EM algoritmus. A feladat: egy valószínűség eloszlás valmilyen paraméterét(vektorát) akarjuk becsülni részlegesen megfigyelhető.
|
|
- Benedek Fazekas
- 6 évvel ezelőtt
- Látták:
Átírás
1 Szegmentálás
2 Szegmentálás Hsztogram alapján, paraméteres hsztogram modell, EM algortmus Pontokra egyenes, lletve előre defnált alakú görbe llesztés, Hough transzformácó Modell alapú szegmentálás, ASM (AAM) és az alapját képező PCA
3
4
5 EM algortmus A feladat: egy valószínűség eloszlás valmlyen paraméterét(vektorát) akarjuk becsüln részlegesen megfgyelhető. adatok alapján. A megfgylések: X={x 1, x 2,, x L } smert Nem smert Z={z 1, z 2,, z L } A teljes adathalmaz: Y X Z Knduló hpozézs az smeretlen paraméterről h Ezt feltételezve tudunk becslést adn az smeretlen paraméterre
6 EM algortmus ML becslés lkelhood fv alapján Itt: P Y h a teljes megfgyelésnek megfelelő lkelhood fv-t kellene meghatározn. Helyette képezzük P Szélsőérték-keresés M lépés. Iteratív módon alkalmazzuk. x h PY h E P Y h Y szernt várható értékét E lépés.
7 Feladat a Gauss eloszlások paraméterenek becslése Itt csak 1 és 2 becslése x megfgyelhető z j nem megfgyelhető De: z j =1, ha x -t a j-edk Gauss generálta Knduló értékek Két egymást követő lépés: - Várható érték képzés - Maxmum keresés
8 A lkelhood függvény egy mntára ( l ) ( l (, ) μ) ahol μ P Y h p x z L mntára, ha azok függetlenek A log lkelhood fv: Helyette k ( l) ( l) ( l) P Y h p ( x, z μ) p ( x ) jelenleg k 2 l11 () l P Y h p( X, Z μ) p( x ) l11 L k () l () l z log P Y h log p( X, Z μ) log p( x ) l11 L k z L () l () l p x k log ( ) L k () l log log ( () l ) E P Y h E z p x l11 z () l z () l T
9 Várhatóérték-képzés ( l) ( l) ( l) ( l) E z 1 p( z 1) 0 p( z 0) p( z 1) () l ( 1 l p z x x ) l l p( x x ) P( ) p( x x ) E z l p( x x j) P( j) j () l Gauss eloszlás mellett és feltételezve, hogy P(1)=P(2) E z () l 1 () l exp x () l exp x 2 j j 2 2 2
10 Behelyettesítve a log lkelhood fv-be és elvégezve a szélsőérték-keresést ( l) ( l) ( l) ( l) E z1 x E z2 x 1 l ; l ( l) 2 ( l) E z 1 E z2 l l Kölcsönös függés Iteratív eljárásra van szükség E z () l 1 () l exp x () l exp x 2 j j 2 2 2
11
12 Transzformácó a Hough térbe
13 Egy példa 2 egyenessel
14 Egy példa
15 Egyéb, előre defnált alakzat detektálása
16 Létezk általánosabb alak detektáló verzó s
17 PCA x' 2 x 2 x' 1 y Tx T φ, φ,..., φ 1 2 N T x 1 T φ φ j j x 2 N 1 y φ xˆ M 1 y M N T T 1 T T I, vagys T T N M 2 N E E y y E y 1 1 M 1 2 x xˆ φ φ T y φ x 2
18 PCA 2 N N N T T T T T E φ x x φ φ E xx φ φ Rxxφ M 1 M 1 M 1 Lagrange multplkátoros feltételes szélsőérték-keresés 2 N T T T φ φ φ C φ φ φ ˆ 1 xx 1 N M 1 M 1 N ˆ 2 2 xx φ C φ φ 0 Cxxφ φ 2 M1 N N N φ T T R xx φ φ φ M 1 M 1 M 1
19 ASM/AAM Actve Shape Models objektumok alakjának statsztkus modellje, melyeket teratív módon deformálunk, hogy egy objektum új képéhez gazodjanak Az alak a statsztkus alak modell által megszabott feltételekhez lleszkedk, cmkézett, annotált tanítókészlettel ndul. A képekhez pontokat (landmarks) rendelünk és ezeket összekötő egyeneseket. A pontok teratív módosítását végezzük. Fgyelembevesszük az egyenesek mentén határgörbére merőlegesen az egyes pontoknál a gradensek statsztkus változását. Feltesszük, hogy smert egy kezdet becslés az alak és elhelyezkedés szempontjából az alakparamétereknél Frssítjük ezeket a paramétereket Mnden modellpontnál keressük a normáls rányokat, és a normáls rány mentén keressük a legjobban lleszkedő megjelenést Frssítjük a pose és shape paramétereket, hogy a legjobban lleszkedjen a modell a megtalált pontokra Folytatjuk az eljárást a konvergenca eléréség Az eljárás javítható, ha multresoluton megoldást választunk, amkor a keresést egy durva felbontású képen ndítjuk, majd fokozatosan fnomítunk (kép prams). Ez gyorsabb, pontosabb és robusztusabb megoldást ad.
