Modern szimulációs módszerek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Modern szimulációs módszerek"

Átírás

1 Modern szimulációs módszerek Zempléni András Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Eötvös Loránd Tudományegyetem Természettudományi Kar Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április 26 1 / 29

2 Vázlat Szimuláció - történet, fejlődés (mintavétel, Monte Carlo módszerek ) Bootstrap - módszerek, alkalmazások Markov lánc Monte Carlo (MCMC, Metropolis-Hastings) Alkalmazások: fizika biológia statisztika (hipotézisvizsgálat, Bayes-i statisztika) pénzügyek (opcióárazás) Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április 26 2 / 29

3 Történet Monte Carlo szimuláció lényege: ismeretlen mennyiséget közelít nagy számú véletlen kísérlet eredményével (Ulam, Neumann 1946) Az elnevezés (Monte Carlo) valójában titkos kód volt Alkalmazások: Genetikus algoritmusok (1951) Metropolis algoritmus (1953) Bootstrap (Efron, 1979) Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április 26 3 / 29

4 Bootstrap A név eredete: Münchhausen báró története arról, hogy a saját hajánál fogva húzta ki magát a mocsárból. A haj helyett az angol fordításban "bootstrap" szerepelt. Sok helyen használják az elnevezést: Üzleti életben: a cég fejlesztése külső segítség nélkül Műszaki életben: bootstrap áramkörök Számítástechnikában: a bootolás is ebből ered (az operációs rendszer töltődik be először, és ez gondoskodik a további programról) Statisztikában: Újramintavételezési eljárás, a becsléseink szórásának vizsgálatára, modell-illeszkedés ellenőrzésére Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április 26 4 / 29

5 Bootstrap (Efron, 1979) A jackknife módszer módosításaként indult Az eljárás: X m = {X 1,..., X m} visszatevéses mintavétellel az eredeti mintából egyszerű, mint maga a "bootstrap" Általában m = n, de m < n is előfordul Számtalan változatát dolgozták ki azóta, az egyik leggyorsabban fejlődő részterülete a statisztikának Eredeti alkalmazásai: hiba/eloszlás becslés konfidencia-intervallum konstruálás Általánosítások: adatbányászat térbeli modellezés p-érték korrekció stb. Elismert "breakthrough in statistics" Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április 26 5 / 29

6 A legegyszerűbb eset Legyenek X n = (X 1, X 2,..., X n ) független, azonos eloszlású (i.i.d.) valószínűségi változók, F (ismeretlen) közös eloszlással ˆϑ = T n (X n ; F) minket érdeklő valószínűségi változó (statisztika) Cél: ˆϑ eloszlásának becslése Bootstrap módszer: Adott X -re, visszatevéssel m elemű mintát veszünk: Xm = {X1,..., X m} a mintaelemek közös eloszlása: F n = n 1 n δ Xi i=1 ˆϑ m,n = T m (X m; F n ) Ismétlések ˆϑ eloszlása közelítés T n eloszlására Az ötlet: ˆϑ ˆϑ ingadozása hasonló ˆϑ ϑ ingadozásához Nagy mintára, kellően sima függvényekre igazolható Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április 26 6 / 29

7 Torzítás-csökkentés Populációs egyenlet: E( ˆϑ ϑ + t F) = 0 Ehelyett megoldjuk a minta-egyenletet: Ebből ˆt = ˆϑ E( ˆϑ F n ). E( ˆϑ ˆϑ + t F n ) = 0 Visszahelyettesítve: ˆϑ bc := 2 ˆϑ E( ˆϑ F n ). Példa: klasszifikációnál hiba-arány becslés. Ha a tanuló-adatokat használjuk erre is (err n ), jelentős torzítást kapunk (túl optimista a módszer) A bootstrap alkalmazása: azokra a pontokra becsülünk, amik épp nincsenek benne a mintában (err b ). Ez azért torzított, mert ismétlések vannak. A megoldás: 0.368err n err b. Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április 26 7 / 29

8 Az i.i.d. bootstrap korlátai Bizonyos esetekben a becslés nem lesz konzisztens Példa (Singh, 1981) Def: {X n } n 1 m-függő valamely m 0 számra, ha {X 1,..., X k } és { X k+m+1,... } függetlenek minden k 0-ra. Jel. σm 2 = Var(X 1 ) + 2 m 1 i=1 Cov(X 1, X 1+i ) Legyen a becsülendő statisztika: T n = n(x n µ) Ennek bootstrap megfelelője: Tn,n = n(x n X n ) Tétel Legyen {X n } n 1 stacionárius m-függő v.v. sorozat, EX 1 = µ, σ 2 = Var(X 1 ) (0, ), m n=1 Cov(X 1, X 1+i ) 0 és σ 2 m 0. Ekkor lim sup P (T n n,n x) P(T n x) 0 m.m. x Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április 26 8 / 29

9 Alkalmazása az összefüggő esetre Circular blokk bootstrap (CBB) 1 Y t = X tmod(n) azaz periodikusan kiterjesztjük a mintát 2 Legyen i 1, i 2,... i l minta az {1,..., N} halmazon egyenletes eloszlásból 3 Adott b blokkméretre készítsünk N =lb (N N) pszeudo-megfigyelést: Y (k 1)b+j = Y ik +j 1 ahol j = 1,..., b; k = 1,..., l 4 A minket érdeklő statisztika kiszámítása a pszeudo-megfigyelésekből: Y N = (N ) 1 (Y Y N ) 5 Itt már van konzisztencia a fenti példában Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április 26 9 / 29

10 Egy másik "kritikus" eset A konzisztencia bizonyítása a határeloszlástételen alapul Vastag szélű (pl. nem véges szórású) esetre stabilis eloszlás a határérték Ekkor a szokásos bootstrap nem konzisztens Ilyen esetekben általában segít, ha m < n elemű mintákat veszünk Különösen igaz ez az extrém-érték modellekben: kis mintákra tipikusan túl szűk konfidenciaintervallumokat kapunk a maximumra Érdemes m << n elemű bootstrap mintákat venni és a feladatot kevésbé extrém kvantilisek becslésére visszavezetni Ekkor a visszatevés nélküli mintavétel (részminta) is lehetséges, gyakran jobb tulajdonságú Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

11 Az (m, n) bootstrap Bickel és Sakov (2008) cikke algoritmust ad az optimális m megválasztására, az eredmény m n, ha az n elemű minta is jó (az i.i.d. esetre, E(X i ) = 0, tfh. D 2 (X i ) < ) m(x m X n ) N(0, σ) ha n, m Tehát m X m N( m X n, σ) ha m m Xn = m/n n X n N(0, λσ) ahol λ = lim m/n A jó eredményt m/n 0 esetén kapjuk (λ > 0 esetén véletlen mérték a határeloszlás) Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

12 Az m kiválasztása Az előzőek szerint a jó tartományban a bootstrap eloszlás nem változik lényegesen Ha m túl nagy, vagy túl kicsi, akkor a bootstrap eloszlások különbözőek Tehát az algoritmus: 1 Legyen m j = [ q j n ] (0 < q < 1) 2 Minden m j -re határozzuk meg a T m j,n eloszlását (szimulációval) 3 Válasszuk azt az m-et, amire ˆm = argminρ(t m j,n, T m j+1,n) (ahol ρ az eloszlásbeli konvergenciával konzisztens metrika - pl. Kolmogorov-Szmirnov távolság) Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

13 A súlyozott (vad) bootstrap Itt az egyes mintelemek súlya a véletlen mennyiség (bootstrap súlyok): τ n,i (i = 1, 2,..., n), ahol n a minta elemszáma. A klasszikus esetben τ nemnegatív egész értékű. Az általános τ súlyok a likelihood függvényre alkalmazhatóak (hatványként) Alkalmazások: Először a regressziónál: ŷi = ŷ i + τ i ε i. Heteroszkedasztikus esetben érdemes használni További lehetőség: kopulák illeszkedésvizsgálata (gyorsabb szimulációk statisztikák határeloszlására) Feltételek: 1 A súlyok függetlenek az adatoktól, τ n1,..., τ nn azonos eloszlású 2 P(τ ni 0) = 1 i = 1,..., n; n = 1, 2,... 3 Az első két momentuma a τ ni -nek véges 4 lim Eτ ni = 1 i = 1, 2,... n 5 γ := lim Eτ 2 n ni < Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

14 Gyakorlati alkalmazások Példák a súlyeloszlásra (τ n1,..., τ nn ) Polinomiális ( n; 1 n,..., 1 ), n (τ n1,..., τ nn ) i.i.d. Exp(1). Extrém-érték modell: tipikus feladat a kvantilisbecslés. Ehhez: profil log-likelihood a kvantilisekkel paraméterezett esetre l p (H 1 (q) X n ) = max ξ l(ξ, H 1 (q) X n ) Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

15 Eredmények Tétel (Varga L.- Rakonczai P.- ZA, 2015) Ha teljesül az 1-5 feltétel a bootstrap súlyokra, akkor 2 [ ] l (ˆξ, γ H 1 (q) X n ) l p(h 1 n (q) X n ) χ 2 1, ahol γ a második momentumok határértéke az 5. feltételben. Ebből 1 α megbízhatóságú konfidencia intervallum a kvantilisekre: { Iα = H 1 (q) : c 2 l p(h 1 (q) X n ) l (ˆξ, H 1 (q) X n ) γ c } 1 α. 2 ahol c 1 α a χ 2 1 eloszlás (1 α)-kvantilise. Ez a konfidencia intervallum általában szélesebb, mint a hagyományos profil likelihood intervallum. Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

16 Példa Napi csapadék adatokat vizsgáltunk Szint fölötti csúcsok módszerével Általánosított Pareto modellből becsültük a kvantiliseket (visszatérési szint) Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

17 Többdimenziós kopulák tesztelése A tesztstatisztikák eloszlása nem ismert, ezért bootstrap szimuláció alapján határozhatók meg a kritikus értékek De: minden bootstrap mintára is illeszteni kell a modellt, ami magas dimenzióban igen lassú - ezért ez gyakorlatilag kivitelezhetetlen Az empirikus kopula és az illesztett paraméteres modell eltérése a természetes statisztika. Ennek határeloszlása ) n (C n C ˆϑ n = ) n (C n C ϑ + C ϑ C ˆϑn C ϑ ΘĊϑ ahol Θ = lim ( ) n ˆϑ n ϑ A súlyozott bootstrap mintára vonatkozó határeloszlás tétel révén ez közelíthető anélkül, hogy mindig becsülni kellene a paramétert. Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

18 A teszt lépései C n kiszámítása és a ϑ megfelelő tulajdonságú becslésének meghatározása A Cramer- von Mises statisztika kiszámítása: ( 2 [0,1] C n (u, v) C ˆϑn(u,v)) dcn (u, v) = ( ) 2 n i=1 C n (U i,n, V i,n ) C ˆϑn (U i,n, V i,n ) A súlyozott boostrap statisztikák kiszámítása Ebből a kritikus érték (ill. a p-érték) becsülhető Az eljárás gyorsabb, mint a paraméteres bootstrap, 3-5 dimenzióban jól alkalmazható Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

19 Adatbányászati alkalmazás: bagging Bootstrap Aggregating A tanuló adatokból vett bootstrap minták előrejelzéseinek átlaga folytonos esetben (vagy a többségi szavazással adódó döntés, pl. dichotóm esetben) Adatbányászati módszerek stabilitásának növelésére alkalmas Matematikailag, ha ˆϑ n = h n (L 1,..., L n ), akkor ˆϑ n = E (h n (L 1,..., L n)) az előrejelző. Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

20 Tulajdonságok Az instabil esetben jelentősen csökkentheti a varianciát A becslés stabil, ha ˆϑ n ϑ sztochasztikusan (ϑ konstans érték) Példa instabil esetre: ˆϑ n = I { Ȳ n x}. Ekkor ha x = x n (c) = µ + cσn 1/2 (E(Y ) = µ, D(Y ) = σ), akkor ˆϑ n I {Z c}, ahol Z std. normális eloszlású. D 2 ( ˆϑ n ) Φ(c)(1 Φ(c)), ami c = 0- ra maximális, 1/4. ˆϑ n Φ(c Z ), aminek c = 0 esetén 1/12 a varianciája - tehát harmada az eredetinek. Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

21 Lineáris modell Y = Xβ + ε Itt az egyik legfontosabb kérdés az, hogy mely együtthatók szignifikánsak: az ortogonalitást feltételezve a feladat egyszerűsíthető: ˆϑ n (x) = j ˆβ j I { ˆβj t n,j } x (j) Ez akkor instabil, ha β n = bσ/ n és az előző példához hasonlóan itt is jelentősen csökkenti a szórást a bagging. A bagging tehát ott tud hatékony lenni, ahol nem folytonos, "hard" küszöböktől függ a döntés Sokkal kisebb a hatása, ha már a döntés-függvény is folytonos Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

22 MCMC Markov lánc Monte Carlo: olyan eloszlásból szimulál, ami nincs explicit módon megadva (pl. nem tudjuk a hegy abszolút magasságát - de a magassággal arányos időt szeretnénk ott tölteni) Klasszikus alkalmazás: d dimenziós test térfogatának kiszámítása Matematikai statisztika: Gibbs-mintavétel (Bayes-i megközelítés: iteratív eljárás a poszteriori eloszlás kiszámítására) Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

23 Metropolis-Hastings algoritmus Eredeti verzió: Metropolis-Rosenbluth-Teller(1953): szimmetrikus javaslati eloszlásra Általánosítás: Hastings (1970) A XX.század tíz legfontosabb algoritmusának egyike (többek között a szimplex módszerrel, a gyors Fourier-transzformációval együtt) A nagy előnye, hogy olyan sűrűségfüggvényekből is tudunk segítségével véletlen számot generálni, amelyeket csak konstans szorzó erejéig ismerünk Viszont hátránya, hogy az eloszlást csak aszimptotikusan közelíti meg, és az egymás után kapott mintaelemek összefüggnek Ezekre a burn-in (beégetés) és a ritkítás ad megoldást Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

24 Metropolis-Hastings algoritmus Kezdőpont: x 0, a P eloszlásból szeretnénk szimulálni Átmenetvalószínűség: Q(y x) eloszlás y-ban Ebből mintát véve megkapjuk a javasolt értéket: y Az elfogadás valószínűsége: α = min {1, P(y)/P(x)}. Tehát a valószínűbb pontba biztosan átlépünk Látható, hogy valóban elég a P-t konstans szorzó erejéig ismerni Magas dimenzióban sokkal hatékonyabb, mint a hagyományos véletlenszám generátorok (pl. az elfogadás-elvetés módszere) Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

25 Reversible jump MCMC algoritmus A dimenziószám is változhat Példák: Keverék-eloszlások Spline illesztés Idősoros modelleknél a rend becslése Átmenetvalószínűség hasonló a fentihez: Q(y x) eloszlás y-ban, ebből kapjuk adott x-re a javasolt értéket Új lépések: Komponens megszüntetése Új komponens beiktatása Algoritmus (eltekintve technikai feltételektől) Kezdőállapot: x n 1 Lépés-típus kiválasztása Az adott típusnak megfelelő javaslat Elfogadási valószínűség kiszámítása Döntés az elfogadásról Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

26 Példa Tanszéki kutatási projekt keretében árvízi adatokat vizsgáltunk Felső ábra: között az árvizek időpontja és a becsült valószínűsége (naponként) Alsó ábra: Piros: becsült valószínűség Zöld: Első változás helyének becsült sűrűségfüggvénye Kék: Második változás helyének becsült sűrűségfüggvénye Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

27 Adatbányászat: Bayes-i modell gráfokon A csúcsokhoz tartoznak az X V megfigyelések (valószínűségi változók) Markov struktúra: feltételesen függetlenek azok a változók, amik között nincs él Például X V N(0, Σ) esetén ϑ g := Σ Adatbányászati feladat: a minta alapján a legjobb gráf kiválasztása A Bayes-i score: ϑ g L(ϑ g ; X V )π(ϑ g )dϑ g (π az apriori eloszlás) Megfelelő π esetén a RJ-MCMC módszer alkalmazható, nagy gráfok esetén is mert elég lokálisan számolni a csúcsok környezetében Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

28 Bronzkori sírok Az adatok a kupola görbületét mutatják. A kérdés a töréspontok száma Egy ilyen "méhkas"-sír Mükénéből Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

29 Hivatkozások Lahiri, S.N.: Resampling Methods for Dependent Data (Springer, 2003) Bickel, P.J. and Sakov, A.: On the Choice of m in the m Out of n Bootstrap and its Application to Confidence Bounds for Extrema (2008) Kojadinovic,I., Yan,J. and Holmes,M.: Fast large-sample goodness-of-fit tests for copulas (2011) Bühlmann, P. and Yu, B.: Analysing bagging (Ann. Stat., 2000) Varga, L., Rakonczai, P. and Zempléni, A.: Applications of threshold models and the weighted bootstrap for Hungarian precipitation data (2015). Fan, Y. and Sisson, S.A.: Reversible Jump Markov chain Monte Carlo (2010) Guidici, P.: Bayesian data mining, with application to benchmarking and credit scoring (2001) Zempléni András (Val.elm. és Stat.Tsz.) Intézeti szeminárium, április / 29

Pontfolyamatok definíciója. 5. előadás, március 10. Példák pontfolyamatokra. Pontfolyamatok gyenge konvergenciája

Pontfolyamatok definíciója. 5. előadás, március 10. Példák pontfolyamatokra. Pontfolyamatok gyenge konvergenciája Pontfolyamatok definíciója 5. előadás, 2016. március 10. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Hasznos eszköz,

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Bevezetés a hipotézisvizsgálatokba

Bevezetés a hipotézisvizsgálatokba Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -

Részletesebben

KÖZELÍTŐ INFERENCIA II.

KÖZELÍTŐ INFERENCIA II. STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.

Részletesebben

9-10. elıadás április 26. Problémák magas dimenzióban Az idıbeni összefüggıség és a nemstacionaritás szerepe

9-10. elıadás április 26. Problémák magas dimenzióban Az idıbeni összefüggıség és a nemstacionaritás szerepe 9-10. elıadás 2013. április 26. Problémák magas dimenzióban Az idıbeni összefüggıség és a nemstacionaritás szerepe Ismétlés Tanultunk Többdimenziós stabilis eloszlásokról Többdimenziós extrém-érték eloszlásokról

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Loss Distribution Approach

Loss Distribution Approach Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói

Részletesebben

KÖZELÍTŐ INFERENCIA II.

KÖZELÍTŐ INFERENCIA II. STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Határeloszlástétel a maximumokra. 3. előadás, március 1. A bizonyítás vázlata. Típusok. Tétel (Fisher és Tippet, 1928)

Határeloszlástétel a maximumokra. 3. előadás, március 1. A bizonyítás vázlata. Típusok. Tétel (Fisher és Tippet, 1928) Határeloszlástétel a maximumokra 3. előadás, 2017. március 1. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Tétel

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,

Részletesebben

Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás,

Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás, Matematikai statisztika. elıadás, 9.5.. Továbblépés Ha nem fogadható el a reziduálisok korrelálatlansága: Lehetnek fel nem tárt periódusok De más kapcsolat is fennmaradhat az egymáshoz közeli megfigyelések

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Markov-láncok stacionárius eloszlása

Markov-láncok stacionárius eloszlása Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet

Részletesebben

Matematikai statisztika szorgalmi feladatok

Matematikai statisztika szorgalmi feladatok Matematikai statisztika szorgalmi feladatok 1. Feltételes várható érték és konvolúció 1. Legyen X és Y független és azonos eloszlású valószín ségi változó véges második momentummal. Mutassuk meg, hogy

Részletesebben

Statisztikai módszerek a skálafüggetlen hálózatok

Statisztikai módszerek a skálafüggetlen hálózatok Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Dr. Karácsony Zsolt. Miskolci Egyetem november

Dr. Karácsony Zsolt. Miskolci Egyetem november Valószínűségszámítás és Matematikai statisztika Dr. Karácsony Zsolt Miskolci Egyetem, Alkalmazott Matematikai Tanszék 2013-2014 tanév 1. félév Miskolci Egyetem 2013. november 11-18 - 25. Dr. Karácsony

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58 u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Diagnosztika és előrejelzés

Diagnosztika és előrejelzés 2018. november 28. A diagnosztika feladata A modelldiagnosztika alapfeladatai: A modellillesztés jóságának vizsgálata (idősoros adatok esetén, a regressziónál már tanultuk), a reziduumok fehérzaj voltának

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Gyakorlati kérdések. 2. előadás, február 22. Szimuláció (Chambers, 1976) Michael-féle szórásstabilizált P-P plot

Gyakorlati kérdések. 2. előadás, február 22. Szimuláció (Chambers, 1976) Michael-féle szórásstabilizált P-P plot Gyakorlati kérdések 2. előadás, 2017. február 22. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Paraméterbecslés:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Statisztika Elıadások letölthetık a címrıl

Statisztika Elıadások letölthetık a címrıl Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687) STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

Részletesebben

Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés

Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Elek Péter 1. Valószínűségi változók és eloszlások 1.1. Egyváltozós eset Ismétlés: valószínűség fogalma Valószínűségekre vonatkozó axiómák

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

Statisztikai becslés

Statisztikai becslés Kabos: Statisztika II. Becslés 1.1 Statisztikai becslés Freedman, D. - Pisani, R. - Purves, R.: Statisztika. Typotex, 2005. Reimann J. - Tóth J.: Valószínűségszámítás és matematikai statisztika. Tankönyvkiadó,

Részletesebben

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Elméleti összefoglaló a Valószín ségszámítás kurzushoz Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás

földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév 6. elıadás Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

IBNR számítási módszerek áttekintése

IBNR számítási módszerek áttekintése 1/13 IBNR számítási módszerek áttekintése Prokaj Vilmos email: Prokaj.Vilmos@pszaf.hu 1. Kifutási háromszög Év 1 2 3 4 5 2/13 1 X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 2 X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 3 X 3,1 X 3,2

Részletesebben

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

További sajátértékek. 10. előadás, május 3. Megjegyzések. A szűrés hatása a portfólió optimalizálásra

További sajátértékek. 10. előadás, május 3. Megjegyzések. A szűrés hatása a portfólió optimalizálásra További sajátértékek 10. előadás, 2017. május 3. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Keressük azt az alacsonyabb

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement

Részletesebben

Lineáris regressziószámítás 1. - kétváltozós eset

Lineáris regressziószámítás 1. - kétváltozós eset Lineáris regressziószámítás 1. - kétváltozós eset Orlovits Zsanett 2019. február 6. Adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Gyakorlati tapasztalatok magas dimenzióban. 9. előadás, április 26. Becslési módszer magas dimenzióban: páronkénti likelihood

Gyakorlati tapasztalatok magas dimenzióban. 9. előadás, április 26. Becslési módszer magas dimenzióban: páronkénti likelihood Gyakorlati tapasztalatok magas dimenzióban 9. előadás, 2017. április 26. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás

Részletesebben

Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal?

Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? Egymintás próbák σ s μ m Alapkérdés: A populáció egy adott megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? egymintás t-próba Wilcoxon-féle előjeles

Részletesebben

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)

Részletesebben

Gyak. vez.: Palincza Richárd ( Gyakorlatok ideje/helye: CS , QBF10

Gyak. vez.: Palincza Richárd (  Gyakorlatok ideje/helye: CS , QBF10 Intervallumek Matematikai statisztika Gazdaságinformatikus MSc 1. előadás 2018. szeptember 3. 1/53 - Előadó, hely, idő etc. Intervallumek Előadó: Vizer Máté (email: mmvizer@gmail.com) Előadások ideje/helye:

Részletesebben

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

4. előadás. Kiegyenlítő számítások MSc 2018/19 1 / 41

4. előadás. Kiegyenlítő számítások MSc 2018/19 1 / 41 4. előadás Kiegyenlítő számítások MSc 2018/19 1 / 41 Áttekintés Extrém érték elmélet Monte Carlo eljárások 2 / 41 Extrém érték elmélet Bevezetés Alapvető módszerek (GEV és POT) Extrém érték eloszlások

Részletesebben

5. előadás - Regressziószámítás

5. előadás - Regressziószámítás 5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Véletlen bolyongás. 2. rész. Márkus László jegyzete alapján Tóth Tamás december 10.

Véletlen bolyongás. 2. rész. Márkus László jegyzete alapján Tóth Tamás december 10. 2. rész 2012. december 10. Határeloszlás tételek a bolyongás funkcionáljaira 1 A bolygó pont helyzete: EX i = 0, D 2 X i = EX 2 = 1 miatt i ES n = 0, D 2 S n = n, és a centrális határeloszlás tétel (CHT)

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

c adatpontok és az ismeretlen pont közötti kovariancia vektora

c adatpontok és az ismeretlen pont közötti kovariancia vektora 1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )

Részletesebben

Esettanulmány. A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre. Tartalomjegyzék. 1. Bevezetés... 2

Esettanulmány. A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre. Tartalomjegyzék. 1. Bevezetés... 2 Esettanulmány A homoszkedaszticitás megsértésének hatása a regressziós paraméterekre Tartalomjegyzék 1. Bevezetés... 2 2. A lineáris modell alkalmazhatóságának feltételei... 2 3. A feltételek teljesülésének

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

Least Squares becslés

Least Squares becslés Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

Bemenet modellezése (III.), forgalommodellezés

Bemenet modellezése (III.), forgalommodellezés Bemenet modellezése (III.), forgalommodellezés Vidács Attila 2007. október 31. Hálózati szimulációs technikák, 2007/10/31 1 Modellválasztás A modellezés kedvez esetben leegyszer södik a megfelel eloszlás

Részletesebben

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat

Részletesebben

Matematikai statisztikai elemzések 3.

Matematikai statisztikai elemzések 3. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzek 3. MSTE3 modul Becslelmélet: alapfogalmak, nevezetes statisztikák, intervallum-becsl SZÉKESFEHÉRVÁR

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

Diszkriminancia-analízis

Diszkriminancia-analízis Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független

Részletesebben