Max-stabilis folyamatok. 6. előadás, március 29. Smith (1990) konstrukciója. Példák

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Max-stabilis folyamatok. 6. előadás, március 29. Smith (1990) konstrukciója. Példák"

Átírás

1 Max-stabls folyamatok 6. előadás, márcus 29. Zemplén András Valószínűségelmélet és Statsztka Tanszék Természettudomány Kar Eötvös Loránd Tudományegyetem Árngadozások előadás Legyen T R d egy Borel-halmaz. {Y t : t T } pontosan akkor max-stabls folyamat, ha előáll folytonos trajektórájú folyamatok koordnátánként (standardzált) extrémumaként. Ezekre defnícó szernt teljesül a max-stabltás Példa: (r, s ) Posson pontfolyamat (0, )xs halmazon, ntenztásmértéke dr r 2 dh(ω). S tetszőleges Borel halmaz, H mérték S-en. Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 1 / 28 Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 2 / 28 Smth (1990) konstrukcója Példák Legyen f olyan, hogy S f (s, t)dh(s) = 1 mnden t-re, és Y t = max{r f (s, t)}, t T r az -edk vhar erőssége, s pedg a helye. { { } } f (s, t) P(Y t < y t t T ) = exp max H(ds). S t y t Ebből: Y peremeloszlása standard Frechet Y max-stabls T = 1: egydmenzós max-stabls eloszlás T = {1, 2}, S = [0, 1], H: Lebesgue mérték, { (1 α)s f (s, t) = α, hat = 1 (1 α)(1 s) α, hat = 2 éppen a 2 dmenzós logsztkus modell Gauss folyamat: f (s, t) t-ben az s várható értékű, Σ kovaranca-mátrxú normáls eloszlás sűrűségfüggvénye Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 3 / 28 Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 4 / 28

2 Példa: szmulált Smth-féle extremáls folyamatok Modell-llesztés y y 1 dmenzós peremek becslése 2 dmenzós összefüggőség becslése (extremáls összefüggőség függvény): ϑ(z 1 z 2 ), ahol P(Y (z 1 ) < y, Y (z 2 ) < y) = P(Y (z 1 ) < y) ϑ(z 1 z 2 ). Paraméteres (pl. Gauss) modellre közelítő (páronként) maxmum lkelhood számolható. Később még vsszatérünk rá x x Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 5 / 28 Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 6 / 28 Bootstrap (Efron, 1979) Bootstrap módszer - bevezetés Újramntavételezés eljárás, a becslésenk szórásának vzsgálatára, modell-lleszkedés ellenőrzésére Számtalan változatát dolgozták k azóta, az egyk leggyorsabban fejlődő részterülete a statsztkának Előnye: rugalmas a mnta (a statsztka) eloszlására vonatkozó feltételek változására X = {X 1,..., X m} vsszatevéses mntavétellel az eredet mntából általában m = n Nehézségek a gyakorlatban: 1 x = ˆP mnden modellnél más és más 2 ˆP x a sok smétlés megterhel a számítógépet Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 7 / 28 Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 8 / 28