20 ASM/AAM Referencapontokat (landmarks) kell meghatározn. Mnden alakot egy megfelelően (manuálsan) elhelyezett pontkészlettel jellemzünk. Ezek felcmkézett pontok, és egymásnak megfeleltethetők. A landmarkok célszerűen valamlyen jelentéssel kell rendelkezzenek: pl. sarokpont, egy arcon a szemközép, stb. (alkalmazásfüggő pontok) lehetnek alkalmazásfüggetlen pontok s: maxmumpont, egy görbület extrémpontja, stb A landmarkok össze vannak kötve. Az összeköttetés s fontos, (sorbarendezés, egyenesekkel összekötve A referencapontok átlagát és az átlagtól való eltérés varancáját meghatározzuk
21 ASM/AAM Egy példa Ellenállásokat kell körberajzoln egy áramkör alkatrészrajzán Néhány példa a körvonalakra Referencapontok és azok összeköttetése
22 Prokrusztész ágy Procrustes, also called Polypemon, Damastes, or Procoptas, n Greek legend, a robber dwellng somewhere n Attca n some versons, n the neghbourhood of Eleuss. Hs father was sad to be Posedon. Procrustes had an ron bed (or, accordng to some accounts, two beds) on whch he compelled hs vctms to le. Here, f a vctm was shorter than the bed, he stretched hm by hammerng or rackng the body to ft. Alternatvely, f the vctm was longer than the bed, he cut off the legs to make the body ft the bed s length. In ether event the vctm ded. Ultmately Procrustes was slan by hs own method by the young Attc hero Theseus, who as a young man slayed robbers and monsters whom he encountered whle travelng from Trozen to Athens. The bed of Procrustes, or Procrustean bed, has become proverbal for arbtrarly and perhaps ruthlessly forcng someone or somethng to ft nto an unnatural scheme or pattern.
23 ASM/AAM Modellépítés jellegzetes helyek referencapontokhoz A képen jelentéssel rendelkező alkalmazásspecfkus - pontok (pl. szem, orr, stb.) Alkalmazásfüggetlen jellegzetes pontok (Sarokpontok, nagy görbületű tartományok pontja, szélsőértékek, stb.)
24 ASM/AAM A landmarkok reprezentálása: 2n dmenzós vektor, ahol n a landmarkok száma egy képen Több képből ndulunk k, mnden képhez ugyanazokat a landmarkokat jelöljük meg Az alakok ugyanabban a koordnátarendszerben kell megjelenjenek: rány, pozícó, méret egységesítés, úgy hogy az átlagostól való négyzetes eltérés mnmumot adjon (Prokrusztész analízs) Van s képünk egy 2n dmenzós térben reprezentálva: s db 2n dmenzós adat (vektor) egy pontfelhő: A pontok hasonló pozícóban lesznek. A megengedhető alaktartományon belül hasonló, új alakokat s lehet generáln. A sokdmenzós térben a pontok a képek különbözősége matt egy közel ellpszodon belül helyezkednek el. Az ellpszod középpontját és tengelyet határozzuk meg. Alkalmazzuk a pontfelhőre a PCA-t közelítő repreentácó az eredet térben A A transzformácós mátrx t sajátvektorból A közelítő reprezentácó a transzformált térben (a sajátvektorok által kfeszített térben) b a leíró paramétervektor
25 ASM/AAM PCA 1. átlagképzés 2. számítsuk k az adatok kovaranca mátrxát 3. Határozzuk meg S sajátvektorat és sajátértéket =1,..., 2n 4. Rendezzük csökkenő nagyság szernt sorba 5. Számítsuk k a jel átlagos négyzetes értékét 6. Vegyük az első t legnagyobb sajátértéket ahol adja meg, hogy a teljes varanca hány százalékát akarjuk megtartan tpkus érték %
26 ASM/AAM A PCA célja olyan parametrkus leírása a képnek, ahol a paraméterek száma mnél ksebb, mközben a kép a lehető legkevésbé torzul. A paraméterek megváltoztatásával az eredet képkészlethez hasonló tovább képek generálhatók. A parametrkus leírást gazítan kell egy konkrét képhez. Ehhez költségfüggvény kell A pozícó, forgatás, nyújtás (Prokrusztész) mellett, a paraméterek írnak le egy képet, úgy, hogy az eltérés a lehető legksebb legyen. Az eltolás, skálázás, forgatás: Ahol X a modell pontokat, X a legközelebb él pontjat jelöl Tetszőleges optmalzáló eljárás használható. Multdmenzós optmalzálás (Powells módszer, genetkus algortmus,...), de nncs semm előzetes nformácónk, hogy hol vannak az objektum éle. A modell által generált kontúr és a képkontúrok összehasonlítása Az algortmus 1. vzsgáljuk meg a képet az X pontok mndegykének a környezetében, és keressünk a közelben legjobban lleszkedő X -t 2. Frssítsük a paramétereket úgy, hogy az új pontok a legjobban lleszkedjenek 3. A b paraméterekre alkalmazzuk a szóródás korlátokat
27 ASM/AAM Hogyan módosítsuk a pontokat? Ha határozott él van a képen: Jobb megoldás: A proflt feltérképezzük és építünk tt s egy statsztukus modellt Egy adott ponthoz lleszkedve a pont környezetében 2k+1 pontot mntavételezünk: ahol =1,...,s (nzetntásértékek vagy derváltak) Normlzálunk Ezt véggcsnáljuk az összes pontra és az összes képre Feltételezzük, hogy Gauss eloszlások Egy új mnta lleszkedésének mértéke: mnmuma maxmálja hogy a modellből származk A pontok mozgatása után újra a paraméteres modell llesztés jön. Multrezolúcós megoldás
28 ASM/AAM Multrezolúcó Durvábbtól fnomabb felé Negyed felbontású kép Fél felbontású kép Eredet kép A profl mentén a mntavétel értékek
29 ASM/AAM Egy jó megoldás Egy rossz megoldás
30 Alkalmazás egy MR képen ASM/AAM
31 ASM/AAM Átlag, átlagtól való eltérés (nulla középértékre hozás) PCA t alkalmazunk, az átlagtól való eltérésekre Kndulás 5 terácó után a konvergenca állapotában Kovaranca mátrx, sajátértékek, sajátvektorok. A sajátvektoroknak van az alakra vonatkozó jelentése. Pl. az első a drótok pozícója, a másodk a fő alak alakja, a harmadk a görbület, stb.
32 ASM/AAM
33 ASM/AAM AAM (Actve appearance model) Kndulás: mnt az ASM-nél Lényeges különbség: AAM mnden pxelt felhasznál és ezeket alak és megjelenés szempontból s néz Texturát s fgyelembe vesz A texturára s készít egy statsztka modellt: Átlagtextura, sajátvektorok textura paraméterek a sajátvektorok terében Az alakot és a texturát együttesen kezel, ezt s PCA-val
34 Fourer sor Alakmodell Fourer sor alakmodell x = x 0 + n=1 a n sn(n + n ) y = y 0 + b n sn(n + n n=1 ) Az alakot az a, b, n és n paraméterekkel írjuk le Változtatva a paraméterek értékét, és a szummában a tagok számát, különböző alakzatok generálhatók A paraméterek változtatása mellett egy mnmalzálás feladat s megfogalmazható, így a paraméteres görbék a képhez gazíthatók. Ilyen mnmalzálandó függvény egy energafüggvény Sznte tetszőleges alak leírható, anélkül, hogy bárm a pror nformácónk volna az alakról. A megközelítés gyenge pontja: A Fourer reprezentácó nem jó mnden alakhoz: egy négyszögletes sarok véges sok taggal csak közelítőleg adható meg. Adott típusú képekhez lehet a paraméterek eloszlásáról valam statsztkánk. Van egy tanító készletünk, adott típusú képekből. Ezeket a paraméteres Fourer modellel leírjuk, mndegykhez kellő pontossággal llesztjük a modelt, majd a paraméterek statsztkáját felvesszük. Valószínűség megközelítés s alkalmazható: maxmálunk egy olyan valószínűség mértéket, hogy az adott modell mellett a konkrét kép maxmáls valószínűségű legyen
Deformálható modellek. Orvosi képdiagnosztika őszi félév
Deformálható modellek Orvosi képdiagnosztika 2017. őszi félév Deformálható modellek A deformálható modellek görbék vagy felületek, melyek különböző hatások eredőjének eredményeképp alakulnak ki. Sokféle
Képszegmentálás. Orvosi képdiagnosztika 10. ea
Képszegmentálás Orvosi képdiagnosztika 10. ea Képszegmentálás Intenzitás alapján, küszöbözés Klaszterezés, osztályozás Régió növesztés, régió hasítás Watershed Textura alapján Kontúr alapján, élkeresés,
10. Alakzatok és minták detektálása
0. Alakzatok és mnták detektálása Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZTE http://www.nf.u-szeged.hu/~kato/teachng/ 2 Hough transzformácó Éldetektálás során csak élpontok halmazát
Méréselmélet: 5. előadás,
5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás 17. 3D Szegmentálás http://cg.t.bme.hu/portal/node/312 https://www.vk.bme.hu/kepzes/targyak/viiiav54 Dr. Várady Tamás, Dr. Salv Péter BME, Vllamosmérnök
4 2 lapultsági együttható =
Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.
3D-s számítógépes geometria
3D-s számítógépes geometra 11. 3D szegmentálás http://cg.t.bme.hu/portal/node/31 https://www.vk.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Vllamosmérnök és Informatka Kar Irányítástechnka és
Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.
Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan
Lineáris regresszió. Statisztika I., 4. alkalom
Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
Adatelemzés és adatbányászat MSc
Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás
Régió alapú szegmentálás. Digitális képelemzés alapvető algoritmusai. 2. példa: Elfogadható eredmények. 1. példa: Jó eredmények. Csetverikov Dmitrij
Régó alapú szegmentálás Dgtáls képelemzés alapvető algortmusa Csetverkov Dmtrj Eötvös Lóránd Egyetem, Budapest csetverkov@sztak.hu http://vson.sztak.hu Informatka Kar 1 Küszöbölés példá és elemzése Küszöbölés
Indirekt térfogat-vizualizáció. Fourier térfogat-vizualizáció. Tomográfiás rekonstrukció. Radon-transzformáció. A Fourier vetítő sík tétel
Vzualzácós algortmusok csoportosítása Indrekt térfogat-vzualzácó Csébfalv Balázs Budapest Műszak és Gazdaságtudomány Egyetem Irányítástechnka és Informatka Tanszék Drekt vzualzácó: Közvetlenül a dszkrét
Minősítéses mérőrendszerek képességvizsgálata
Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek
Regresszió. Fő cél: jóslás Történhet:
Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján
Support Vector Machines
Support Vector Machnes Ormánd Róbert MA-SZE Mest. Int. Kutatócsoport 2009. február 17. Előadás vázlata Rövd bevezetés a gép tanulásba Bevezetés az SVM tanuló módszerbe Alapötlet Nem szeparálható eset Kernel
A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege
A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése
Táblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist.
1. Az X valószínőség változó 1 várható értékő és 9 szórásnégyzető. Y tıle független várható értékkel és 1 szórásnégyzettel. a) Menny X + Y várható értéke? 13 1 b) Menny X -Y szórásnégyzete? 13 1 összesen
Variancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat?
Varanca-analízs (NOV Mért nem csnálunk kétmntás t-próbákat? B Van különbség a csoportok között? Nncs, az eltérés csak véletlen! Ez a nullhpotézs. és B nncs különbség Legyen, B és C 3 csoport! B és C nncs
20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!
SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,
Az entrópia statisztikus értelmezése
Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás b Háromszöghálók - algortmusok http://cgtbmehu/portal/node/3 https://wwwvkbmehu/kepzes/targyak/viiiav54 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérnök
Intelligens elosztott rendszerek
Intellgens elosztott rendszerek VIMIAC2 Adatelőkészítés: hhetőségvzsgálat normálás stb. Patak Béla BME I.E. 414, 463-26-79 atak@mt.bme.hu, htt://www.mt.bme.hu/general/staff/atak Valamlyen dőben állandó,
Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?
