10. Alakzatok és minták detektálása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "10. Alakzatok és minták detektálása"

Átírás

1 0. Alakzatok és mnták detektálása Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZTE

2 2 Hough transzformácó Éldetektálás során csak élpontok halmazát kapuk. Hogyan kereshetünk magasabb rendű struktúrákat alakzatokat az élpontok halmazában? A Hough-transzformácó során a képen általában az f xy;a a 2 a n =0 a a 2 a n paraméterekkel explct alakban megadható görbéket keressük A Hough transzformácó alkalmazása célravezető ha smert alakú és méretű obektumokat keresünk a képen. Akkor s ha azok részben takartak vagy zaosak.

3 3 Egyenesek detektálása Ekkor az nput tér egy x y pontának az r=x cosφ+y snφ sznuszod görbe felel meg a Hough-térben. Az egy egyenesbe eső pontokhoz tartozó sznuszod görbék egy pontban metszk egymást. 0 0 r r 2 max nput képtér Hough-tér

4 4 Hogyan találuk meg az egyeneseket? Egy élpont a képtérben megfelel egy sznusz görbének a Hough térben Két pontnak két görbe felel meg Két vagy több lyen görbe metszésponta által reprezentált egyenesre ekkor kettő vagy több szavazat esett. Az így kapott egyenes valamenny rá szavazó ponton átmegy a képtérben. A Hough tér küszöbölésével megkapuk a képtér egyeneset

5 5 Hough transzformácó algortmusa Create f and r for all possble lnes Create an array A ndexed by f and r for each pont xy for each angle f r = x*cosf+ y*snf A[fr] = A[fr]+ end end where A > Threshold return the correspondng lne parameters

6 r 6 Példa egyenesek detektálására A képen 5 egyenes található 4 oldal + átló f

7 7

8 8 Körvonal detektálása Általános körök esetén az abr Hough-tér 3- dmenzós lesz: ax 2 +by 2 =r 2 f xyabr=ax 2 +by 2 -r 2 =0 Amennyben pl. adott konstans r-sugarú kört keresünk akkor a paraméter-tér 2-dmenzósra csökken a gyakorlatban ez használatos

9 9 Körvonal detektálása él-kép amn smert sugarú kört keresünk 2D Hough-tér ahol mnden élpontnak egy a potencáls középpontokat tartalmazó kör felel meg

10 0 Körvonal detektálása él-kép maxmumhelyek a Houghtérben a detektált körök középponta

11 Példa körvonal detektálására a eredet kép b él-kép c 2D paraméter tér adott sugarú köröket keresünk d detektált körök az eredet képen

12 2 Mnták keresése képeken Az llesztés módszerekkel smert tárgyakat mnták előfordulásat keressük a képen. mnta legobb lleszkedés pozícóa

13 A legegyszerűbb a normalzált kereszt-korrelácó alapán lleszten Az llesztés mnta MxN méretű A kép mnden pontára kszámoluk a mntával vett keresztkorrelácó értékét az alább képlet alapán x és y a mnta lletve a kép vszgált pxelet elölk M N y M N x M N y e d x xy y x y x e d r Normalzált kereszt-korrelácó 2D 3

14 4 Illesztés algortmus. Számítsuk k a mntának megfelelő lleszkedés krtérumot mnden helyre esetleg több méretre és rányra s a képen. 2. Egy küszöbérték felett lokáls maxmumhelyek megadák a mnta előfordulás helyet a képen. a kereszt-korrelácó az llesztés mnta és a kép

15 5 nput kép llesztés mnta kereszt-korrelácó kép fehér: magas korrelácó fekete: alacsony korrelácó

16 ahol f a feldolgozandó kép h a keresendő mnta és V a képpontok halmaza max h v u f v u C h v u f v u C h v u f v u C V V V Alternatív llesztés krtérumok 6

17 7 Herarchkus llesztés A képpramsok tt s ól használhatóak: A prams struktúrával csökkenthető a művelet komplextás. Először egy durvább mntát llesztünk egy durvább képen kevesebb művelet. Utána már csak azokat az llesztéseket vzsgáluk fnomabb felbontásban amelyek krtéruma meghaladt egy bzonyos küszöböt.

