
|
|
- Amanda Biró
- 8 évvel ezelőtt
- Látták:
Átírás
1 Mesterséges Intellgenca MI Egyszerű döntés. Tanuljuk meg! Dobroweck Tadeusz Eredcs Péter, és mások BME I.E. 437,
2 Neuron doktrna: S. Ramón y Cajal ( ) Mesterséges neuron: W. McCulloch and W. Ptts, 943 Tanulás: D. Hebb, 949 SNARC (Stochastc Neural Analog Renforcement Calculator): M. Mnsky, 95 Perceptron: F. Rosenblatt, 957 Mély neuráls hálók, stb., 2006
3 Perceptron n+ T y = sgn( w x ) = sgn( w x + w ) = sgn( + b) n+ = = n x w T x w+ b > 0 T x w+ b < 0 lneársan (hpersíkkal) szeparálható függvényt képes reprezentáln
4 Perceptron tanítása w( k) = w( k ) +α ε( k) x( k) α - bátorság faktor, tanulás tényező
5 Perceptron tanítása Tanítás konvergens, ha A tanító példák lneársan szeparálhatók Bátorság tényező elegendően kcs w( k) = w( k ) +α ε( k) x( k)
6 Perceptron és logka függvények
7 XOR (és hasonlóan lneársan nem szeparálhatók) problémája: több réteg tanulás = csak réteg (hba értelmezése)
8 Mesterséges neuron
9 Mesterséges Neuráls Háló (Artfcal Neural Network) nemlneárs approxmácót megvalósító, nduktív tanulás algortmussal tanítható matematka struktúra.
10 Mesterséges Neuráls Háló D. Hlbert (900) 23 matematka problémája/sejtése: 3. probléma: "Bzonyítsuk be, hogy az x 7 +ax 3 +bx 2 +cx+=0 hetedfokú egyenlet nem oldható meg pusztán kétváltozós függvények segítségével! "Mutassuk meg, hogy van olyan háromváltozós folytonos függvény, mely nem írható fel véges számú kétváltozós folytonos függvény segítségével! A. Kolmogorov (957): nem csupán mnden háromváltozós függvény, hanem tetszőleges N-változós folytonos függvény felírható csupán egyváltozós függvények és az összeadás segítségével.
11 Mesterséges Neuráls Háló
12 Mesterséges Neuráls Háló Többrétegű előrecsatolt háló tanítása (elem alapok) Hbavsszaterjesztés gradens módszerrel - példa bemeneteket mutatunk a hálónak, - ha hba lép fel (a kmenet és a kívánt érték eltér), a súlyokat úgy módosítjuk, hogy a hba csökkenjen. A trükk a hba megállapítása és a hbának a hbát létrehozó súlyok közt szétosztása. W E W α W
13 Mesterséges Neuráls Háló W E W α W k, j k, j k, j W E W α 2 E = Σ ( ) W d y j, 2 j, j,
14 Mesterséges Neuráls Háló hbavsszaterjesztés, alapok E = Σ ( d y ) = Σ Err E( W) = Σ ( d g( Σ W a )) = Σ ( d g( Σ W g( Σ W I ))) 2 2 E W W j, 2 2 j j, j j j, k k, j k Σ E W α W j, j, = a ( d y ) g '( W a ) = a ( d y ) g '( n ) = a j j j, j j j E W W α = W + α a Err g '( n ) W j, j, j, j W j, E W α W k, j k, j W W + α I k, j k, j k, j k j E W k, j = W = I k g '( n ) W j j j, j Σ j, W W + α a j, j, j = Err g '( n )
15 Mesterséges Neuráls Háló Kérdések: mekkora (hány réteg, rétegenként hány processzáló elem) hálózatot válasszunk, hogyan válasszuk meg a tanulás tényező, α értékét, mlyen kezdet súlyértékeket állítsunk be, hogyan válasszuk meg a tanító és a tesztelő mnta készletet, hogyan használjuk fel a tanító pontokat, mlyen gyakorsággal módosítsuk a hálózat súlyat, meddg tanítsuk a hálózatot, stb? (hogyan gyorsítsuk meg a tanulást?) (hogyan védekezzünk a túltanulással szemben?)
16 Mesterséges Neuráls Háló
17 XOR - újra
18 A hbavsszaterjesztést alkalmazó hálókban általában a szgmod függvényt vagy annak valamelyk változatát használjuk. A szgmodnak megvan az a tulajdonsága, hogy derváltja Elemzés g ' = g( g) g( x) = + e Kfejezőképesség: nem rendelkeznek az általános logka reprezentácók kfejezőképességével. A többrétegű hálók osztálya egészében, mnt osztály az attrbútumok bármely függvényének reprezentácójára képes. Számítás hatékonyság: legrosszabb esetben a szükséges epochok száma a bemenetek számának, n-nek, még exponencáls függvénye s lehet. A hbafelület lokáls mnmuma problémát jelenthetnek. Általánosító képesség: jó általánosításra képesek. Zajérzékenység: alapvetően nemlneárs regresszó, nagyon jól tolerálják a bemenet adatok zajosságát. Átláthatóság: alapvetően fekete doboz. A pror smeret:? x
19 Mesterséges Neuráls Háló sekélytől mélyg háló felskálázása és tanulás nehézsége (gradens) (97, 8 réteg) heursztkus jellegkemelés ad hoc vzuáls cortex struktúra mplct jellegkemelés háló felskálázása és struktúrálása (CNN) tanítás felgyorsítása kép, hang, nyelv, multmodáls
20 Perceptron és a lneárs szeparálhatóság - újra Optmáls szétválasztás - maxmáls margó w x + b > d d 0 ( w x + b) ( w x + b) = w x + b < mnden x-re a margó határán 0 x w
21 Optmáls szétválasztás Margó szélesség maxmalzálása A feladat: 2 szélesség = w 2 mn w d ( w x + b) =,, m: 2 A megoldása: w, b, f ( x) = sgn{ w x + b } P 2 mn L( w, b, α) = w α d ( w x + b) Duál feladat 2 == = [ ] P P P max[ Q( α) = α α α d d x x ] P j j j = 2 = j= α d = 0, α 0, =,..., P f ( x ) = sgn d + b, w = d x x x P P α α = = (Lagrange multplkátorokkal)
22 Optmáls szétválasztás P f ( x) = sgn α dx x + b, = w = P = α d x Nem zérus α = szuport vektor Szuport vektor = példa az osztály határán Ha nem nagyon vad az osztály határ = kevés szuport vektor s elég
23 Kernelgépek (SVM, szupport vektor gépek) Kerneltrükk (avagy m van, ha mégsem lneársan szeparálható?)
24 Kernelgépek (SVM, szupport vektor gépek) Feladattér nemlneárs osztályozó határfelület Transzformált (dmenzót növelő) tér lneárs osztályozó hpersík
25 Kernelgépek (SVM, szupport vektor gépek)
26 Optmáls szétválasztás jellemzőtérben m m m max[ Q( α) = α α α d d ϕ( x ) ϕ( x )] m = j j j = 2 = j= α d = 0, α 0, =,..., m P P f ( x ) = sgn α dϕ( ) ϕ( ) + b, w = α dϕ( ) x x x = = Kerneltrükk ϕ( z) ϕ( x) = k( z, x) = g( x x) m m m max[ Q( α) = α α α d d k( x, x )],... j j j = 2 = j= f ( x) = sgn α dk( x, x) + b = PS
27 Kerneltrükk ϕ( z) ϕ( x) = k( z, x) = g( x x) ϕ : x = ( x, x ) ϕ( x) = ( x, x, 2 x x ) ϕ( z) ϕ( x) = ( z, z, 2 z z ) ( x, x, 2 x x ) = x z + x z + 2 x x z z = ( x z + x z ) = z x = z x 2 ( ) k(, ) ϕ : x = ( x, x ) ϕ( x) = (, 2 x, 2 x, x, x, 2 x x ) ϕ ϕ = = + + = + = 2 2 ( z) ( x)... ( xz x2z2) ( z x) k( z, x) ϕ ϕ 2 : x = ( x) ϕ( x) = ( x, x ) 2 2 ( z) ( x) =... = ( xz + x z ) = z x( + z x) = k( z, x) ϕ
28 Kernelgépek (SVM, szupport vektor gépek) ϕ : x = ( x, x ) ϕ( x) = (, 2 x, 2 x, x, x, 2 x x ) ϕ ( z) ϕ( x) =... = ( + xz + x2z2) = ( + z x) = k( z, x) ϕ : x = ( x, x ) ϕ( x) = ( 2 x, 2 x x ) 2 2 x 2 x x = ± = ± x
29 Kernelgépek (SVM, szupport vektor gépek) Hogyan lehetünk bztosak, hogy jellmzőtérben már lneársan szeparálható?
30 Kernelgépek (SVM, szupport vektor gépek) slack = laza változók módszere mn 2 max n 2 T w + C ξ ( + ) = n n n T α αα j y y jx x j = 2 = j= T T g( x) = w x + b = αx x + b SV n n n max α α α y y k( x, x ) j j j = 2 = j= T T g( x) = w φ( x) + b = αφ( x ) φ( x) + b g( x) = αk( x, x) + b SV SV y w x b ξ ξ 0 0 α C n = α y = 0 0 α C n = α y = 0 T k( x, x ) = φ( x ) φ( x ) j j
31 max ( ) α = 0 α = α = 0 α α k( x, x ) = ( + x x ) j j C = α αα j y y j + x x j 0 = 2 α 00 = j= 5 = = ( + 6 x) + 2 = = g( x) = 2.5 ( + 2 x) ( ) ( + 5 x) b = 9 x x b 2 2 b α y = α + α + α α α g x x x 2 ( ) =
32 MI ks HF4 Jellemezzünk egy bnárs osztályozás problémát 2-dm bemenet térben az alább pontokkal: Legyen a bemenet tér leképezése a 2-dm jellemzőtérbe: (x,x 2 ) (x 2, x *x 2 ) (a) Kockás papíron(*) ábrázolva jelölje be és megfelelően címkézze a bemenet tér tanító példát. Állapítsa meg, hogy ebben a térben a két osztály lneársan szétválasztható-e? b) Külön ábrán jelölje be és megfelelően en cmkézze a tanító példákat a jellemzőtérben. x x 2 Osztály cmke -2-2 A -2 - A 2 A 2 A -2 2 B 0 2 B 0 - B 2 - B c) Keresse meg a jellemzőtérben (grafkon alapján, szemrevételezéssel, nem optmum számítással!) a maxmáls margójú lneárs osztályozót! Adja meg a szétválasztó egyenes és a margót határoló két egyenes képletét. Rajzolja be ezeket az egyeneseket a (b) pontban készített grafkonon. Lstázza k és jelólje be a jellemzőtérben megtalált szuport vektorokat. d) Határozza meg, hogy a megtalált szuport vektoroknak mely példák felelnek meg a bemenet térben.
33 e) Az (a) pontban készített grafkonon rajzolja be az osztályokat szétválasztó görbéket. Vegye fgyelembe, hogy: A bemenet tér határoló görbé könnyen megkaphatók x 2 = g(x ) formában a jellemzőtér határoló egyeneseből. A határoló görbék hperbolkus jellegűek. Ügyeljen az aszmptoták helyes ábrázolására. Ügyeljen a jellemzőtérben orgó körül határoló egyenesek bemenet térbe történő vsszatranszformálására. Legjobb, ha a jellemzőtérben az orgó közel határoló egyenest fokozatosan közelít az orgó felé és megvzsgálja ennek hatását a bemenet térben. f) Satrozza be a jellemzőtérbel szétválasztó margónak megfelelő területet a bemenet térben. g) Mnél egyszerűbb formában írja fel az (a-f) pontokban meghatározott SVM osztályozónak a bemenet térre vonatkozó, az új példák besorolására használható egyenlőtlenségét! (*) Elegendő db A4 kockás lapon, olvasható kézrással készített megoldás szkennelt képét (jpg, pdf) benyújtan. Természetesen gényesebb szerkesztésű (de nem hosszabb!) megoldás s benyújtható.
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79
Intelligens orvosi műszerek VIMIA023
Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A
Support Vector Machines
Support Vector Machnes Ormánd Róbert MA-SZE Mest. Int. Kutatócsoport 2009. február 17. Előadás vázlata Rövd bevezetés a gép tanulásba Bevezetés az SVM tanuló módszerbe Alapötlet Nem szeparálható eset Kernel
Intelligens Rendszerek Elmélete
Intellgens Rendszerek Elmélete Dr. Kutor László A mesterséges neuráls hálózatok alapfogalma és meghatározó eleme http://mobl.nk.bmf.hu/tantargyak/re.html Logn név: re jelszó: IRE07 IRE 7/1 Neuráls hálózatok
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók 2. Előadó: Hullám Gábor Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
IDA ELŐADÁS I. Bolgár Bence október 17.
IDA ELŐADÁS I. Bolgár Bence 2014. október 17. I. Generatív és dszkrmnatív modellek Korábban megsmerkedtünk a felügyelt tanulással (supervsed learnng). Legyen adott a D = {, y } P =1 tanító halmaz, ahol
Gépi tanulás a gyakorlatban SVM
Gépi tanulás a gyakorlatban SVM Klasszifikáció Feladat: előre meghatározott csoportok elkülönítése egymástól Osztályokat elkülönítő felület Osztályokhoz rendelt döntési függvények Klasszifikáció Feladat:
E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes)
6-7 ősz. gyakorlat Feladatok.) Adjon meg azt a perceptronon implementált Bayes-i klasszifikátort, amely kétdimenziós a bemeneti tér felett szeparálja a Gauss eloszlású mintákat! Rajzolja le a bemeneti
Méréselmélet: 5. előadás,
5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,
A neurális hálózatok alapjai
A neuráls hálózatok alapja (A Neuráls hálózatok és mszak alkalmazásak cím könyv (ld. források) alapján) 1. Bológa alapok A bológa alapok megsmerése azért fontos, mert nagyon sok egyed neuráls struktúra,
Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.
: Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Bevezetés a neurális számításokba Analóg processzortömbök,
Pannon Egyetem Villamosmérnöki és Információs Tanszék Bevezetés a neurális számításokba Analóg processzortömbök, neurális hálózatok Előadó: dr. Tömördi Katalin Neurális áramkörök (ismétlés) A neurális
Lineáris regresszió. Statisztika I., 4. alkalom
Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás 17. 3D Szegmentálás http://cg.t.bme.hu/portal/node/312 https://www.vk.bme.hu/kepzes/targyak/viiiav54 Dr. Várady Tamás, Dr. Salv Péter BME, Vllamosmérnök
d(f(x), f(y)) q d(x, y), ahol 0 q < 1.
Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés
Neurális hálózatok.... a gyakorlatban
Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.
Minősítéses mérőrendszerek képességvizsgálata
Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek
1.Tartalomjegyzék 1. 1.Tartalomjegyzék
1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet
Regresszió. Fő cél: jóslás Történhet:
Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján
Boros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
NEURÁLIS HÁLÓZATOK 1. eloadás 1
NEURÁLIS HÁLÓZATOKH 1. eloadás 1 Biológiai elozmények nyek: az agy Az agy az idegrendszerunk egyik legfontosabb része: - képes adatokat tárolni, - gyorsan és hatékonyan mukodik, - nagy a megbízhatósága,
Hatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
[1000 ; 0] 7 [1000 ; 3000]
Gépi tanulás (vimim36) Gyakorló feladatok 04 tavaszi félév Ahol lehet, ott konkrét számértékeket várok nem puszta egyenleteket. (Azok egy részét amúgyis megadom.). Egy bináris osztályozási feladatra tanított
3D-s számítógépes geometria
3D-s számítógépes geometra 11. 3D szegmentálás http://cg.t.bme.hu/portal/node/31 https://www.vk.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Vllamosmérnök és Informatka Kar Irányítástechnka és
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?
01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó
1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.
Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7
Tanuló ó és hibrid információs rendszerek
Tanuló ó és hbrd nformácós rendszere Horváth Gábor I S R G Méréstechna és Informácós Rendszere Tanszé 004 Horváth Gábor Bevezetés Neuráls hálózato Tartalomjegzé elem neurono lasszus neuráls archtetúrá
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
Kernel módszerek. 7. fejezet
7. fejezet Kernel módszerek Ebben a fejezetben olyan tanuló rendszerekkel foglalkozunk, amelyek a válaszokat ún. kernel függvények (vagy magfüggvények) súlyozott összegeként állítják elő. A megközelítés
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Numerikus módszerek 1.
Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Egyenáramú szervomotor modellezése
Egyenáramú szervomotor modellezése. A gyakorlat élja: Az egyenáramú szervomotor mködését leíró modell meghatározása. A modell valdálása számításokkal és szotverejlesztéssel katalógsadatok alapján.. Elmélet
Periodikus figyelésű készletezési modell megoldása általános feltételek mellett
Tanulmánytár Ellátás/elosztás logsztka BME OMIKK LOGISZTIKA 9. k. 4. sz. 2004. júlus augusztus. p. 47 52. Tanulmánytár Ellátás/elosztás logsztka Perodkus fgyelésű készletezés modell megoldása általános
Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika
Fuzzy rendszerek A fuzzy halmaz és a fuzzy logka A hagyományos kétértékű logka, melyet évezredek óta alkalmazunk a tudományban, és amelyet George Boole (1815-1864) fogalmazott meg matematkalag, azon a
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
NULLADIK MATEMATIKA ZÁRTHELYI
A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával
HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai
HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;
4 2 lapultsági együttható =
Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.
Adatsorok jellegadó értékei
Adatsorok jellegadó értéke Varga Ágnes egyetem tanársegéd varga.ag14@gmal.com Terület és térnformatka kvanttatív elemzés módszerek BCE Geo Intézet Terület elemzés forgatókönyve vacsora hasonlat Terület
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
Mechanizmus-tervezés: szociális jóléti függvény nem kooperatív (versengő) ágensek. A megegyezés keresése és elérése: Tárgyalás (Negotiation)
Tárgyalások/1 Mechanzmus-tervezés: szocáls jólét függvény nem kooperatív (versengő) ágensek (Szavazás (Votng)) (Árverés (Aucton)) A megegyezés keresése és elérése: Tárgyalás (Negotaton) (Érvelés (Argung))
Osztályozási feladatok képdiagnosztikában. Orvosi képdiagnosztikai 2017 ősz
Osztályozási feladatok képdiagnosztikában Orvosi képdiagnosztikai 2017 ősz Osztályozás Szeparáló felületet keresünk Leképezéseket tanulunk meg azok mintáiból A tanuláshoz használt minták a tanító minták
Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20
Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés
A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
3. előadás Stabilitás
Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...
TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Analízis házi feladatok
Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják
Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (
FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.
5. előadás - Regressziószámítás
5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat
függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
Szemidenit optimalizálás és az S-lemma
Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Kvantum-tömörítés II.
LOGO Kvantum-tömörítés II. Gyöngyös László BME Vllamosmérnök és Informatka Kar A kvantumcsatorna kapactása Kommunkácó kvantumbtekkel Klasszkus btek előnye Könnyű kezelhetőség Stabl kommunkácó Dszkrét értékek
Függvényhatárérték és folytonosság
8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
First Prev Next Last Go Back Full Screen Close Quit
Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.
First Prev Next Last Go Back Full Screen Close Quit
Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
Matematika A1. 9. feladatsor. A derivált alkalmazásai. Függvény széls értékei
Matematika A1 9. feladatsor A derivált alkalmazásai Függvény széls értékei 1. Keressük meg a függvények abszolút maximumát és minimumát a megadott intervallumon. Ezután rajzoljuk fel a függvény grakonját.
II. LABOR Tanulás, Perceptron, Adaline
II. LABOR Tanulás, Perceptron, Adaline A dolgozat célja a tanító algoritmusok osztályozása, a tanító és tesztel halmaz szerepe a neuronhálók tanításában, a Perceptron és ADALINE feldolgozó elemek struktúrája,
Kalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. március 9. 1. Diszkrét matematika 2. 4. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. március 9. Gráfelmélet Diszkrét
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás b Háromszöghálók - algortmusok http://cgtbmehu/portal/node/3 https://wwwvkbmehu/kepzes/targyak/viiiav54 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérnök
Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.
Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =
Dinamikus modellek szerkezete, SDG modellek
Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.
MATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap
Közlekedésmérnök Kar Jármőtervezés és vzsgálat alapja I. Feladatlap NÉV:..tk.:. Feladat sorsz.:.. Feladat: Egy jármő futómő alkatrész terhelésvzsgálatakor felvett, az alkatrészre ható terhelı erı csúcsértékek
I. LABOR -Mesterséges neuron
I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,
Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!
MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:
Intelligens elosztott rendszerek
Intellgens elosztott rendszerek VIMIAC2 Adatelőkészítés: hhetőségvzsgálat normálás stb. Patak Béla BME I.E. 414, 463-26-79 atak@mt.bme.hu, htt://www.mt.bme.hu/general/staff/atak Valamlyen dőben állandó,
Szárítás során kialakuló hővezetés számítása Excel VBA makróval
Szárítás során kalakuló hővezetés számítása Excel VBA makróval Rajkó Róbert 1 Eszes Ferenc 2 Szabó Gábor 1 1 Szeged Tudományegyetem, Szeged Élelmszerpar Főskola Kar Élelmszerpar Műveletek és Környezettechnka
Diszkrét matematika 1.
Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett
A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a
a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten
Osztályozó algoritmusok vizsgálata
Osztályozó algortmusok vzsgálata Önálló laboratórum beszámoló Készítette: Kollár Nándor Konzulens: Kupcsk András 2009-2-4 Osztályozás A gép tanulás, adatfeldolgozás területének egyk ága az osztályozás,
Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.
Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
Dierenciálhányados, derivált
9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez
Numerikus integrálás
Közelítő és szimbolikus számítások 11. gyakorlat Numerikus integrálás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Határozatlan integrál
Lagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
Fényi Gyula Jezsuita Gimnázium és Kollégium Miskolc, Fényi Gyula tér Tel.: (+36-46) , , , Fax: (+36-46)
Fényi Gyula Jezsuita Gimnázium és Kollégium 529 Miskolc, Fényi Gyula tér 2-12. Tel.: (+6-46) 560-458, 560-459, 560-58, Fax: (+6-46) 560-582 E-mail: fenyi@jezsuita.hu Honlap: www.jezsu.hu A JECSE Jesuit
NULLADIK MATEMATIKA szeptember 7.
A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke