ADATREDUKCIÓ I. Középértékek
|
|
- Anna Ballané
- 6 évvel ezelőtt
- Látták:
Átírás
1 ADATREDUKCIÓ I. Középértékek
2 Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték ma b) Helyzet középérték: tpkus értékek legyenek (gyakran forduljonak elő). c) Legyenek könnyen meghatározhatók. d) Legyenek egyértelműen defnálva. 3. A középérték az azonos fajta adatok tömegének számszerű jellemzője.
3 Középértékek Számított középértékek Helyzet középértékek Artmetka Harmonkus Módusz Medán átlag: X átlag: Xh Mo Me Geometra átlag: Xg Kvadratkus átlag: Xq
4 Számított középértékek Matematka összefüggés alapján számíthatók k: Számtan (Artmetka) átlag Egyszerű Súlyozott Harmonkus átlag Egyszerű Súlyozott Mértan (Geometra) átlag Egyszerű Súlyozott Négyzetes (Kvadratkus) átlag Egyszerű Súlyozott n n n f f a n a 1 1 _ 1 _ n n n f f h n h 1 1 _ 1 _ 1 n f f n n n g g 1 1 _ 1 _ n n n f f q n q _ 1 2 _
5 Adatokat nagyságszernt rendezzük. Helyzet mutatók Meghatározzuk a küszöb értéket és felosztjuk a tartományt a kívánt részre. Kvantlsek: az összes előforduló érték j/k (j=1,2,,k-1) része ksebb és 1-j/k része nagyobb. Pl. k=2: Medán (Me) k=3: tercls k=4: Qvartls (Q1, Q2=Me, Q3) k=5: kvntls k=10: decls k=100: percentls
6 Outler
7 Egyéb átlagok Interquartle mean (IQM) vagy mdmean: Nem érzékeny az outler értékekre:
8 Trmean vagy Tukey's trmean Kombnálja a medán és a mdhnge előnyet tekntettel az etrém értékekre:
9 Az egyes adatfajtáknál mlyen középértékeket alkalmazzunk? Átlag Medán Kvanttatív Ordnáls Módusz Nomnáls
10 ADATREDUKCIÓ II. Szóródás és mérése
11 A szóródás mérése Szóródás: azonos fajta számszerű adatok különbözősége Mérése: az smérvértékek valamlyen középértéktől vett vagy egymás között különbsége alapján történk. Szóródás mutatók A szóródás terjedelme Átlagos abszolút eltérés Szórásnégyzet, szórás, relatív szórás (Átlagos különbség) Koncentrácó 11
12 A szóródás terjedelme A legnagyobb és legksebb smérvérték különbsége R vagy T = X ma X mn Interquartls terjedelem: IQT = Q 3 Q 1 A mutatószámok kfejezk, hogy mekkora értékközben ngadoznak az smérvértékek. Gyakorlatban kevéssé használatos, mert csupán a két szélső értékre támaszkodk. 12
13 13 A szórásnégyzet (varanca) és szórás Az egyes értékek számtan átlagtól vett eltérés-négyzetenek átlaga: N N f f s Var ) ( ) ( N s N 1 2 ) ( Varanca vagy: szórásnégyzet Korrgálatlan szórás: 1 ) ( 1 2 N s N Korrgált szórás:
14 A szórás kszámítható a négyzetes és a számtan átlag négyzetenek különbségéből s: s 2 q 2 14
15 Relatív szórás s V % *100 Elvonatkoztat az smérv-értékek nagyságrendjétől és mértékegységétől. Azt mutatja meg, hogy a szórás hányad része (hány százaléka) az átlagnak. 15
16 Relatív szórás (varácós együttható, V) Az adatok szórását osztjuk az átlaggal, majd szorozzuk 100%-al Kcs: a szórás, ha V<15%, Közepes: ha 15%<V<25%, Nagy: ha 25%<V<35%, Etrém (szélsőséges): ha V>35%
17 Bo-and-whsker plot négy + nagyon távol etrém értékkel: defnálva Q (IQR) and Q3 + 3(IQR) alapján
18 Átlag szórása (Standard error, SEM) A mntaválasztás jóságát mutatja: a 0 közel érték a jó érték, mert ekkor helyes a mntaválasztás (dmenzós érték!): s s N
19 A szórás tulajdonsága Ha mnden értékhez ugyanazt a konstans számot hozzáadjuk (+a), a szórás változatlan marad. Ha mnden értéket ugyanazzal a k konstans számmal megszorozzuk, (k), a szórás s k-szorosára változk. Az eltérésnégyzet-összeg az átlagtól való eltérésekkel számolva a legksebb A szórásnégyzet felírható a négyzetes átlag és a számtan átlag négyzetének a különbségeként. A sokaságot jellemző teljes szórásnégyzet (varanca) megegyezk a rész-sokaságok külső és belső szórásnégyzetének összegével (ANOVA témakör): B K 19
20 Hányzó értékek kezelése (Mssng values) Hányzó érték: nem regsztrált adat. Hatása: erőteljesen befolyásolhatják az elemzés eredményet. Többváltozós módszereknél esetszám kesés.
21 Hányzó értékek jelölése 0 kód esetén a teendő kód használata: Szoftver felé való közlés Hányzó értékek kezelése: - üresen hagyjuk, - átlagot tesszük be: a helyettesítés rombolja a változók eloszlásfüggvényét, konfdenca-ntervallumát, megnövel az eloszlások csúcsosságát, a változók között lneárs kapcsolatokat s megváltoztatja, a korrelácós együttható közelebb kerül a 0-hoz.
22 MI (multple mputaton) Az MI célja, hogy a helyettesítésekkel együtt megtartsuk a változók eloszlását és a változók között asszocácókat. Szmulácón és legtöbbször Bayes- alapokon álló technka, ahol a megfgyelt adatokból m>1 verzóban modelleznek lehetséges adatokat a hányzók helyére, majd a végén egy algortmus szernt kombnálják az eredményeket (a becsléseket és a szórásokat).
23 MI Általános szabályként olyan változók esetében használhatjuk az mputálást, ahol változónként mamum az adatok 30 40%-a hányzk, de a teljes adatbázsban nncs több hányzó, mnt a teljes mátr 10 15%-a. Ezek az arányok a szakrodalom szernt egyáltalán nem adnak okot aggodalomra a helyettesítés metódusát lletően.
24 Aszmmetra mérőszáma
25 Ferdeség mérése Ferdeség =FERDESÉG() SKEW() A ferdeség az eloszlás középérték körül aszmmetrájának mértékét jelz. A poztív ferdeség a poztív értékek rányába nyúló aszmmetrkus eloszlást jelez, míg a negatív ferdeség a negatív értékek rányában torzított. =CSÚCSOSSÁG() KURT() Egy adathalmaz csúcsosságát számítja k. A függvény a normáls eloszláshoz vszonyítva egy eloszlás csúcsosságát vagy laposságát adja meg. A poztív értékek vszonylag csúcsos, a negatív értékek vszonylag lapos eloszlást jelentenek. n ( n 1)( n 2) s _ 2 3( n 1) Csúcsosság ( n 1)( n 2) 3
26 Aszmmetra Az aszmmetra Pearson-féle A-mutatószáma: Mo A Az aszmmetra F-mutatószáma Szmmetrkus eloszlás esetén: A = 0 Jobb oldal aszmmetra esetén: A > 0 Bal oldal aszmmetra esetén: A < 0 F Q 3 Me Me Q1 Q Me Me Q 3 1 Szmmetrkus eloszlás esetén: F = 0 Jobb oldal aszmmetra esetén: F > 0 Bal oldal aszmmetra esetén: F < 0 26
27 Konfdencantervallum (Confdence nterval)
28 Határozzuk meg körül azt az ntervallumot ambe előre meghatározott valószínűséggel esk a várható érték (μ). A várható értéket (μ) pontosan nem tudjuk, de körül van: nagy (1-α) valószínűséggel a fent ntervallumban, és kcs (α) valószínűséggel esk ezen kívülre. Ezt az ntervallumot a várható érték becslésére szolgáló 100 (1- α)% konfdenca ntervallumnak nevezzük. Leggyakrabban 90 v. 95%-os megbízhatóság szntet választunk (vagys α = 0,1 ll. 0,05).
29 t-eloszlás
30
31 N=96, df=95, =0,05 95%-os CI Mean 5,742 Standard Error 0,149 t krtkus 1,984 K=t krtkus *SE 0,297 L l=átlag - K 5,445 L l=átlag + K 6,038
32 CI ntervallumok ábrázolása 5,494 90%-os 5,99 5,388 5,445 95%-os 98%-os 6,038 6,095
33 Szgnfkanca vzsgálatok és a konfdencantervallum kapcsolata (H 0 : μ 1 = μ 2 H 1 : μ 1 μ 2 ) p-érték szgnfkanca 95% CI p<0.05 szgn. 5%-os sznten pl. (4.5, 10.7) 0 nncs benne a konf. ntervallumban p 0.05 nem szgn. 5%-os sz. pl. (-1.72, 5.81) 0 benne van a konf. ntervallumban Szgnfkáns, p<0.05 Szgnfkáns. p<0.05 Nem szgnfkáns, p> Megjegyzés: ha relatív kockázatot (RR) vagy esélyhányados (OR) vzsgálunk, akkor a konfdencantervallumban az 1-et keressük, hogy az értéket tartalmazza-e. Bostatsztka alapsmeretek Boda Krsztna Leíró statsztka A véletlen ngadozás Konfdencantervallum Egyváltozós módszerek
34 Statsztka függvények Ecelben
35 Átlagra függvények az Ecelben Számtan átlag: =ÁTLAG( ) =AVERAGE() Mértan átlag: =MÉRTANI.KÖZÉP =GEOMEAN() Harmonkus átlag: =HARM.KÖZÉP() =HARMEAN() Kvadratkus átlag: =SQRT(SUMSQ(A1:A10)/COUNTA(A1:A10))
36 Szórásfüggvények az Ecelben =ÁTL.ELTÉRÉS átlagos abszolút eltérés =AVEDEV() =SZÓRÁSP() =STDEV()- szórás =VAR() varanca (szórásnégyzet)
37 Számláló - keresőfüggvények függvények =DARAB () =COUNT() a megadott tartomány számmal ktöltött cellának a számát adja =DARAB2() =COUNTA() a megadott tartomány értékkel ktöltött cellának (nem üres) a számát adja =DARABTELI () =COUNTIF () a megadott tartományban megszámolja, hogy hány darab cella felel meg a megadott krtérumnak =DARABÜRES () =COUNTBLANK () A megadott tartományban megszámolja hány db cella üres
38 Ecel függvénye =MEDIÁN() =MEDIAN() : medán =MODE() : leggyakorbb érték =KVARTILIS() =QUARTILE() =PERCENTILIS() = PERCENTILE(): k-dk percentls =SZÁZALÉKRANG() =PERCENTRANK(): egy értéknek egy adathalmazon vett százalékos rangját adja =MAX =MIN =KICSI() =SMALL(): egy adathalmaz k-dk legksebb elemét adja értékül! =NAGY() =LARGE(): egy adathalmaz k-dk legnagyobb elemét adja értékül! =SORSZÁM() = RANK(): egy szám sorszámát adja, meg ha az adatokat sorba rendezzük
39 Krtkus-értéket számoló függvények Student's t-dstrbuton a) the two-taled value: =T.INV.2T(0.05,10) = b) the left-taled value: =T.INV(0.025,10) = Normal dstrbuton =NORM.S.INV(1-(0,05/2)) = 1,9600
ADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték
RészletesebbenBevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a bometrába Dr. Dnya Elek egyetem tanár PhD kurzus. KOKI, 205.0.08. ADATREDUKCIÓ I. Középértékek Adatredukcó. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények:
RészletesebbenADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz x mn középérték
RészletesebbenA sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
RészletesebbenAdatsorok jellegadó értékei
Adatsorok jellegadó értéke Varga Ágnes egyetem tanársegéd varga.ag14@gmal.com Terület és térnformatka kvanttatív elemzés módszerek BCE Geo Intézet Terület elemzés forgatókönyve vacsora hasonlat Terület
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
Részletesebbens n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés
A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,
RészletesebbenHipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?
01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó
RészletesebbenSTATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
Részletesebben4 2 lapultsági együttható =
Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.
RészletesebbenRegresszió. Fő cél: jóslás Történhet:
Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján
RészletesebbenPélda: Egy üzletlánc boltjainak forgalmára vonatkozó adatok 1999. október hó: (adott a vastagon szedett!) S i g i z i g i z i
. konzult. LEV. 013. ápr. 5. MENNYISÉGI ISMÉRV szernt ELEMZÉS Tk. 3-8., 88-90. oldal, kmarad: 70., 74. oldal A mennység smérv (X) lehet: dszkrét és folytonos. A rangsor a mennység smérv értékenek monoton
RészletesebbenStatisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.
Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan
RészletesebbenStatisztika. Eloszlásjellemzők
Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az
RészletesebbenStatisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
RészletesebbenGazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.
Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt
Részletesebben20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!
SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
RészletesebbenA leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
RészletesebbenGRADUÁLIS BIOSTATISZTIKAI KURZUS február hó 22. Dr. Dinya Elek egyetemi docens
GRADUÁLIS BIOSTATISZTIKAI KURZUS 2012. február hó 22. Dr. Dinya Elek egyetemi docens Biometria fogalma The active pursuit of biological knowledge by quantitative methods Sir R. A. Fisher, 1948 BIOMETRIA
RészletesebbenElemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok
RészletesebbenVariancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat?
Varanca-analízs (NOV Mért nem csnálunk kétmntás t-próbákat? B Van különbség a csoportok között? Nncs, az eltérés csak véletlen! Ez a nullhpotézs. és B nncs különbség Legyen, B és C 3 csoport! B és C nncs
RészletesebbenMatematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
RészletesebbenTanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.
8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral
RészletesebbenStatisztikai alapfogalmak
Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt
RészletesebbenKutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
RészletesebbenÁLTALÁNOS STATISZTIKA
Berzseny Dánel Főskola ÁLTALÁNOS STATISZTIKA műszak menedzser alapszak Írta: Dr. Köves János Tóth Zsuzsanna Eszter Budapest 006 Tartalomjegyzék. VALÓSZÍNŰSÉGSZÁMÍTÁSI ALAPOK... 4.. A VALÓSZÍNŰSÉGSZÁMÍTÁS
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
RészletesebbenA valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
RészletesebbenBiomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
RészletesebbenGazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr.
Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Regresszó-számítás. előadás Kvanttatív statsztka módszerek Dr. Varga Beatr Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Korrelácós
RészletesebbenStatisztika feladatok
Statsztka ok Informatka Tudományok Doktor Iskola Bzonyítandó, hogy: azaz 1 Tekntsük az alább statsztkákat: Igazoljuk, hogy torzítatlan statsztkák! Melyk a leghatásosabb közöttük? (Ez az együttes eloszlásfüggvényük.)
RészletesebbenA sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos
Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani
RészletesebbenLineáris regresszió. Statisztika I., 4. alkalom
Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı
RészletesebbenStatisztika I. 4. előadás. Előadó: Dr. Ertsey Imre
Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét
RészletesebbenNemparaméteres módszerek. Krisztina Boda PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
Nemparaméteres módszerek Krsztna Boda PhD SZTE ÁOK Orvos Fzka és Orvos Informatka Intézet Paraméteres próbák Paraméter: egy szám, amely a populácó eloszlását jellemz (és általában meghatározza). A normáls
RészletesebbenBevezető Adatok rendezése Adatok jellemzése Időbeli elemzés
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
RészletesebbenSTATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
RészletesebbenMatematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
RészletesebbenMATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap
Közlekedésmérnök Kar Jármőtervezés és vzsgálat alapja I. Feladatlap NÉV:..tk.:. Feladat sorsz.:.. Feladat: Egy jármő futómő alkatrész terhelésvzsgálatakor felvett, az alkatrészre ható terhelı erı csúcsértékek
RészletesebbenÁltalános Statisztika
Budapest Mőszak és Gazdaságtudomány Egyetem Gazdaság- és Társadalomtudomány Kar Nyugat-Magyarország Egyetem Savara Egyetem Központ Dr. Köves János Dr. Tóth Zsuzsanna Eszter Általános Statsztka oktatás
RészletesebbenVARIANCIAANALÍZIS (szóráselemzés, ANOVA)
VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.
RészletesebbenKomplex regionális elemzés és fejlesztés tanév DE Népegészségügyi Iskola Egészségpolitika tervezés és finanszírozás MSc
Komplex regonáls elemzés és fejlesztés 2016-2017. tanév DE Népegészségügy Iskola Egészségpoltka tervezés és fnanszírozás MSc 2. előadás Terület elemzés módszerek az egészségföldrajzban Terület ellátás
RészletesebbenBevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
RészletesebbenLeíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
RészletesebbenVéletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
RészletesebbenSTATISZTIKA. ( x) 2. Eloszlásf. 9. gyakorlat. Konfidencia intervallumok. átlag. 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% (cm)
Normális eloszlás sűrűségfüggvénye STATISZTIKA 9. gyakorlat Konfidencia intervallumok f σ π ( µ ) σ ( ) = e /56 p 45% 4% 35% 3% 5% % 5% % 5% Normális eloszlás sűrűségfüggvénye % 46 47 48 49 5 5 5 53 54
RészletesebbenMatematikai statisztikai elemzések 2.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 2. MSTE2 modul Helyzetmutatók, átlagok, kvantilisek. A szórás és szóródás egyéb mérőszámai.
RészletesebbenBAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
RészletesebbenBiostatisztika 1. Dr. Dinya Elek Dr. Solymosi Róbert: Biometria a klinikumban Dr. Dinya Elek: Biostatisztika. Hullám Gábor
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Biostatisztika 1. Dr. Dinya Elek Dr. Solymosi Róbert: Biometria a klinikumban Dr. Dinya Elek: Biostatisztika
RészletesebbenNagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
RészletesebbenA Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
RészletesebbenExtrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés
Extrém-érték modellezés Zemplén András Alkalmazott modul 03. február. Extrém-érték elemzés Klasszkus módszerek: év maxmumon alapulnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízbıl
RészletesebbenDr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola
Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy
RészletesebbenA multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege
A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
RészletesebbenSegítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Részletesebben2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
RészletesebbenBiostatisztika e-book Dr. Dinya Elek
TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok
Részletesebbene (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
RészletesebbenStatisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
RészletesebbenTáblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist.
1. Az X valószínőség változó 1 várható értékő és 9 szórásnégyzető. Y tıle független várható értékkel és 1 szórásnégyzettel. a) Menny X + Y várható értéke? 13 1 b) Menny X -Y szórásnégyzete? 13 1 összesen
RészletesebbenBiometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
RészletesebbenKözúti közlekedésüzemvitel-ellátó. Tájékoztató
12/2013. (III. 29.) NFM rendelet szakma és vzsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 841 02 Közút közlekedésüzemvtel-ellátó Tájékoztató A vzsgázó az első lapra írja fel
RészletesebbenAdatelemzés és adatbányászat MSc
Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás
RészletesebbenTöbbváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
RészletesebbenÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETRIA Készült a TÁMOP-4..-08//A/KMR-009-004pálázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék az MTA Közgazdaságtudomán Intézet
RészletesebbenNemparaméteres eljárások
Nemparaméteres eljárások Bevezetés Az ntervallum vagy a hányados skálán végzett méréseknél az adatokból számolhatunk átlagot, szórásnégyzetet, szórást Fontos módszerek alapulnak ezeknek a származtatott
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Részletesebbend(f(x), f(y)) q d(x, y), ahol 0 q < 1.
Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés
RészletesebbenKorrelációs kapcsolatok elemzése
Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az
RészletesebbenTöbbváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
RészletesebbenFeladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?
Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését
RészletesebbenHipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
RészletesebbenAlgoritmusok és adatszerkezetek gyakorlat 09 Rendezések
Algortmusok és adatszerkezetek gyakorlat 09 Rendezések Néhány órával ezelőtt megsmerkedtünk már a Merge Sort rendező algortmussal. A Merge Sort-ról tuduk, hogy a legrosszabb eset dőgénye O(n log n). Tetszőleges
RészletesebbenKoncentráció és mérése gazdasági és társadalmi területeken. Kerékgyártó Györgyné BCE Statisztika Tanszék
Koncentrácó és mérése gazdaság és társadalm területeken Kerékgyártó Györgyné BCE Statsztka Tanszék Koncentrácó Fogalmát a XVIII. sz. másodk felétől egyre gyakrabban használták. Először a termelésre értelmezték,
RészletesebbenBiomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pálázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék, az MTA Közgazdaságtudomán
RészletesebbenAz entrópia statisztikus értelmezése
Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok
RészletesebbenStatisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
RészletesebbenExtrém-érték elemzés. Extrém-érték eloszlások. Megjegyzések. A normálhatóság feltétele. Extrém-érték modellezés
Extrém-érték modellezés Zemplén András Val.modellek 2018. febrár 21. Extrém-érték elemzés Klasszks módszerek: év maxmmon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ
RészletesebbenVarianciaanalízis. Egytényezős kísérletek (Más néven: egyutas osztályozás, egyszempontos varianciaanalízis ANOVA)
Varancaanalízs A varancaanalízs során kettőnél több sokaság középértékenek mnta alapán történő összehasonlítása történk zért nevezk a kétmntás t-próba általánosításának A nullhpotézs eldöntéséhez használuk
RészletesebbenKÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
Részletesebbeny ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
RészletesebbenExtrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés
Etrém-érték modellezés Zemplén András Alkalmazott modl 016. febrár -9. Etrém-érték elemzés Klasszks módszerek: év mammon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ
Részletesebben? közgazdasági statisztika
Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék, az MTA Közgazdaságtudomány
RészletesebbenHipotézisvizsgálat az Excel adatelemző eljárásaival. Dr. Nyéki Lajos 2018
Hipotézisvizsgálat az Excel adatelemző eljárásaival Dr. Nyéki Lajos 2018 Egymintás t-próba Az egymintás T-próba azt vizsgálja, hogy különbözik-e a változó M átlaga egy megadott m konstanstól. Az a feltételezés,
RészletesebbenBIOSTATISZTIKA ÉS INFORMATIKA. Leíró statisztika
BIOSTATISZTIKA ÉS INFORMATIKA Leíró statisztika Első közelítésbe a statisztikai tevékeységeket égy csoportba sorolhatjuk, de ezek között ics éles határ:. adatgyűjtés, 2. az adatok áttekithetővé tétele,
Részletesebben6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Részletesebben( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ANOVA ( ) 2. χ σ. α ( ) 2. y y y p p y y = + + = + + p p r. Fisher-Cochran-tétel
NOV ( ) ( ) ( ) ( ) ( ) ( ) a Y Y Y Y µ µ µ + + + ( ) ( ) ( ) ( ) + + Y µ µ µ ( ) ( ) ( ) + + µ χ e ( ) ( ) r + + Fher-Cochran-tétel mnd NOV ( ) e χ : H ( ) e S χ ( ) e r ν χ ( ) e S χ ( ) e r r ν χ F
RészletesebbenMETROLÓGIA ÉS HIBASZÁMíTÁS
METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.
RészletesebbenMINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:
1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze
RészletesebbenIDA ELŐADÁS I. Bolgár Bence október 17.
IDA ELŐADÁS I. Bolgár Bence 2014. október 17. I. Generatív és dszkrmnatív modellek Korábban megsmerkedtünk a felügyelt tanulással (supervsed learnng). Legyen adott a D = {, y } P =1 tanító halmaz, ahol
RészletesebbenValószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Részletesebben