01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó
s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés
A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,
7. Regisztráció. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (
Kató Zoltán: Ipar Képfeldolgozás 7. Regsztrácó Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZE (http://www.nf.u-szeged.hu/~kato/teachng/ Kató Zoltán: Ipar Képfeldolgozás Kép mozak agyobb
Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.
8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral
VARIANCIAANALÍZIS (szóráselemzés, ANOVA)
VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.
Extrém-érték elemzés. Extrém-érték eloszlások. Megjegyzések. A normálhatóság feltétele. Extrém-érték modellezés
Extrém-érték modellezés Zemplén András Val.modellek 2018. febrár 21. Extrém-érték elemzés Klasszks módszerek: év maxmmon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ
Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola
Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
Algoritmusok és adatszerkezetek gyakorlat 09 Rendezések
Algortmusok és adatszerkezetek gyakorlat 09 Rendezések Néhány órával ezelőtt megsmerkedtünk már a Merge Sort rendező algortmussal. A Merge Sort-ról tuduk, hogy a legrosszabb eset dőgénye O(n log n). Tetszőleges
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
Principal Component Analysis
Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a bometrába Dr. Dnya Elek egyetem tanár PhD kurzus. KOKI, 205.0.08. ADATREDUKCIÓ I. Középértékek Adatredukcó. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények:
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
Röntgen diagnosztikai eljárások:
Röntgen dagnosztka eljárások: Vázlatosan smertesse egy röntgen alapú képalkotó berendezés felépítését! ogyan keletkezk a röntgen foton, m határozza meg az energáját? Mt nevezünk kollmátornak? Mt mond k
d(f(x), f(y)) q d(x, y), ahol 0 q < 1.
Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés
v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M
Mképpen függ egy pontrendszer mpulzusa a vonatkoztatás rendszertől? K-ban legyenek a részecskék sebessége v. K -ben mely K-hoz képest V sebességgel halad v = v V. (1) P = m v = m (v V) = m v m V = = P
6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján
Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei
NKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II.
NKFP6-BKOMSZ05 Célzott mérőhálózat létrehozása a globáls klímaváltozás magyarország hatásanak nagypontosságú nyomon követésére II. Munkaszakasz 2007.01.01. - 2008.01.02. Konzorcumvezető: Országos Meteorológa
Optikai elmozdulás érzékelő illesztése STMF4 mikrovezérlőhöz és robot helyzetérzékelése. Szakdolgozat
Mskolc Egyetem Gépészmérnök és Informatka Kar Automatzálás és Infokommunkácós Intézet Tanszék Optka elmozdulás érzékelő llesztése STMF4 mkrovezérlőhöz és robot helyzetérzékelése Szakdolgozat Tervezésvezető:
Nemlineáris függvények illesztésének néhány kérdése
Mûhel Tóth Zoltán docens, Károl Róbert Főskola E-mal: zol@karolrobert.hu Nemlneárs függvének llesztésének néhán kérdése A nemlneárs regresszós és trendfüggvének llesztésekor számos esetben alkalmazzuk
A sokaság/minta eloszlásának jellemzése
3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,
ADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték
METROLÓGIA ÉS HIBASZÁMíTÁS
METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.
Periodikus figyelésű készletezési modell megoldása általános feltételek mellett
Tanulmánytár Ellátás/elosztás logsztka BME OMIKK LOGISZTIKA 9. k. 4. sz. 2004. júlus augusztus. p. 47 52. Tanulmánytár Ellátás/elosztás logsztka Perodkus fgyelésű készletezés modell megoldása általános
Töréskép optimalizálás Elmélet, megvalósítás, alkalmazás
Elmélet, megvalósítás, alkalmazás Készítették: Borbély Dánel Szerkezet-építőmérnök Msc hallgató Borbély Gábor Alkalmazott matematka Msc hallgató Koppány Zoltán Földmérő- és Térnformatka mérnök Msc hallgató
A neurális hálózatok alapjai
A neuráls hálózatok alapja (A Neuráls hálózatok és mszak alkalmazásak cím könyv (ld. források) alapján) 1. Bológa alapok A bológa alapok megsmerése azért fontos, mert nagyon sok egyed neuráls struktúra,
MATEMATIKA HETI 5 ÓRA
EURÓPAI ÉRETTSÉGI 2008 MATEMATIKA HETI 5 ÓRA IDŐPONT : 2008. június 5 (reggel) A VIZSGA IDŐTARTAMA: 4 óra (240 perc) MEGENGEDETT ESZKÖZÖK: Európai képletgyűjtemény Nem programozható, nem grafikus számológép
Panorámakép készítése
Panorámakép készítése Képregisztráció, 2009. Hantos Norbert Blaskovics Viktor Összefoglalás Panoráma (image stitching, planar mosaicing): átfedő képek összeillesztése Lépések: Előfeldolgozás (pl. intenzitáskorrekciók)
The original laser distance meter. The original laser distance meter
Leca Leca DISTO DISTO TM TM D510 X310 The orgnal laser dstance meter The orgnal laser dstance meter Tartalomjegyzék A műszer beállítása - - - - - - - - - - - - - - - - - - - - - - - - - 2 Bevezetés - -
Max-stabilis folyamatok. 6. előadás, március 29. Smith (1990) konstrukciója. Példák
Max-stabls folyamatok 6. előadás, 2017. márcus 29. Zemplén András Valószínűségelmélet és Statsztka Tanszék Természettudomány Kar Eötvös Loránd Tudományegyetem Árngadozások előadás Legyen T R d egy Borel-halmaz.
Az előadás kvaternió alapú dárumtranszformációs analitikus megoldást ismertet Bemutatja
A dátumtranszformácó a geodézában alkalmazott számítás módszer számos, különböző algortmuson alauló megoldása smert A megoldások többsége ks szögelfordulásokat feltételez lnearzálás szükséges a transzformácós
Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika
Fuzzy rendszerek A fuzzy halmaz és a fuzzy logka A hagyományos kétértékű logka, melyet évezredek óta alkalmazunk a tudományban, és amelyet George Boole (1815-1864) fogalmazott meg matematkalag, azon a
Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom.
Lépések 1. tanító és teszt halmaz összeállítása / megszerzése 2. jellemzők kinyerése 3. tanító eljárás választása Sok vagy kevés adat áll-e rendelkezésünkre? Mennyi tanítási idő/memória áll rendelkezésre?
IDA ELŐADÁS I. Bolgár Bence október 17.
IDA ELŐADÁS I. Bolgár Bence 2014. október 17. I. Generatív és dszkrmnatív modellek Korábban megsmerkedtünk a felügyelt tanulással (supervsed learnng). Legyen adott a D = {, y } P =1 tanító halmaz, ahol
Leica DISTOTMD510. X310 The original laser distance meter. The original laser distance meter
TM Leca DISTO Leca DISTOTMD510 X10 The orgnal laser dstance meter The orgnal laser dstance meter Tartalomjegyzék A műszer beállítása - - - - - - - - - - - - - - - - - - - - - - - - - 2 Bevezetés - - -
ADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz x mn középérték
ADATREDUKCIÓ I. Középértékek
ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték
Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István
Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága
1.Tartalomjegyzék 1. 1.Tartalomjegyzék
1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Térbeli transzformációk, a tér leképezése síkra
Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle
Függvények vizsgálata
Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =
ACM Snake. Orvosi képdiagnosztika 11. előadás első fele
ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x
Statisztika feladatok
Statsztka ok Informatka Tudományok Doktor Iskola Bzonyítandó, hogy: azaz 1 Tekntsük az alább statsztkákat: Igazoljuk, hogy torzítatlan statsztkák! Melyk a leghatásosabb közöttük? (Ez az együttes eloszlásfüggvényük.)
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 2014/15. I. félév, A. csoport. x 2. c = 3 5, s = 4
Numerikus módszerek II. zárthelyi dolgozat, megoldások, 204/5. I. félév, A. csoport. Feladat. (6p) Alkalmas módon választva egy Givens-forgatást, határozzuk meg az A mátrix QR-felbontását! Oldjuk meg ennek
4 Approximációs algoritmusok szorzatalakú hálózatok esetén
4 Approxmácós algortmusok szorzatalakú hálózatok esetén Az MVA-n alapuló approxmácó (Bard-Schwetzer-módszer): Beérkezés tétel: T () = 1 µ [1+ ( 1) ], =1,...,N Iterácó a következő approxmácó használatával:
Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés
Extrém-érték modellezés Zemplén András Alkalmazott modul 03. február. Extrém-érték elemzés Klasszkus módszerek: év maxmumon alapulnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízbıl
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Mi a szcintilláció lényege? Milyen esetekben van rá szükség? Nevezzen meg egy konkrét ilyen esetet!
Röntgen dagnosztka eljárások: Vázlatosan smertesse egy röntgen alapú képalkotó berendezés felépítését! ogyan keletkezk a röntgen foton, m határozza meg az energáját? Mt nevezünk kollmátornak? Mt mond k
ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés
Etrém-érték modellezés Zemplén András Alkalmazott modl 016. febrár -9. Etrém-érték elemzés Klasszks módszerek: év mammon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ
Az elektromos kölcsönhatás
TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy
2 Wigner Fizikai Kutatóintézet augusztus / 17
Táguló sqgp tűzgömb többkomponensű kéma kfagyása Kasza Gábor 1 és Csörgő Tamás 2,3 1 Eötvös Loránd Tudományegyetem 2 Wgner Fzka Kutatóntézet 3 Károly Róbert Főskola 2015. augusztus 17. Gyöngyös - KRF 1
? közgazdasági statisztika
Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem
Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.
Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely
A DÖNTÉSELMÉLET ALAPJAI
J 2 A DÖNTÉSELMÉLET ALAJAI óformán életünk mnden percében döntéseket kell hoznunk, és tesszük ezt mnden elmélet megalapozottság nélkül. Sajnos a mndennap életben felmerülő egyed döntésekre még nem skerült
Adatsorok jellegadó értékei
Adatsorok jellegadó értéke Varga Ágnes egyetem tanársegéd varga.ag14@gmal.com Terület és térnformatka kvanttatív elemzés módszerek BCE Geo Intézet Terület elemzés forgatókönyve vacsora hasonlat Terület
Exponenciális, logaritmikus függvények
Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)
Békefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció
Közlekedés létesítmények élettartamra vonatkozó hatékonyság vzsgálat módszerenek fejlesztése PhD Dsszertácó Budapest, 2006 Alulírott kjelentem, hogy ezt a doktor értekezést magam készítettem, és abban
Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.
Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =
Példák ekvivalencia relációra (TÉTELként kell tudni ezeket zárthelyin, vizsgán):
F NIK INÁRIS RLÁIÓK INÁRIS RLÁIÓK (és hasonló mátrxok s tt!) Defnícó: z R bnárs relácó, ha R {( a, b) a, b } nárs relácók lehetséges tuladonsága:. Reflexív ha ( x,.(a). Szmmetrkus ha ( x, y) ( y,.(b).
7. Régió alapú szegmentálás
Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba
Általános esetben az atomok (vagy molekulák) nem függetlenek, közöttük erős
I. BEVEZETÉS A STATISZTIKUS MÓDSZEREKBE Ebben a fejezetben konkrét példán vzsgáljuk meg, hogy mlyen jellegzetes tulajdonsága vannak a makroszkopkus testeknek statsztkus fzka szempontból. A megoldás során
BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK
BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK MÉRNÖKI MATAMATIKA Segédlet a Bessel-függvények témaköréhez a Közlekedésmérnök
Mesterséges Intelligencia MI
Mesterséges Intellgenca MI Egyszerű döntés. Tanuljuk meg! Dobroweck Tadeusz Eredcs Péter, és mások BME I.E. 437, 463-28-99 dobroweck@mt.bme.hu, http://www.mt.bme.hu/general/staff/tade Neuron doktrna: S.
Véletlenszám generátorok. 6. előadás
Véletlenszám generátorok 6. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes
1. feladatsor Komplex számok
. feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea
Éldetektálás, szegmentálás (folytatás) Orvosi képdiagnosztika 11_2 ea Geometrikus deformálható modellek Görbe evolúció Level set módszer A görbe evolúció parametrizálástól független mindössze geometriai
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
Saj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla
Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
Hely és elmozdulás - meghatározás távolságméréssel
Hely és elmozdulás - meghatározás távolságméréssel Bevezetés A repülő szerkezetek repülőgépek, rakéták, stb. helyének ( koordnátának ) meghatározása nem új feladat. Ezt a szakrodalom részletesen taglalja
Párhuzamos algoritmusok
Párhuzamos algortmusok. Hatékonyság mértékek A árhuzamos algortmusok esetében fontos jellemző az m ( n, P, ) munka, amt a futás dő és a rocesszorszám szorzatával defnálunk. A P árhuzamos algortmus az A