3 Az..d. bootstrap Megjegyzések Legyenek X 1, X 2,.....d. valószínűség változók, F (smeretlen) közös eloszlással T n = t n (X n ; F) mnket érdeklő val.változó, az eloszlása: G n Cél: G n eloszlásának becslése Bootstrap módszer: Adott X -re, vsszatevéssel m elemű mntát veszünk: Xm = {X1,..., X m} az X -ok közös eloszlása: F n = n 1 T m,n = t m (X m; F n ) Ismétlések Ĝm,n n δ X =1 Az ötlet a módszer mögött nagyon egyszerű: jó lenne, ha sok mntánk lenne a populácóból, de csak egy van. Ezért vegyünk mntát a becsléséből: ez a tapasztalat eloszlás. Az smétlések száma legyen elég nagy ahhoz, hogy a mntavétel hba elhanyagolható legyen (legalább 500, de s elképzelhető) A naív "középső 95%" konfdenca ntervallum túl szűk kcs mnták esetén (például a várható érték becslésénél: a tapasztalat eloszlás szórásnégyzete (n 1)/n-szerese a ténylegesnek, ez öröklődk a bootstrap mntákra Nagyon könnyű a programozása (vannak R-es csomagok, de általában nncs s szükség a használatukra) Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 9 / 28 Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 10 / 28 Korrekcó a konfdenca ntervallumoknál A BC-formula motvácója és alkalmazása Az emprkus kvantlseket fnomítan kell. A BC (bas-correcton torzítás korrgáló) módszer a határok megállapítására: ( ˆF {Φ 1 z α )} + z 0 z a(z α + z 0 ) ahol ˆF 1 az emprkus kvantlsfüggvénye a bootstrap statsztkának z α a szokásos emprkus kvantls z 0 s a torzítás korrekcós tag a a szórásnégyzet növekedésének gyorsulását korrgálja Ha a = 0 és z 0 = 0 és ˆF a normáls eloszlás, az érték éppen z α Ha monoton transzformácót: m(ϑ) alkalmazunk a becslésünkre, az eredmény normáls eloszlású: m( ˆϑ) N (m(ϑ) z 0 (1 + am(ϑ)), 1 + am(ϑ)). Innen, a monotontás matt P( ˆϑ < ϑ) = Φ(z 0 ), z 0 könnyen becsülhető Az a becslését a loglkelhood függvény derváltjának ferdeségéből kaphatjuk Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 11 / 28 Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 12 / 28

4 Példa: konfdenca ntervallum a korrelácóra Az (m, n) bootstrap A standard ntervallum (az emprkus korrelácós együttható aszmptotkus normaltásán alapul) szmmetrkus nem mndg reáls ks mnták esetén A boostrap lehet aszmmetrkus, a lefedés valószínűsége beállítható Kérdés: vajon a paraméteres vagy a nemparametéteres bootstrap a jobb (a paraméteres általában szélesebb konzervatívabb ntervallumot ad) Ha a "szokásos" bootstrap nem működk, általában segít, ha m < n elemű mntákat veszünk ekkor a vsszatevés nélkül mntavétel (részmnta) s lehetséges, gyakran jobb tulajdonságú Bckel és Sakov (2008) ckke algortmust ad az optmáls m megválasztására - ez az "gaz" (vsszatevéses) bootstrap-re vonatkozk, és az eredmény m n, ha az n elemű mnta s jó. Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 13 / 28 Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 14 / 28 Példa Példa/2 Legyen X..d.µ várható értékkel és σ szórással A µ = 0 hpotézst teszteljük a nx n statsztkával Jó bootstrap algortmus: mntavétel az X X n "rezduálsokból" Ha n X n bootstrap eloszlását nézzük, ennek kvantlse nem konzsztensek rögzített m-re n esetén m X m határeloszlása m-től függ (csak a normáls eloszlás esetén ugyanaz mnden m-re) m(x m X n ) N(0, σ) ha n, m Tehát m X m N( m X n, σ) ha m m Xn = m/n n X n N(0, λσ) ahol λ = lm m/n A jó eredményt m/n 0 esetén kapjuk Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 15 / 28 Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 16 / 28