18 8 Felhasznált anyagok Palágy Kálmán: Dgtáls Képfeldolgozás /pub/dgtals_kepfeldolgozas Tovább források az egyes dákon megelölve

6. Modell illesztés, alakzatok

6. Modell illesztés, alakzatok 6. Modell illesztés, alakzatok Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 ROBOSZTUS EGYENES ILLESZTÉS Egyenes illesztés Adott a síkban

Részletesebben

Régió alapú szegmentálás. Digitális képelemzés alapvető algoritmusai. 2. példa: Elfogadható eredmények. 1. példa: Jó eredmények. Csetverikov Dmitrij

Régió alapú szegmentálás. Digitális képelemzés alapvető algoritmusai. 2. példa: Elfogadható eredmények. 1. példa: Jó eredmények. Csetverikov Dmitrij Régó alapú szegmentálás Dgtáls képelemzés alapvető algortmusa Csetverkov Dmtrj Eötvös Lóránd Egyetem, Budapest csetverkov@sztak.hu http://vson.sztak.hu Informatka Kar 1 Küszöbölés példá és elemzése Küszöbölés

Részletesebben

Koordináta geometria III.

Koordináta geometria III. Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r

Részletesebben

7. Regisztráció. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (

7. Regisztráció. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE ( Kató Zoltán: Ipar Képfeldolgozás 7. Regsztrácó Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZE (http://www.nf.u-szeged.hu/~kato/teachng/ Kató Zoltán: Ipar Képfeldolgozás Kép mozak agyobb

Részletesebben

EM algoritmus. A feladat: egy valószínűség eloszlás valmilyen paraméterét(vektorát) akarjuk becsülni részlegesen megfigyelhető.

EM algoritmus. A feladat: egy valószínűség eloszlás valmilyen paraméterét(vektorát) akarjuk becsülni részlegesen megfigyelhető. Szegmentálás Szegmentálás Hsztogram alapján, paraméteres hsztogram modell, EM algortmus Pontokra egyenes, lletve előre defnált alakú görbe llesztés, Hough transzformácó Modell alapú szegmentálás, ASM (AAM)

Részletesebben

Indirekt térfogat-vizualizáció. Fourier térfogat-vizualizáció. Tomográfiás rekonstrukció. Radon-transzformáció. A Fourier vetítő sík tétel

Indirekt térfogat-vizualizáció. Fourier térfogat-vizualizáció. Tomográfiás rekonstrukció. Radon-transzformáció. A Fourier vetítő sík tétel Vzualzácós algortmusok csoportosítása Indrekt térfogat-vzualzácó Csébfalv Balázs Budapest Műszak és Gazdaságtudomány Egyetem Irányítástechnka és Informatka Tanszék Drekt vzualzácó: Közvetlenül a dszkrét

Részletesebben

Képfeldolgozás jól párhuzamosítható

Képfeldolgozás jól párhuzamosítható Képfeldolgozás jól párhuzamosítható B. Wilkinson, M. Allen: Parallel Programming, Pearson Education Prentice Hall, 2nd ed., 2005. könyv 12. fejezete alapján Vázlat A képfeldolgozás olyan alkalmazási terület,

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás. Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Koordinátageometriai gyakorló feladatok I ( vektorok )

Koordinátageometriai gyakorló feladatok I ( vektorok ) Koordinátageometriai gyakorló feladatok I ( vektorok./ Határozd meg az AB szakasznak azt a pontját, amely a szakaszt : ha A ( ; és a B ( ; 8!./ Adott az A ( 3 ; 5 és a ( ; 6 B pont. Számítsd ki az AB vektor

Részletesebben

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer? 01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 09 Rendezések

Algoritmusok és adatszerkezetek gyakorlat 09 Rendezések Algortmusok és adatszerkezetek gyakorlat 09 Rendezések Néhány órával ezelőtt megsmerkedtünk már a Merge Sort rendező algortmussal. A Merge Sort-ról tuduk, hogy a legrosszabb eset dőgénye O(n log n). Tetszőleges

Részletesebben

Ötvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával

Ötvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával AGY 4, Kecskemét Ötvözetek mágneses tulajdonságú fázsanak vzsgálata a hperbolkus modell alkalmazásával Dr. Mészáros István egyetem docens Budapest Műszak és Gazdaságtudomány Egyetem Anyagtudomány és Technológa

Részletesebben

v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M

v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M Mképpen függ egy pontrendszer mpulzusa a vonatkoztatás rendszertől? K-ban legyenek a részecskék sebessége v. K -ben mely K-hoz képest V sebességgel halad v = v V. (1) P = m v = m (v V) = m v m V = = P

Részletesebben

Képfeldolgozás jól párhuzamosítható

Képfeldolgozás jól párhuzamosítható Képeldolgozás jól párhuzamosítható B. Wilkinson, M. Allen: Parallel Programming, Pearson Education Prentice Hall, nd ed., 005. könyv. ejezete alapján Vázlat A képeldolgozás olyan alkalmazási terület, amely

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

Szendrői Balázs: Algebrai síkgörbék, szerkesztette: Ádám Liliána, Ódor Gergő, Lajos Mátyás

Szendrői Balázs: Algebrai síkgörbék, szerkesztette: Ádám Liliána, Ódor Gergő, Lajos Mátyás Algebrai síkgörbék Algebrai síkgörbéknek az olyan görbéket nevezzük, amelyek pontjai egy kétváltozós polinommal jellemezhetők. Ilyenek az egyenesek (ezek az elsőfokú síkgörbék). Másodfokú síkgörbék: pl.

Részletesebben

Koordináta-geometria feladatgyűjtemény

Koordináta-geometria feladatgyűjtemény Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

Vektorok és koordinátageometria

Vektorok és koordinátageometria Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,

Részletesebben

Grafikonok automatikus elemzése

Grafikonok automatikus elemzése Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása

Részletesebben

(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.

(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét. Euklidész tételei megoldások c = c a + c b a = c c a b = c c b m c = c a c b 1. Számítsuk ki az derékszögű ABC háromszög hiányzó oldalainak nagyságát, ha adottak: (a) c a = 1,8; c b =, (b) c = 10; c a

Részletesebben

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)] Bodó Beáta 1 VEKTOROK 1. B Legyen a( ; 2; 4), b( 2; 1; 2), c(; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(0; 10; 0)] (b) c + b 7a [(18; 15; 29)] (c) 2d c + b [ (5; ; ) = 6, 56] (d) 4a + 8b 7c [ ( 49; 44; 5) =

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás 17. 3D Szegmentálás http://cg.t.bme.hu/portal/node/312 https://www.vk.bme.hu/kepzes/targyak/viiiav54 Dr. Várady Tamás, Dr. Salv Péter BME, Vllamosmérnök

Részletesebben

Gyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6

Gyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6 Gyakorló feladatok 1. Ismertesd a matematikai indukció logikai sémáját, magyarázzuk meg a bizonyítás lényegét. Bizonyítsuk be, hogy minden n természetes számra 1 + 3 + + (n 1) = n.. Matematikai indukcióval

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

6. Éldetektálás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

6. Éldetektálás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 6. Éldetektálás Kató Zoltán Képeldolgozás és Számítógépes Graika tanszék SZTE (http://www.in.u-szeged.hu/~kato/teaching/) 2 Élek A képen ott található él, ahol a kép-üggvény hirtelen változik. A kép egy

Részletesebben

20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.

20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. . tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat

Részletesebben

8. Pontmegfeleltetések

8. Pontmegfeleltetések 8. Pontmegfeleltetések Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Példa: panoráma kép készítés 1. Jellemzőpontok detektálása mindkét

Részletesebben

Matematika M1 1. zárthelyi megoldások, 2017 tavasz

Matematika M1 1. zárthelyi megoldások, 2017 tavasz Matematka M. zárthely megoldások, 7 tavasz A csoport Pontozás: + 7 + 7 + 7) + 3 + 6 5 pont.. Lehet-e az ux, y) e 3x cos3y) kétváltozós valós függvény egy regulárs komplex függvény valós része? Ha gen,

Részletesebben

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ

Részletesebben

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a

Részletesebben

Digitális Domborzat Modellek (DTM)

Digitális Domborzat Modellek (DTM) Dgtáls Domborzat Modellek (DTM) DTM fogalma A földfelszín számítógéppel kezelhető topográfa modellje Cél: tetszőleges pontban magasság érték nterpolálása a rendelkezésre álló támpontok alapján Interpolácós

Részletesebben

A kör. A kör egyenlete

A kör. A kör egyenlete A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - y + b) x + y - 6x - 6y + c) x +

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Koordináta-geometria feladatok (emelt szint)

Koordináta-geometria feladatok (emelt szint) Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik

Részletesebben

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1. Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y

Részletesebben

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

Képfeldolgozás haladóknak Lovag Tamás Novák Gábor 2011

Képfeldolgozás haladóknak Lovag Tamás Novák Gábor 2011 Dokumentáció Küszöbölés A küszöbölés során végighaladunk a képen és minden egyes képpont intenzitásáról eldöntjük, hogy teljesül-e rá az a küszöbölési feltétel. A teljes képre vonatkozó küszöbölés esetében

Részletesebben

(a b)(c d)(e f) = (a b)[(c d) (e f)] = = (a b)[e(cdf) f(cde)] = (abe)(cdf) (abf)(cde)

(a b)(c d)(e f) = (a b)[(c d) (e f)] = = (a b)[e(cdf) f(cde)] = (abe)(cdf) (abf)(cde) 2. házi feladat 1.feladat a b)c d)e f) = a b)[c d) e f)] = = a b)[ecdf) fcde)] = abe)cdf) abf)cde) 2.feladat a) Legyen a két adott pontunk helyzete A = 0, 0), B = 1, 0), továbbá legyen a távolságok aránya

Részletesebben

= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1

= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1 Egyenes és sík a térben Elméleti áttekintés Az egyenes paraméteres egyenlete: X = u 1 λ + x 0 Y = u λ + y 0, Z = u λ + z 0 ahol a λ egy valós paraméter Az u = (u 1, u, u ) az egyenes irányvektora és P

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

Képfeldolgozás és párhuzamosíthatóság

Képfeldolgozás és párhuzamosíthatóság Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar Képfeldolgozás és párhuzamosíthatóság A képfeldolgozás olyan alkalmazási terület, amely számos lehetőséget

Részletesebben

Többváltozós analízis gyakorlat, megoldások

Többváltozós analízis gyakorlat, megoldások Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,

Részletesebben

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van

Részletesebben

TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON. Bihari Zita, OMSZ Éghajlati Elemző Osztály OMSZ

TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON. Bihari Zita, OMSZ Éghajlati Elemző Osztály OMSZ TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON Bhar Zta, OMSZ Éghajlat Elemző Osztály OMSZ Áttekntés Térbel vzsgálatok Alkalmazott módszer: MISH Eredmények Tervek A módszer

Részletesebben

3D-s számítógépes geometria

3D-s számítógépes geometria 3D-s számítógépes geometra 11. 3D szegmentálás http://cg.t.bme.hu/portal/node/31 https://www.vk.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Vllamosmérnök és Informatka Kar Irányítástechnka és

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika Fuzzy rendszerek A fuzzy halmaz és a fuzzy logka A hagyományos kétértékű logka, melyet évezredek óta alkalmazunk a tudományban, és amelyet George Boole (1815-1864) fogalmazott meg matematkalag, azon a

Részletesebben

8. Programozási tételek felsoroló típusokra

8. Programozási tételek felsoroló típusokra 8. Programozás tételek felsoroló típusokra Ha egy adatot elem értékek csoportja reprezentál, akkor az adat feldolgozása ezen értékek feldolgozásából áll. Az lyen adat típusának lényeges jellemzője, hogy

Részletesebben

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. 1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel; Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;

Részletesebben

Az egyenes és a sík analitikus geometriája

Az egyenes és a sík analitikus geometriája Az egyenes és a sík analitikus geometriája Az egyenes a kétdimenziós koordinátarendszerben A kétdimenziós koordinátarendszerben az egyenest egy n(a, B) normálvektorával és egy r 0 helyvektorú P(x 0,y 0

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

Egybevágóság szerkesztések

Egybevágóság szerkesztések Egybevágóság szerkesztések 1. Adott az ABCD trapéz, alapjai AB és CD. Szerkesszük meg a vele tengelyesen szimmetrikus trapézt, ha az A csúcs tükörképe a BC oldal középpontja. Nyilvánvaló, hogy a tengelyes

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

Sergyán Szabolcs szeptember 21.

Sergyán Szabolcs szeptember 21. Éldetektálás Sergyán Szabolcs Budapesti Műszaki Főiskola Neumann János Informatikai Kar 2009. szeptember 21. Sergyán Sz. (BMF NIK) Éldetektálás 2009. szeptember 21. 1 / 28 Mit nevezünk élnek? Intuitív

Részletesebben

Analitikus térgeometria

Analitikus térgeometria 5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T

Részletesebben

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20. Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van. Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

1.Tartalomjegyzék 1. 1.Tartalomjegyzék

1.Tartalomjegyzék 1. 1.Tartalomjegyzék 1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:

Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal: Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold

Részletesebben

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira: 005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen

Részletesebben

3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben.

3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. 3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. TÁVOLSÁG Általános definíció: két alakzat távolsága a két alakzat pontjai között húzható legrövidebb szakasz hosszaa távolság

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen 10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. Megjegyzések. A normálhatóság feltétele. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. Megjegyzések. A normálhatóság feltétele. Extrém-érték modellezés Extrém-érték modellezés Zemplén András Val.modellek 2018. febrár 21. Extrém-érték elemzés Klasszks módszerek: év maxmmon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ

Részletesebben

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0. Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,

Részletesebben

DOKTORI ÉRTEKEZÉS ÚJ RÁCSKVANTÁLÓ ALGORITMUSOK ÉS ALKALMAZÁSAIK A VIDEÓ- ÉS A BESZÉDKÓDOLÁSBAN. Készítette: Lois László

DOKTORI ÉRTEKEZÉS ÚJ RÁCSKVANTÁLÓ ALGORITMUSOK ÉS ALKALMAZÁSAIK A VIDEÓ- ÉS A BESZÉDKÓDOLÁSBAN. Készítette: Lois László DOKTORI ÉRTEKEZÉS ÚJ RÁCSKVANTÁLÓ ALGORITMUSOK ÉS ALKALMAZÁSAIK A VIDEÓ- ÉS A BESZÉDKÓDOLÁSBAN Készítette: Los László Témavezető: Dr. Pálnszk Antal Budapest Műszak és Gazdaságtudomány Egyetem Híradástechnka

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

OAF Gregorics Tibor: Minta dokumentáció a 4. házi feladathoz 1. Feladat. Megoldás

OAF Gregorics Tibor: Minta dokumentáció a 4. házi feladathoz 1. Feladat. Megoldás OAF Gregorcs Tbor: Mnta dokumentácó a 4. ház feladathoz 1. Feladat Adott egy szöveges fájlbel szöveg, ahol a szavakat szóközök, tabulátor-jelek, sorvége-jelek lletve a fájlvége-jel határolja. Melyk a leghosszabb

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

Lineáris regresszió. Statisztika I., 4. alkalom

Lineáris regresszió. Statisztika I., 4. alkalom Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés Etrém-érték modellezés Zemplén András Alkalmazott modl 016. febrár -9. Etrém-érték elemzés Klasszks módszerek: év mammon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ

Részletesebben

,...,q 3N és 3N impulzuskoordinátával: p 1,

,...,q 3N és 3N impulzuskoordinátával: p 1, Louvlle tétele Egy tetszőleges klasszkus mechanka rendszer állapotát mnden t dőpllanatban megadja a kanónkus koordnáták összessége. Legyen a rendszerünk N anyag pontot tartalmazó. Ilyen esetben a rendszer

Részletesebben

Véletlenszám generátorok. 6. előadás

Véletlenszám generátorok. 6. előadás Véletlenszám generátorok 6. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes

Részletesebben

XX. Nemzetközi Magyar Matematika Verseny

XX. Nemzetközi Magyar Matematika Verseny XX. Nemzetközi Magyar Matematika Verseny Bonyhád, 011. március 11 15. 10. osztály 1. feladat: Legyen egy háromszög három oldalának a hossza a, b és c. Bizonyítsuk be, hogy 3 (a+b+c) ab+bc+ca 4 Mikor állhat

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x

Részletesebben

Bevezetés az elméleti zikába

Bevezetés az elméleti zikába Bevezetés az elméleti zikába egyetemi jegyzet Kúpszeletek Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 2011 TARTALOMJEGYZÉK 6 TARTALOMJEGYZÉK Azokat a görbéket, amelyeknek egyenlete

Részletesebben

Komplex regionális elemzés és fejlesztés tanév DE Népegészségügyi Iskola Egészségpolitika tervezés és finanszírozás MSc

Komplex regionális elemzés és fejlesztés tanév DE Népegészségügyi Iskola Egészségpolitika tervezés és finanszírozás MSc Komplex regonáls elemzés és fejlesztés 2016-2017. tanév DE Népegészségügy Iskola Egészségpoltka tervezés és fnanszírozás MSc 2. előadás Terület elemzés módszerek az egészségföldrajzban Terület ellátás

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

Nevezetes függvények

Nevezetes függvények Nevezetes függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt

Részletesebben

Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz

Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz 1. feladattípus a megadott adatok alapján lineáris keresleti, vagy kínálati függvény meghatározása 1.1. feladat

Részletesebben