További sajátértékek. 10. előadás, május 3. Megjegyzések. A szűrés hatása a portfólió optimalizálásra

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "További sajátértékek. 10. előadás, május 3. Megjegyzések. A szűrés hatása a portfólió optimalizálásra"

Átírás

1 További sajátértékek 10. előadás, május 3. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Keressük azt az alacsonyabb dimenziós alteret, ami a variabilitás jelentős részéért felelős Ha k dimenziós az altér, akkor a k legnagyobb sajátértékhez tartozó sajátvektor lesz a bázisa A további sajátértékek helyett pedig vegyük az átlagukat. Az új kovarianciamátrix tehát σ ij = k l=1 λ l v (l) i v (l) j + λ N l=k+1 v (l) i v (l) j ahol λ 1 λ 2 λ N a sajátértékek, v (1),..., v (N) pedig a hozzátartozó sajátvektorok Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 1 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 2 / 35 Megjegyzések A szűrés hatása a portfólió optimalizálásra Az eredeti és a szűrt kovarianciamátrix főátlója (azaz a szórásnégyzetek) azonosak, a szűrés csak a kovarianciákra vonatkozik A legkisebb sajátértékek nagyobbak lettek Gyakran célszerű a főkomponensanalízist a korrelációs mátrixra elvégezni (a kovarianciamátrix helyett) A főkomponensek számát nem mindig lehet egyértelműen meghatározni. Ekkor érdemes lehet a zajra a Wishart eloszlást illeszteni, és azt a komponenst már a főkomponensek közé sorolni, ahol már nem fogadható el az illeszkedés A feladat T < N esetén is megoldható lesz, hiszen a 0 sajátértékeket pozitívakkal helyettesítettük Megszűnik a divergencia az N/T = 1 pontban, nem lesz túl nagy a q 0 értéke akkor sem, ha N/T kicsi. De a portfólió-súlyok nagy ingadozása nem csökken számottevően Más módszerek is vannak, hasonló eredményekkel Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 3 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 4 / 35

2 Portfólió optimalizálás és regresszió LASSO módszer A szokásos N-1 változós regresszió, ahol a legkisebb négyzetes hibát adó együtthatóvektort keressük, éppen megfelel a portfólió-optimalizálás feladatának (azért N-1 változós, mert az N-edik súly nem választható meg szabadon a súlyösszegre vonatkozó feltétel miatt) A regressziós feladatra kidolgozott módszertan átvihető a portfólió optimalizálásra LASSO=least absolute shrinkage and selection operator L 1 -regularizációs módszer: az együttható vektor (portfólió súlyok) L1 normájára vonatkozó feltétel mellett optimalizál. Tipikus megvalósítás: λ N i=1 w i hozzáadása a célfüggvényhez λ szabályozza a regularizáció erősségét, megválasztása nem triviális Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 5 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 6 / 35 Az eredmények Véletlen mátrixok A súlyok tipikusan kevésbé ingadoznak Sok 0 értékű súly is megjelenik Kérdés, hogy ezzel nem csak elfedődik-e a bizonytalanság (ha például hol itt, hol ott 0 a súly) Vannak további regularizációs lehetőségek is Faktormodellek is használhatóak Láttuk a portfólió-optimalizálásnál, hogy a megoldás első lépésében becsülnünk kell a kovariancia-mátrixot Ez a becslés: véletlen N N-es mátrix Precízebben: X : Ω M N N mérhető leképezés (a mátrixokat euklideszi térként elképzelve) Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 7 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 8 / 35

3 Kérdésfeltevés Határérték N nagy, tehát az N határérték érdekes Legyen X ij szimmetrikus (X ij = X ji ) független normális eloszlású (Wigner mátrix) X T X/T (X most N T -es): Wishart mátrix: ez felel meg a kovarianciamátrix becslésének Sajátértékek is valószínűségi változók. Külön külön nem könnyű őket követni, egyszerűbb a spektrumot (a sajátértékek összessége) vizsgálni Legyen X N N-es szimmetrikus mátrix független standard normális eloszlású elemekkel (Wigner mátrix). X spektruma N elemű: λ i (i = 1,..., N). Legyen ρ N (λ) = 1 N N δ(λ λ i ) A Wigner mátrixra a spektrum határértéke: Wigner (félkör) eloszlás (Wigner, 1950) ( ) λ lim ρ N N 2 = 2 1 λ N π 2 i=1 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 9 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 10 / 35 A bizonyítás ötlete Carleman feltétel Legyen ν N = 1 N N i=1 λ i 2 N, Y Nk = valószínűségi változó (ν N véletlen mérték) x k dν N Belátható, hogy E(Y Nk ) x k dν ahol ν a Wigner-eloszlás és D 2 (Y Nk ) c k N 2 A Borel Cantelli lemma miatt ( P Y Nk E(Y Nk ) > 1 végtelen sokszor N1/4 ) = 0 Emiatt a ν N feszes, bármely részsorozata határértékének a momentumai egyértelműek Ha k=1 1 µ 1/2k k = akkor legfeljebb egy valószínűségi változó létezik, amelynek a momentumai éppen a µ k értékek. Biz.: ekkor a karakterisztikus függvényt előállítja a Taylor sorfejtés A Wigner eloszlásra teljesül a feltétel Általánosítások A bizonyítás átvihető nem normális eloszlású mátrixelemekre is, elég, hogy iid-k és E(X ij ) = 0 és E(Xij 2 ) = 1 (i j), és szimmetrikus a mátrix Ha a mátrix elemei nem véges szórású stabilis eloszlások, akkor a spektrum határeloszlása nem korlátos (hatványrendben cseng le) Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 11 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 12 / 35

4 Wishart mátrix Elfajuló határeloszlás Legyen X N T -es mátrix, elemei független, azonos eloszlásúak 0 várható értékkel és 1 szórásnégyzettel κ = E(X 4 ij ) Ekkor W = X T X/T esetén E(W ij ) = 0, ha i j és 1, ha i = j (jel.: δ ij ) D 2 (W ij ) = (1 + (κ 2)δ ij )/T D 2 (W ij ) 0, ha N fix, T és így W ij I. Ez akkor is igaz marad, ha T és N úgy, hogy N/T 0 Ha T < N, W ij elfajuló, a 0 sajátértékek súlya (N T )/N. Ha tehát N úgy, hogy T konstans, akkor a spektrum a 0-hoz tart (elég: N/T ). Nem triviális határeloszlás tehát csak az N/T c esetben várható Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 13 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 14 / 35 Marchenko-Pastur tétel (1967) Tulajdonságok Tétel: Legyen X N T -es (T > N) független, azonos eloszlású, 1 szórású, 0 várható értékű elemekből álló véletlen mátrix, W = X T X/T pedig a hozzátartozó Wishart-mátrix. Ekkor W spektrálsűrűsége ρ N;T (λ) N és N/T = r < 1 konstans esetén 1 N ρ N;T (λ) 1 (λ+ λ)(λ λ ) I π rλ {λ <λ<λ +} ahol λ ± = (1 ± r) 2. Ez a Marchenko-Pastur eloszlás A Wigner-mátrixokhoz hasonlóan tehát a Wishart mátrixok spektruma is egy determinisztikus függvényhez tart. A sűrűség tartója a [λ, λ + ] korlátos intervallum r 0 esetén λ ± = (1 ± r) 2 1 tehát az 1-ben elfajult eloszláshoz tart (a korábbiakkal összhangban). 0 < r < 1 esetén pedig a határeloszlás a 0-ban elfajult és a fenti tétel szerinti eloszlás keveréke r 1 (T N + 0) esetén λ = (1 r) 2 0 hiszen az N > T esetben a mátrix nem teljes rangú, így zérus sajátértékek jelennek meg. Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 15 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 16 / 35

5 Alkalmazás a kovariancia becslésére Gyakorlati alkalmazás A becslés: jelöléssel Z it = X it 1 T ˆσ ij = 1 T 1 T t=1 X it T Z it Z jt Erre is alkalmazható a Marchenko- Pastur tétel aszimptotikája t=1 De a gyakorlatban a mátrix elemei nem függetlenek! Tapasztalati spektrum a S&P 500 index 406 részvényére és az MP eloszlás illesztése Külön ábrán látható a legnagyobb sajátérték A közepes (szektorális hatásokat leíró) sajátértékek eltávolítása után is marad szisztematikus eltérés az MP eloszlástól Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 17 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 18 / 35 Kapcsolat a portfólió optimalizálással Tulajdonságok A portfólió valódi szórásnégyzete (R 0 ) N N ˆσ 2 (w) = w i w j σ ij i=1 j=1 A becsült portfólió valódi szórásnégyzete (R 1 ) N N ˆσ 2 (w) = ŵ i ŵ j σ ij i=1 j=1 A portfólió "előrejelzett" szórásnégyzete (R 2 ) R 2 < R 1 Aszimptotikusan, a M-P sűrűségből: R 1 (1 N/T ) 1/2 és R 2 (1 N/T ) 1/2 Csak N/T 0 mellett fog 1-hez közelíteni a hányadosuk! A gyakorlatban még nagyobb az eltérés, mert a heteroszkedasztikusság rontja a becsléseket N N ˆσ 2 (w) = ŵ i ŵ j ˆσ ij Mérőszámok: (i = 1, 2) R i / R 0 i=1 j=1 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 19 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 20 / 35

6 Faktormodell Látens faktor-modell Mivel az adatokra a spektrum nem követi az elméleti modellt, módosítás kell Egy lehetőség: megfigyelhető, közös faktorok felhasználása: X it = µ i + β i1 Z 1t + + β ik Z kt + ε it Itt a Z j faktorok lehetnek például: Infláció Kamatláb CDS felár stb A kovariancia mátrix ebben a modellben: Σ = βω Z β T + Ω ε Formailag hasonló az előzőhöz, de a faktorok itt nem ismertek és így a modell nem határozható meg egyértelműen De normalizálás után már igen, ezért itt feltételezhető, hogy Ω Z = I, azaz Σ = ΛΛ T + Ω ε Maximum likelihood becslés vagy a főkomponens analízis is alkalmazható A faktormodell esetén a legnagyobb sajátérték végtelenhez tart, ez összhangban van a tapasztalattal itt Ω Z a faktorok kovariancia mátrixa, β N k-as együtthatómátrix, Ω ε pedig diagonális. Ezek könnyebben becsülhetőek Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 21 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 22 / 35 A szűrés fontossága A becslés ritkítása Markovitz-optimalizálás határportfóliói a kockázat-hozam síkon A két szélső görbe: Bal oldali: elméleti modell Jobb oldali: tapasztalati kovariancia mátrix alapján kapott becslés viselkedése a következő időszakban Két középső görbe: ugyanez, de szűrt kovariancia mátrixra A legegyszerűbb eszköz: levágás. Csak azokat az elemeket tekintjük nem 0-nak, amelyek becslése meghalad egy adott küszöböt. Az együtthatókat a szokásos legkisebb négyzetes módszerrel becsülve: ˆε it = x it ˆβ i Z t A becsült kovarianciamátrix: Σ ε = 1 T T ˆε t ˆε t t=1 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 23 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 24 / 35

7 Küszöbválasztás Küszöbválasztás Adaptív módszer a kovarianciamátrix elemeinek ritkítására: ( ) ˆσ ij τ = ˆσ ij I ˆσ ij ˆθ ij ω T ahol ˆθ ij = 1 T T (ˆε hˆε t ˆσ ij ) 2 t=1 ω T m T = o(1) (m T a soronkénti nem 0 elemek max. száma) és a sajátértékekre vonatkozó feltételek esetén a módosított becslés is konzisztens, a konvergencia sebessége is megadható Kalibráció: 1 valódi részvény-adatokra 3 faktoros modellt illesztünk, megbecsüljük β értékét és a kovariancia-mátrixát. 2 Ebből ritka mátrixot készítünk 3 A faktorok értékét VektorAR folyamatból szimuláljuk Szimuláció: 1 3D normális eloszlású β vektor a fenti paraméterekkel megadott eloszlásból 2 Z és ε szimulálása a modell szerint 3 A kovariancia mátrixot a fenti ritkításos eljárással becsüljük 4 N változik között Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 25 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 26 / 35 Eredmények Időfüggés A ritka mátrix jobb becslést ad, mint a hagyományos Mostanáig nem vettük figyelembe az egymás utáni megfigyelések lehetséges összefüggését (kivéve a POT módszernél a declusterezést) Vannak rutinszerűen alkalmazható idősoros modellek Ezek tanulmányozása nem tartozik a tárgyunk témái közé, mi csak az összefüggőség hatását vizsgáljuk Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 27 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 28 / 35

8 Extrémumok stacionárius sorozatokra Tulajdonságok Ha csak gyenge összefüggőség áll fenn, a maximumok határeloszlása továbbra is GEV Ehhez elég az alábbi feltétel (D(u n )): ( P max X ) ( i < u n P max X ) ( i < u n P max X ) i < u n α(n, l) {i A 1 A 2 } {i A 1 } {i A 2 } ahol A 1 = {i 1,..., i p } és A 2 = {j 1,..., j q }, 1 i 1 < i p < j 1 < < j q és j 1 i p > l,α(n, l) 0, ha n megfelelő l = l n = o(n) sorozatra. Független azonos eloszlású sorozatra minden u n -re teljesül a D(u n ) feltétel Ha normális eloszlású a sorozat, akkor elég az autokorrelációkra a ρ n log(n) 0 feltétel Ez gyengébb, mint az általában szokásos gyenge keverés Ha teljesül u n = a n z + b n -re, akkor a normalizált maximumok határeloszlása szintén GEV (Leadbetter, 1974) De: a paraméterek eltérhetnek a független azonos eloszlású esetre adódótól Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 29 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 30 / 35 Hogyan ellenőrizzük a D feltételt? Alkalmazás: vízállás-adatok Legyen p = 1 és q = 1 a D(u) definíciójában és válasszunk egy magas u küszöböt Számoljuk ki a d(l) = 1 n l I{max(X i, X i+l ) < u} ( 1 n l n i=1 értéket l = 1,..., re n I{X i < u} ) 2 Ábrázoljuk d(l) -et l függvényében és hasonlítsuk össze ismert sorozatokra adódó d(l) értékekkel i=1 Folytonos vonal: becslések Szaggatott vonal: 95%-os konf. int Kék: iid N(0;1) Piros: AR(1) Az adatok (fekete vonal) a konfidencia intervallumon belül vannak Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 31 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 32 / 35

9 Az extremális index Becslés Ha az eredeti X 1, X 2,..., X n sorozathoz képezzük az X 1, X 2,..., X n független, azonos eloszlású sorozatot és feltesszük, hogy [max(x 1, X 2,..., X n ) a n ]/b n [max(x 1, X 2,..., X n ) a n ]/b n G 1 és [max(x 1, X 2,..., X n ) a n ]/b n G 2 akkor a D(u n ) feltétel esetén G θ 1 = G 2 Tulajdonságok: 0 < θ 1 Az alakparaméter ugyanaz a két esetben Független sorozatra θ = 1, de a megfordítás nem igaz θ becsülhető például abból a tulajdonságból, hogy θ az átlagos (küszöb feletti) klaszterméret reciproka Másik lehetőség: futam-módszer De nem könnyű a becslés: különböző küszöbökre és becslési módszerekre igencsak eltérő értékek adódhatnak Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 33 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 34 / 35 Blokkmódszer Hivatkozások Legyen n megfigyelésünk Osszuk fel k n csoportra, mindegyik r n nagyságú N n a küszöböt meghaladó megfigyelések száma Z n azon blokkok száma, amelyekben van küszöb fölötti megfigyelés Becslések: Innen: F(u n ) N n n, F r n (u n ) Z n k n F r (u) F θr (u) és így ˆθ = log( 1 Zn k n ) r n log ( 1 Nn n ) M. Potters, J.-P. Bouchaud, and L. Laloux. Financial applications of random matrix theory: old laces and new pieces Pafka, Sz. Kondor, I.: Noisy covariance matrices and portfolio optimization J. Fan, Y. Liao, and M. Mincheva: High dimensional covariance matrix estimation in approximate factor models (2011). J.P. Bouchaud, M. Potters: Financial Applications of Random Matrix Theory, a short review (2009) Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 35 / 35 Zempléni András (ELTE) 10. előadás, május 3. Áringadozások előadás 36 / 35

5. elıadás március 22. Portfólió-optimalizálás

5. elıadás március 22. Portfólió-optimalizálás 5. elıadás 203. március 22. Portfólió-optimalizálás Alapfeladat Cél: minél nagyobb várható hozam elérése De: közben a kockázat legyen minél kisebb Kompromisszum: elvárt hozamot érje el a várható érték

Részletesebben

9-10. elıadás április 26. Problémák magas dimenzióban Az idıbeni összefüggıség és a nemstacionaritás szerepe

9-10. elıadás április 26. Problémák magas dimenzióban Az idıbeni összefüggıség és a nemstacionaritás szerepe 9-10. elıadás 2013. április 26. Problémák magas dimenzióban Az idıbeni összefüggıség és a nemstacionaritás szerepe Ismétlés Tanultunk Többdimenziós stabilis eloszlásokról Többdimenziós extrém-érték eloszlásokról

Részletesebben

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Gyakorlati tapasztalatok magas dimenzióban. 9. előadás, április 26. Becslési módszer magas dimenzióban: páronkénti likelihood

Gyakorlati tapasztalatok magas dimenzióban. 9. előadás, április 26. Becslési módszer magas dimenzióban: páronkénti likelihood Gyakorlati tapasztalatok magas dimenzióban 9. előadás, 2017. április 26. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Az extremális index. 11. előadás, május 10. Blokkmódszer. Becslés

Az extremális index. 11. előadás, május 10. Blokkmódszer. Becslés Az extremális index 11. előadás, 2017. május 10. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Ha az eredeti X 1,

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,

Részletesebben

Lineáris regressziós modellek 1

Lineáris regressziós modellek 1 Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás,

Továbblépés. Általános, lineáris modell. Példák. Jellemzık. Matematikai statisztika 12. elıadás, Matematikai statisztika. elıadás, 9.5.. Továbblépés Ha nem fogadható el a reziduálisok korrelálatlansága: Lehetnek fel nem tárt periódusok De más kapcsolat is fennmaradhat az egymáshoz közeli megfigyelések

Részletesebben

ANOVA,MANOVA. Márkus László március 30. Márkus László ANOVA,MANOVA március / 26

ANOVA,MANOVA. Márkus László március 30. Márkus László ANOVA,MANOVA március / 26 ANOVA,MANOVA Márkus László 2013. március 30. Márkus László ANOVA,MANOVA 2013. március 30. 1 / 26 ANOVA / MANOVA One-Way ANOVA (Egyszeres ) Analysis of Variance (ANOVA) = szóráselemzés A szórásokat elemezzük,

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

LINEÁRIS MODELLBEN május. 1. Lineáris modell, legkisebb négyzetek elve

LINEÁRIS MODELLBEN május. 1. Lineáris modell, legkisebb négyzetek elve BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT LINEÁRIS MODELLBEN Móri Tamás ELTE TTK Valószínűségelméleti és Statisztika Tanszék 2008 május Lineáris modell, legkisebb négyzetek elve Tegyük fel, hogy egy bizonyos pl fizikai)

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Bevezetés az algebrába 2 Vektor- és mátrixnorma

Bevezetés az algebrába 2 Vektor- és mátrixnorma Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.

Részletesebben

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük

Részletesebben

Diagnosztika és előrejelzés

Diagnosztika és előrejelzés 2018. november 28. A diagnosztika feladata A modelldiagnosztika alapfeladatai: A modellillesztés jóságának vizsgálata (idősoros adatok esetén, a regressziónál már tanultuk), a reziduumok fehérzaj voltának

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Pontfolyamatok definíciója. 5. előadás, március 10. Példák pontfolyamatokra. Pontfolyamatok gyenge konvergenciája

Pontfolyamatok definíciója. 5. előadás, március 10. Példák pontfolyamatokra. Pontfolyamatok gyenge konvergenciája Pontfolyamatok definíciója 5. előadás, 2016. március 10. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Hasznos eszköz,

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35 9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,

Részletesebben

5. előadás - Regressziószámítás

5. előadás - Regressziószámítás 5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat

Részletesebben

c adatpontok és az ismeretlen pont közötti kovariancia vektora

c adatpontok és az ismeretlen pont közötti kovariancia vektora 1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )

Részletesebben

Bevezetés a hipotézisvizsgálatokba

Bevezetés a hipotézisvizsgálatokba Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -

Részletesebben

Többváltozós lineáris regresszió 3.

Többváltozós lineáris regresszió 3. Többváltozós lineáris regresszió 3. Orlovits Zsanett 2018. október 10. Alapok Kérdés: hogyan szerepeltethetünk egy minőségi (nominális) tulajdonságot (pl. férfi/nő, egészséges/beteg, szezonális hatások,

Részletesebben

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Least Squares becslés

Least Squares becslés Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Elméleti összefoglaló a Valószín ségszámítás kurzushoz Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek

Részletesebben

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

IBNR számítási módszerek áttekintése

IBNR számítási módszerek áttekintése 1/13 IBNR számítási módszerek áttekintése Prokaj Vilmos email: Prokaj.Vilmos@pszaf.hu 1. Kifutási háromszög Év 1 2 3 4 5 2/13 1 X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 2 X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 3 X 3,1 X 3,2

Részletesebben

Gyakorlati kérdések. 2. előadás, február 22. Szimuláció (Chambers, 1976) Michael-féle szórásstabilizált P-P plot

Gyakorlati kérdések. 2. előadás, február 22. Szimuláció (Chambers, 1976) Michael-féle szórásstabilizált P-P plot Gyakorlati kérdések 2. előadás, 2017. február 22. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Paraméterbecslés:

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

1.1. Vektorok és operátorok mátrix formában

1.1. Vektorok és operátorok mátrix formában 1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

1. Bázistranszformáció

1. Bázistranszformáció 1. Bázistranszformáció Transzformáció mátrixa új bázisban A bázistranszformáció képlete (Freud, 5.8.1. Tétel) Legyenek b és d bázisok V -ben, ] v V és A Hom(V). Jelölje S = [[d 1 ] b,...,[d n ] b T n n

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november

Részletesebben

Centrális határeloszlás-tétel

Centrális határeloszlás-tétel 13. fejezet Centrális határeloszlás-tétel A valószínűségszámítás legfontosabb állításai azok, amelyek független valószínűségi változók normalizált összegeire vonatkoznak. A legfontosabb ilyen tételek a

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Loss Distribution Approach

Loss Distribution Approach Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói

Részletesebben

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés

Részletesebben

Markov-láncok stacionárius eloszlása

Markov-láncok stacionárius eloszlása Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius

Részletesebben

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az

Részletesebben

Mátrixhatvány-vektor szorzatok hatékony számítása

Mátrixhatvány-vektor szorzatok hatékony számítása Mátrixhatvány-vektor szorzatok hatékony számítása Izsák Ferenc ELTE TTK, Alkalmazott Analízis és Számításmatematikai Tanszék & ELTE-MTA NumNet Kutatócsoport munkatárs: Szekeres Béla János Alkalmazott Analízis

Részletesebben

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14. Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis 1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb

Részletesebben

Nagy-György Judit. Szegedi Tudományegyetem, Bolyai Intézet

Nagy-György Judit. Szegedi Tudományegyetem, Bolyai Intézet Többváltozós statisztika Szegedi Tudományegyetem, Bolyai Intézet Többváltozós módszerek Ezek a módszerek több változó együttes vizsgálatára vonatkoznak. Alapvető típusaik: többdimenziós eloszlásokra vonatkozó

Részletesebben

Saj at ert ek-probl em ak febru ar 22.

Saj at ert ek-probl em ak febru ar 22. Sajátérték-problémák 2016. február 22. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre az egyenlet

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak 10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:

Részletesebben

Határeloszlástétel a maximumokra. 3. előadás, március 1. A bizonyítás vázlata. Típusok. Tétel (Fisher és Tippet, 1928)

Határeloszlástétel a maximumokra. 3. előadás, március 1. A bizonyítás vázlata. Típusok. Tétel (Fisher és Tippet, 1928) Határeloszlástétel a maximumokra 3. előadás, 2017. március 1. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Tétel

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Line aris f uggv enyilleszt es m arcius 19.

Line aris f uggv enyilleszt es m arcius 19. Lineáris függvényillesztés 2018. március 19. Illesztett paraméterek hibája Eddig azt néztük, hogy a mérési hiba hogyan propagál az illesztett paraméterekbe, ha van egy konkrét függvényünk. a hibaterjedés

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Az impulzusnyomatékok általános elmélete

Az impulzusnyomatékok általános elmélete Az impulzusnyomatékok általános elmélete November 27, 2006 Az elemi kvantummechanika keretében tárgyaltuk már az impulzusnyomatékot. A továbbiakban általánosítjuk az impulzusnyomaték fogalmát a kvantummechanikában

Részletesebben

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában

A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában Horváth Gábor ghorvath@hit.bme.hu (Horváth András, Telek Miklós) - p. 1 Motiváció, problémafelvetés

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

A többváltozós lineáris regresszió III. Főkomponens-analízis

A többváltozós lineáris regresszió III. Főkomponens-analízis A többváltozós lineáris regresszió III. 6-7. előadás Nominális változók a lineáris modellben 2017. október 10-17. 6-7. előadás A többváltozós lineáris regresszió III., Alapok Többváltozós lineáris regresszió

Részletesebben

2010. október 12. Dr. Vincze Szilvia

2010. október 12. Dr. Vincze Szilvia 2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján

Részletesebben