5 Az m kválasztása Az..d. bootstrap korláta Az előzőek szernt a jó tartományban a bootstrap eloszlás nem változk lényegesen Ha m túl nagy, vagy túl kcs, akkor a bootstrap eloszlások különbözőek Tehát az algortmus: 1 Legyen m j = [ q j n ] (0 < q < 1) 2 Mnden m j -re határozzuk meg a T mj,n eloszlását (szmulácóval) 3 Válasszuk azt az m-et, amre ˆm = ρ(t mj,n, T mj+1,n) (ahol ρ az eloszlásbel konvergencával konzsztens metrka - pl. Kolmogorov-Szmrnov távolság) számításgényes bzonyos esetekben a becslés nem lesz konzsztens Példa (Sngh, 1981) Def: {X n }n 1 m-függő valamely m 0 számra, ha {X 1,..., X k } és { X k+m+1,... } függetlenek mnden k 0-ra. Jel. σ 2 m = Var(X 1 ) + 2 m 1 =1 Cov(X 1, X 1+ ) Legyen a becsülendő statsztka: T n = n(x n µ) Ennek bootstrap megfelelője: Tn,n = n(x n X n ) Tétel: Legyen {X n }n 1 staconárus m-függő v.v. sorozat, EX 1 = µ, σ 2 = Var(X 1 ) (0, ), m n=1 Cov(X 1, X 1+ ) 0 és σm 2 0 Ekkor lm sup P (T n n,n x) P(T n x) 0 m.m. x Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 17 / 28 Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 18 / 28 Alkalmazása az összefüggő esetre Blokkméret kválasztása (Polts & Whte) Crcular blokk bootstrap (CBB) 1 Y t = X tmod(n) azaz perodkusan kterjesztjük a mntát 2 Legyen 1, 2,... m mnta az {1,..., N} halmazon egyenletes eloszlásból 3 Adott b blokkméretre készítsünk N =mb (N N) pszeudo-megfgyelést: Y (k 1)b+j = Y m+j 1 ahol j = 1,..., b; k = 1,..., m 4 A mnket érdeklő statsztka kszámítása a pszeudo-megfgyelésekből: Y N = (N ) 1 (Y Y N ) Jel. F 0 = σ{x n : n 0}, F k = σ{x n : n k} Def.: {X t : t Z } erősen keverő, ha α X (k) 0 (k ), ahol α X (k) = sup{ P(A B) P(A)P(B) : A F 0, B F k } Tétel : Tegyük fel, hogy E X t 6+δ <, k=1 δ>0-ra. Legyen b = o(n 1/2 ), N esetén b. Ekkor MSE(σ 2 ) = G2 + D b b,x b 2 n + o(b 2 ) + o( b n ) ahol D= 4 3 g2 (0) és G = k R(k) k= g( ): spektráls sűrűségfüggvény R( ): autokovaranca függvény k 2 (α X (k)) δ 6+δ < valamely Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 19 / 28 Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 20 / 28

6 Blokkméret kválasztása (Polts & Whte) Paraméteres bootstrap Optmáls blokkméret: b opt = [( 2G2 D )n1/3 ] Kérdés: hogyan becsüljük G-t és D-t ˆD = 4 3ĝ2 (0) Ĝ = M k= M λ( k ) k ˆR(k) M ahol ˆR(k) N k = N 1 (X X N )(X + k X N ) k=1 1 ha t [0, 1/2] λ(t) = 2(1 t ) ha t [1/2, 1] 0 különben M = 2 ˆm, ahol ˆm: ahonnan a korrelogram "lényegében" 0 Eddg semmlyen modellt nem használtunk Ha van jó modellünk, akkor azt érdemes a bootstrapnél s alkalmazn A legegyszerűbb esetben egyszerűen a becsült modellből vesszük a mntát Regresszós modelleknél mnta a rezduálsokból, majd ezt adjuk hozzá az llesztett értékhez Választás a vzsgálat célja alapján: Modell kválasztás: nemparaméteres bootstrap Modell megbízhatóság: paraméteres bootstrap Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 21 / 28 Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 22 / 28 Egyszerű példa a paraméteres bootstrapra Kérdés: lehet-e 1 az alakparametere az llesztett gamma eloszlásnak? Bootstrap mntákat veszünk az exponencáls eloszlásbó (ez a Γ(1, λ) eloszlás). Statsztka: ezekre a mntákra az alakparaméter ML becslése Bootstrap p-érték: azon esetek aránya, ahol távolabb vagyunk 1-től, mnt a megfgyelt eset becslése Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 23 / 28 AR-seve bootstrap Feltétel: a folyamat staconárus és jól becsülhető AR(p) modellel: p X t µ X = φ j (X t j µ X ) + ε t, t Z j=1 ahol µ X = EX t (ε t ) t Z..d., E(ε t )=0 és ε t független { X s ; s < t }-től Paraméterek és hbák becslése: ˆp=? AIC ˆµ X = n 1 n t=1 X t ˆφ 1,..., ˆφˆp =? Yule-Walker módszer R t = X t ˆp ˆφ j=1 j X t j, ahol t = ˆp + 1,..., n ebből pedg ˆε t = R t R t, ahol t = ˆp + 1,..., n Bootstrap mnta konstruálásának lépése: ε t : véletlen elem { ˆεˆp+1,..., ˆε n } halmazból Nagy u-ra (X u,..., X u+ˆp 1 ) = (ˆµ X,..., ˆµ X ) (a folyamat ndítása) p Xt = µ X + φ j (Xt j µ X ) + ε t t Z j=1 Ebből a bootstrap mnta: { X 1,..., X n } Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 24 / 28

7 Súlyozott (vad) bootstrap Bootstrap az extrém-érték modellekben Itt már nem bootstrap mntát veszünk, hanem súlyozunk (például a lkelhood függvényt) Formálsan: Z (k) súlyok, E(Z (k) ) = 0 és D 2 (Z (k) ) = 1 ahol = 1,..., n, k = 1,..., N (N a boostrap smétlések száma). A klasszkus esetben Z polnomáls eloszlású Az első alkalmazás a regresszónál: ŷ = ŷ + Z ε Heteroszkedasztkus esetben érdemes használn Tovább alkalmazás lehetőség: kopulák lleszkedésvzsgálata A nemparaméteres bootstrap ks mntákra tpkusan túl szűk konfdencantervallumokat ad Aszmptotkusan s érdemes m << n elemű bootstrap mntákat venn és ezzel párhuzamosan a feladatot kevésbé extrém kvantlsek becslésére vsszavezetn Fnomhangoln paraméterek (s, t) segítségével lehet Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 25 / 28 Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 26 / 28 Hall és Wessman módszere } A cél: D 1 (t, n, x) := E {(Fˆθ(t) (x) F(x))2 mn t Ha az 1 p-kvantlst becsüljük, akkor átírható: } D 2 (t, n, x) := D 1 (t, n, F 1 (p)) = E {(Fˆθ(t) (F 1 (p)) p) 2 mn t { ( A bootstrap becslések ˆD ) } 2 1 (t, m, y) = E Fˆθ (t)(y) ˆF(y) és { ( ) ) } ˆD 2 (t, m, q) = E 1 2 Fˆθ (t) (ˆF (q) q. Arra kell ügyeln, hogy a transzformácónál a log(x)/ log(n) hányados legalábbs aszmptotkusan ne változon, mkor áttérünk (n, x) helyett az (m, y) párra. Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 27 / 28 Hvatkozások J.Berlant, G. Mathys (2000) Quantle estmaton for heavy-taled data Coles, S. and Tawn, J. (1991) Modellng extreme multvarate events. Journal of the Royal Statstcal Socety, Seres B, 53, p R.L. Smth (1990) Max-Stable Processes and Spatal Extremes. Schlather, M. and Tawn, J. (2003) A dependence measure for multvarate and spatal extreme values: Propertes and nference. Rootzén, H. and Tajvd, N. (2006) The multvarate generalzed Pareto dstrbuton. Bernoull 12, p Rakoncza, P.: Multvarate Threshold Models wth Applcatons to Wnd Speed Data (Ph.D. thess, 2012) Hall, P. and Wessman, I.: On the estmaton of extreme tal probabltes (1997) Efron, B. and Tbshran, R.J.: An Introducton to the Bootstrap (1993) Lahr, S.N.: Resamplng methods for dependent data (Sprnger, 2003) Bckel, P.J. and Sakov, A.: On the Choce of m n the m Out of n Bootstrap and ts Applcaton to Confdence Bounds for Extrema (2008) Polts, D. N. and Whte, H.: Automatc Block-Length Selecton for the Dependent Bootstrap (2004) Zemplén András (ELTE) 6. előadás, márcus 29. Árngadozások előadás 28 / 28

1 Y t = X tmod(n) azaz periodikusan kiterjesztjük a mintát. 3 Adott b blokkméretre készítsünk N =mb (N N)

1 Y t = X tmod(n) azaz periodikusan kiterjesztjük a mintát. 3 Adott b blokkméretre készítsünk N =mb (N N) Alkalmazása az összefüggő esetre 7. előadás, 2017. áprls 5. Zemplén András Valószínűségelmélet és Statsztka Tanszék Természettdomány Kar Eötös Loránd Tdományegyetem Árngadozások előadás Crclar blokk bootstrap

Részletesebben

Pontfolyamatok definíciója. 5. előadás, március 10. Példák pontfolyamatokra. Pontfolyamatok gyenge konvergenciája

Pontfolyamatok definíciója. 5. előadás, március 10. Példák pontfolyamatokra. Pontfolyamatok gyenge konvergenciája Pontfolyamatok definíciója 5. előadás, 2016. március 10. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Hasznos eszköz,

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Táblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist.

Táblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist. 1. Az X valószínőség változó 1 várható értékő és 9 szórásnégyzető. Y tıle független várható értékkel és 1 szórásnégyzettel. a) Menny X + Y várható értéke? 13 1 b) Menny X -Y szórásnégyzete? 13 1 összesen

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés Extrém-érték modellezés Zemplén András Alkalmazott modul 03. február. Extrém-érték elemzés Klasszkus módszerek: év maxmumon alapulnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízbıl

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer? 01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

Statisztika feladatok

Statisztika feladatok Statsztka ok Informatka Tudományok Doktor Iskola Bzonyítandó, hogy: azaz 1 Tekntsük az alább statsztkákat: Igazoljuk, hogy torzítatlan statsztkák! Melyk a leghatásosabb közöttük? (Ez az együttes eloszlásfüggvényük.)

Részletesebben

Véletlenszám generátorok. 6. előadás

Véletlenszám generátorok. 6. előadás Véletlenszám generátorok 6. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes

Részletesebben

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás. Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. Megjegyzések. A normálhatóság feltétele. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. Megjegyzések. A normálhatóság feltétele. Extrém-érték modellezés Extrém-érték modellezés Zemplén András Val.modellek 2018. febrár 21. Extrém-érték elemzés Klasszks módszerek: év maxmmon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés Etrém-érték modellezés Zemplén András Alkalmazott modl 016. febrár -9. Etrém-érték elemzés Klasszks módszerek: év mammon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ

Részletesebben

Modern szimulációs módszerek

Modern szimulációs módszerek Modern szimulációs módszerek Zempléni András Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Eötvös Loránd Tudományegyetem Természettudományi Kar Zempléni András (Val.elm. és Stat.Tsz.)

Részletesebben

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak. 8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

ADATREDUKCIÓ I. Középértékek

ADATREDUKCIÓ I. Középértékek ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

Minősítéses mérőrendszerek képességvizsgálata

Minősítéses mérőrendszerek képességvizsgálata Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék, az MTA Közgazdaságtudomány

Részletesebben

Lineáris regresszió. Statisztika I., 4. alkalom

Lineáris regresszió. Statisztika I., 4. alkalom Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı

Részletesebben

ADATREDUKCIÓ I. Középértékek

ADATREDUKCIÓ I. Középértékek ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték

Részletesebben

Adatelemzés és adatbányászat MSc

Adatelemzés és adatbányászat MSc Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás

Részletesebben

Nemparaméteres módszerek. Krisztina Boda PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Nemparaméteres módszerek. Krisztina Boda PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Nemparaméteres módszerek Krsztna Boda PhD SZTE ÁOK Orvos Fzka és Orvos Informatka Intézet Paraméteres próbák Paraméter: egy szám, amely a populácó eloszlását jellemz (és általában meghatározza). A normáls

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a bometrába Dr. Dnya Elek egyetem tanár PhD kurzus. KOKI, 205.0.08. ADATREDUKCIÓ I. Középértékek Adatredukcó. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények:

Részletesebben

Véletlenszám generátorok. 5. előadás

Véletlenszám generátorok. 5. előadás Véletlenszám generátorok 5. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes

Részletesebben

Várható érték:... p Módusz:...

Várható érték:... p Módusz:... NEVEZETES ELOSZLÁSOK. Bernoull-eloszlás: B(, p p ha x = Súlyfüggvény:... P( X = x; p =...ahol: q=-p q ha x = 0 ha p q Várható érték:... p Módusz:... 0 ha p q Varanca:... pq Relatív szórás:... q p. ÁBRA.

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Nemparaméteres eljárások

Nemparaméteres eljárások Nemparaméteres eljárások Bevezetés Az ntervallum vagy a hányados skálán végzett méréseknél az adatokból számolhatunk átlagot, szórásnégyzetet, szórást Fontos módszerek alapulnak ezeknek a származtatott

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

4 Approximációs algoritmusok szorzatalakú hálózatok esetén

4 Approximációs algoritmusok szorzatalakú hálózatok esetén 4 Approxmácós algortmusok szorzatalakú hálózatok esetén Az MVA-n alapuló approxmácó (Bard-Schwetzer-módszer): Beérkezés tétel: T () = 1 µ [1+ ( 1) ], =1,...,N Iterácó a következő approxmácó használatával:

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Teljes eseményrendszer. Valószínőségszámítás. Példák. Teljes valószínőség tétele. Példa. Bayes tétele

Teljes eseményrendszer. Valószínőségszámítás. Példák. Teljes valószínőség tétele. Példa. Bayes tétele Teljes eseményrendszer Valószínőségszámítás 3. elıadás 2009.09.22. Defnícó. Események A 1, A 2,..., sorozata teljes eseményrendszer, ha egymást páronként kzárják és egyesítésük Ω. Tulajdonság: P A ) +

Részletesebben

(eseményalgebra) (halmazalgebra) (kijelentéskalkulus)

(eseményalgebra) (halmazalgebra) (kijelentéskalkulus) Valószínűségszámítás Valószínűség (probablty) 0 és 1 között valós szám, amely egy esemény bekövetkezésének esélyét fejez k: 0 - (sznte) lehetetlen, 0.5 - azonos eséllyel gen vagy nem, 1 - (sznte) bztos

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA Készült a TÁMOP-4..-08//A/KMR-009-004pálázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék az MTA Közgazdaságtudomán Intézet

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr. Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Határeloszlástétel a maximumokra. 3. előadás, március 1. A bizonyítás vázlata. Típusok. Tétel (Fisher és Tippet, 1928)

Határeloszlástétel a maximumokra. 3. előadás, március 1. A bizonyítás vázlata. Típusok. Tétel (Fisher és Tippet, 1928) Határeloszlástétel a maximumokra 3. előadás, 2017. március 1. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Tétel

Részletesebben

ADATREDUKCIÓ I. Középértékek

ADATREDUKCIÓ I. Középértékek ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz x mn középérték

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

Kísérlettervezési alapfogalmak:

Kísérlettervezési alapfogalmak: Kísérlettervezés alapfogalmak: Tényező, faktor (factor) független változó, ható tényező (kezelés, gyógyszer, takarmány, genotípus, élőhely, stb.) amnek hatását a kísérletben vzsgáln vagy összehasonlítan

Részletesebben

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév Valószínűségelmélet Pap Gyula Szegedi Tudományegyetem Szeged, 2016/2017 tanév, I. félév Pap Gyula (SZTE) Valószínűségelmélet 2016/2017 tanév, I. félév 1 / 125 Ajánlott irodalom: CSÖRGŐ SÁNDOR Fejezetek

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETIA Készült a TÁMOP-4.1.-08//A/KM-009-0041pályázat projet eretébe Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomáy Taszéé az ELTE Közgazdaságtudomáy Taszé az MTA Közgazdaságtudomáy Itézet és a

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

d(f(x), f(y)) q d(x, y), ahol 0 q < 1.

d(f(x), f(y)) q d(x, y), ahol 0 q < 1. Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés

Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Elek Péter 1. Valószínűségi változók és eloszlások 1.1. Egyváltozós eset Ismétlés: valószínűség fogalma Valószínűségekre vonatkozó axiómák

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Intelligens elosztott rendszerek

Intelligens elosztott rendszerek Intellgens elosztott rendszerek VIMIAC2 Adatelőkészítés: hhetőségvzsgálat normálás stb. Patak Béla BME I.E. 414, 463-26-79 atak@mt.bme.hu, htt://www.mt.bme.hu/general/staff/atak Valamlyen dőben állandó,

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58 u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

METROLÓGIA ÉS HIBASZÁMíTÁS

METROLÓGIA ÉS HIBASZÁMíTÁS METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14. Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint

Részletesebben

Kvantum-tömörítés II.

Kvantum-tömörítés II. LOGO Kvantum-tömörítés II. Gyöngyös László BME Vllamosmérnök és Informatka Kar A kvantumcsatorna kapactása Kommunkácó kvantumbtekkel Klasszkus btek előnye Könnyű kezelhetőség Stabl kommunkácó Dszkrét értékek

Részletesebben

MATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap

MATEMATIKAI STATISZTIKA KISFELADAT. Feladatlap Közlekedésmérnök Kar Jármőtervezés és vzsgálat alapja I. Feladatlap NÉV:..tk.:. Feladat sorsz.:.. Feladat: Egy jármő futómő alkatrész terhelésvzsgálatakor felvett, az alkatrészre ható terhelı erı csúcsértékek

Részletesebben

EM-ALGORITMUS HIÁNYOS ADATRENDSZEREKRE

EM-ALGORITMUS HIÁNYOS ADATRENDSZEREKRE Süvítenek napjank, a forró sortüzek valamt mnden nap elmulasztunk. Robotolunk lélekszakadva, jóttevőn, s valamt mnden tettben elmulasztunk... (Vác Mhály: Valam nncs sehol) EM-ALGORITMUS HIÁNYOS ADATRENDSZEREKRE

Részletesebben

Villamosmérnök A4 11. hét Kétdimenziós normális eloszlás, cht - Megoldások

Villamosmérnök A4 11. hét Kétdimenziós normális eloszlás, cht - Megoldások Villamosmérnök A 11. hét Kétdimenziós normális eloszlás, cht - Megoldások Kétdimenziós normális összefoglalás Egy kétdimenziós X, Y valószínűségi változó kovariancia mátrixa: VarX CovX, Y CovX, Y VarY

Részletesebben

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr. Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Regresszó-számítás. előadás Kvanttatív statsztka módszerek Dr. Varga Beatr Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Korrelácós

Részletesebben

Loss Distribution Approach

Loss Distribution Approach Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

OLS regresszió - ismétlés Mikroökonometria, 1. hét Bíró Anikó A tantárgy tartalma

OLS regresszió - ismétlés Mikroökonometria, 1. hét Bíró Anikó A tantárgy tartalma OLS regresszó - smétlés Mroöonometra,. hét Bíró Anó A tantárg tartalma Leggaorbb mroöonometra problémá és azo ezeléséne megsmerése Egén vag vállalat adato Keresztmetszet és panel elemzés Vállalat, pacelemzés

Részletesebben

Laboratóriumi kontrollkártya használata Tananyag. Készítette: Muránszky Géza vegyészmérnök Oktató: Lőrinc Anna minőségirányítási előadó

Laboratóriumi kontrollkártya használata Tananyag. Készítette: Muránszky Géza vegyészmérnök Oktató: Lőrinc Anna minőségirányítási előadó Laboratórum kontrollkártya használata Tananyag Készítette: Muránszky Géza vegyészmérnök Oktató: Lőrnc Anna mnőségrányítás előadó Tartalom. Bevezetés... 3. A kontroll kártyák típusa... 4 3. A statsztka

Részletesebben

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pálázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék, az MTA Közgazdaságtudomán

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON. Bihari Zita, OMSZ Éghajlati Elemző Osztály OMSZ

TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON. Bihari Zita, OMSZ Éghajlati Elemző Osztály OMSZ TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON Bhar Zta, OMSZ Éghajlat Elemző Osztály OMSZ Áttekntés Térbel vzsgálatok Alkalmazott módszer: MISH Eredmények Tervek A módszer

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

MEGBÍZHATÓSÁG-ELMÉLET

MEGBÍZHATÓSÁG-ELMÉLET PHARE HU3/IB/E3-L MEGBÍZHAÓSÁG-ELMÉLE Defnícók A legszélesebb körben elfogadott defnícó szernt a megbízhatóság egy elem (termék, rendszer stb.) képessége arra, hogy meghatározott működés feltételek mellett

Részletesebben

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található Phlosophae Doctores A sorozatban megjelent kötetek lstája a kötet végén található Benedek Gábor Evolúcós gazdaságok szmulácója AKADÉMIAI KIADÓ, BUDAPEST 3 Kadja az Akadéma Kadó, az 795-ben alapított Magyar

Részletesebben

IDA ELŐADÁS I. Bolgár Bence október 17.

IDA ELŐADÁS I. Bolgár Bence október 17. IDA ELŐADÁS I. Bolgár Bence 2014. október 17. I. Generatív és dszkrmnatív modellek Korábban megsmerkedtünk a felügyelt tanulással (supervsed learnng). Legyen adott a D = {, y } P =1 tanító halmaz, ahol

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

A sokaság/minta eloszlásának jellemzése

A sokaság/minta eloszlásának jellemzése 3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,

Részletesebben

Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás,

Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás, Matematikai statisztika. elıadás, 9.5.. Továbblépés Ha nem fogadható el a reziduálisok korrelálatlansága: Lehetnek fel nem tárt periódusok De más kapcsolat is fennmaradhat az egymáshoz közeli megfigyelések

Részletesebben

NEMPARAMÉTERES PRÓBÁK

NEMPARAMÉTERES PRÓBÁK NEMPARAMÉTERES PRÓBÁK A nemparaméteres próbák nem tételezk föl a normáls eloszlást. A leggyakrabban használt próbák (pl. a t-próbák, ANOVA) feltételezk a normáls eloszlást. Sokszor ez nem teljesül. Következmény:

Részletesebben

Az extremális index. 11. előadás, május 10. Blokkmódszer. Becslés

Az extremális index. 11. előadás, május 10. Blokkmódszer. Becslés Az extremális index 11. előadás, 2017. május 10. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Ha az eredeti X 1,

Részletesebben

Biostatisztika e-book Dr. Dinya Elek

Biostatisztika e-book Dr. Dinya Elek TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok

Részletesebben

4. előadás. Kiegyenlítő számítások MSc 2018/19 1 / 41

4. előadás. Kiegyenlítő számítások MSc 2018/19 1 / 41 4. előadás Kiegyenlítő számítások MSc 2018/19 1 / 41 Áttekintés Extrém érték elmélet Monte Carlo eljárások 2 / 41 Extrém érték elmélet Bevezetés Alapvető módszerek (GEV és POT) Extrém érték eloszlások

Részletesebben

Méréselmélet: 5. előadás,

Méréselmélet: 5. előadás, 5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,

Részletesebben

Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Lineáris regresszió, ismétlés nélküli mérések

Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Lineáris regresszió, ismétlés nélküli mérések Gakorló feladatok a Kísérletek tervezése és értékelése c. tárgból Lneárs regresszó, smétlés nélkül mérések 1. példa Az alább táblázat eg kalbrácós egenes felvételekor mért adatokat tartalmazza: x 1.8 3

Részletesebben

EM algoritmus. A feladat: egy valószínűség eloszlás valmilyen paraméterét(vektorát) akarjuk becsülni részlegesen megfigyelhető.

EM algoritmus. A feladat: egy valószínűség eloszlás valmilyen paraméterét(vektorát) akarjuk becsülni részlegesen megfigyelhető. Szegmentálás Szegmentálás Hsztogram alapján, paraméteres hsztogram modell, EM algortmus Pontokra egyenes, lletve előre defnált alakú görbe llesztés, Hough transzformácó Modell alapú szegmentálás, ASM (AAM)

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

Dr. Karácsony Zsolt. Miskolci Egyetem november

Dr. Karácsony Zsolt. Miskolci Egyetem november Valószínűségszámítás és Matematikai statisztika Dr. Karácsony Zsolt Miskolci Egyetem, Alkalmazott Matematikai Tanszék 2013-2014 tanév 1. félév Miskolci Egyetem 2013. november 11-18 - 25. Dr. Karácsony

Részletesebben

Feladatok és megoldások a 13. hétre

Feladatok és megoldások a 13. hétre Feladatok és megoldások a. hétre Építőkari Matematika A. Az alábbi függvények melyike lehet eloszlásfüggvény? + e x, ha x >, (a F(x =, ha x, (b F(x = x + e x, ha x, (c F(x =, ha x, x (d F(x = (4 x, ha

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben