LINEÁRIS MODELLBEN május. 1. Lineáris modell, legkisebb négyzetek elve

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "LINEÁRIS MODELLBEN május. 1. Lineáris modell, legkisebb négyzetek elve"

Átírás

1 BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT LINEÁRIS MODELLBEN Móri Tamás ELTE TTK Valószínűségelméleti és Statisztika Tanszék 2008 május Lineáris modell, legkisebb négyzetek elve Tegyük fel, hogy egy bizonyos pl fizikai) mennyiség más, ismert mennyiségek lineáris kombinációja: y = a x + + a p x p Az a,, a p együtthatókat nem ismerjük, ezeket szeretnénk becsülni Ennek érdekében n mérést végzünk, nem feltétlenül azonos körülmények között A mérések során az x,, x p változók értékét ami mérésről-mérésre változhat) pontosan ismerjük, de az y mennyiséget csak véletlen hibával terhelten tudjuk mérni Tehát az i-edik mérés eredménye y i = x i, a + x i,2 a x i,p a p + ε i, ahol a ε i hibákról feltesszük, hogy 0 várható értékűek, ismeretlen) σ szórásúak és korrelálatlanok Az a j együtthatókat úgy akarjuk becsülni, hogy az ˆε i = y i x i, â + x i,2 â x i,p â p ) úgynevezett reziduálisok négyzetösszege minimális legyen történő becslésnek Ez az eljárás Gausstól származik Ezt nevezzük a legkisebb négyzetek elvén Mielőtt a legkisebb négyzetes becslést kiszámítanánk, írjuk fel a modellt tömörebb alakban Legyen y = y y 2 y n, X = x, x,2 x,p x 2, x 2,2 x 2,p x n, x n,2 x n,p, a = a a 2 a p, ε = ε ε 2 ε n Ekkor a lineáris modell: y = Xa + ε, ahol y és ε n-dimenziós véletlen vektorok, Eε) = 0, Σ ε) = σ 2 Id n, X n p méretű ismert együtthatómátrix, a R p paramétervektor Keressük azt az â becslést, amelyre ˆε 2 := y Xâ 2 minimális Definíció A fenti tulajdonságú â becslést a legkisebb négyzetes LN ) becslésének nevezzük 2 Tétel Gauss-féle normálegyenlet) Az â vektor pontosan akkor minimalizálja y Xâ 2 -et, ha megoldása a következő lineáris egyenletrendszernek: X X â = X y Bizonyítás Xâ az Im X altér azon eleme, amely a legközelebb van y-hoz, vagyis y merőleges vetülete Im X-re Ez azzal ekvivalens, hogy y Xâ merőleges Im X-re, azaz benne van a Ker X altérben: X y Xâ) = 0

2 2 MÓRI TAMÁS A tételből az is következik, hogy a Gauss-féle normálegyenletnek mindig van megoldása, de természetesen csak akkor egyértelmű, ha X X invertálható Ez pedig pontosan akkor következik be, ha a rangja p Mivel rang X X = rang X, ehhez az kell, hogy az X mátrix oszlopai lineárisan függetlenek legyenek Legyen r = rang X Ha r = p, teljes rangú esetről beszélünk Ekkor tehát és könnyen látható, hogy â = X X) X y, Eâ = X X) X Xa = a, Σ â) = X X) X σ 2 Id n ) XX X) = σ 2 X X) Mivel tetszőleges y R n esetén Xâ = XX X) X y, ezért az Im X-re való ortogonális projekció operátora P X = XX X) X 3 Megjegyzés Ha r < p, akkor a Gauss-féle normálegyenletnek végtelen sok megoldása van, ezek egy p r dimenziós hipersíkot alkotnak Az egyenletrendszer legkisebb normájú megoldása: â = X X) X y, ahol X X) az X X mátrix Moore Penrose-féle pszeudoinverze Ezt a következőképpen lehet kiszámítani: tekintsük a mátrix X X = UΛU spektrálfelbontását, ahol Λ = diagλ,, λ p ) az X X mátrix sajátértékeit tartalmazó nemnegatív elemű) diagonális mátrix, U pedig ortonormált mátrix, amelynek oszlopai a sajátértékekhez tartozó ortonormált sajátvektorok Ekkor X X) = UΛ U, Λ = diagλ,, λ p ), ahol λ i = /λ i, ha λ i 0, és 0 különben Hangsúlyozzuk, hogy bár â nem egyértelmű a nem teljes rangú esetben, de Xâ = P X y már igen Ezért természetesen P X = XX X) X Bontsuk fel R n -et ortogonális alterek direkt összegére: R n = L X L R, ahol L X = Im X, L R = L X Az alterek dimenziója: n = r + n r) Ennek megfelelően az y megfigyelésvektor ortogonális felbontása: y = Xâ + ˆε 4 Definíció Az L R altér neve reziduális altér, a Q R = ˆε 2 mennyiség neve reziduális négyzetösszeg, az s 2 R = Q R mennyiség pedig a reziduális szórásnégyzet n r 5 Tétel Az s 2 R reziduális szórásnégyzet torzítatlan becslés σ2 -re Bizonyítás Jelölje P R a reziduális altérre való merőleges vetítés operátorát Ekkor nyilvánvalóan P R X = 0, továbbá EQ R = E P R y 2 = E y P R P R y ) Mint tudjuk, egy négyzetes mátrix pontosan akkor projekció, ha szimmetrikus és idempotens Ezért, felhasználva a trace függvény linearitását és ciklikus invarianciáját, EQ R = E y P R y ) = E tr y P R y ) = E tr P R yy ) = tr P R Eyy ) ) = = tr P R Σ y) + Ey Ey ) = tr P R σ 2 Id n + Xaa X ) = σ 2 tr P R Egy projekciónak csak 0 és sajátértékei lehetnek, ezért a nyoma, amely a sajátértékek összege, megegyezik a nem 0 sajátértékei számával, azaz a képterének a dimenziójával Tehát EQ R = σ 2 n r), és ebből Es 2 R = σ2

3 LINEÁRIS MODELL 3 6 Definíció Legyen a C mátrix q p mértetű Az a paraméter ψ = Ca alakú lineáris függvényét becsülhetőnek mondjuk, ha létezik torzítatlan lineáris becslése, azaz létezik olyan B q n méretű mátrix, hogy EBy) = ψ 7 Tétel ψ = Ca pontosan akkor becsülhető, ha előáll C = BX alakban, más szóval, ha C sorai benne vannak az X sorai által kifeszített altérben, az úgynevezett fázistérben Bizonyítás A By lineáris becslés pontosan akkor torzítatlan ψ-re, ha minden a R p esetén EBy) = BXa = Ca, vagyis C = BX A következő tétel a legkisebb négyzetes becslések optimalitásáról szól 8 Tétel Gauss Markov-tétel ) Legyen ψ = Ca becsülhető Ekkor a) tetszőleges â legkisebb négyzetes becslésből kiindulva a ˆψ = Câ becslés mindig ugyanaz lesz, b) ez a ˆψ becslés lineáris és torzítatlan, c) ˆψ az egyetlen optimális azaz minimális szórású) a torzítatlan lineáris becslések között A ˆψ becslést is legkisebb négyzetes becslésnek nevezzük Bizonyítás a) C = BX, ezért ˆψ = BXâ = BP X y valóban nem függ â választásától b) Látható, hogy ˆψ lineáris becslés, és E ˆψ = EBP X y) = BP X Ey = BP X Xa = BXa = ψ c) Legyen By tetszőleges torzítatlan lineáris becslés, akkor C = BX, és ezzel a B-vel is ˆψ = BP X y Mivel By = BP X + P R )y = BP X y + BP R y, ezért Σ By) = covbp X y + BP R y, BP X y + BP R y) = = Σ BP X y) + covbp X y, BP R y) + covbp R y, BP X y) + Σ BP R y) A keresztkovarianciák értéke 0, mert P X P R = P R P X = 0 Például Tehát covbp X y, BP R y) = BP X Σ y)p R B = σ 2 BP X P R B = 0 Σ By) = Σ BPX y) + Σ BPR y) Σ BPX y) Egyenlőség csak akkor állhat fenn, ha Σ BP R y) = 0, azaz BP R y = EBP R y) = 0, vagyis valószínűséggel By = BP X y = ˆψ Egyébként a torzítatlan lineáris becslések osztálya konvex, és a négyzetes veszteségfüggvény szigorúan konvex, ebből is következik az optimális becslés egyértelműsége) 9 Megjegyzés A teljes rangú esetben a paraméter minden lineáris függvénye becsülhető, mégpedig ψ = Ca legkisebb négyzetes becslése ˆψ = CX X) X y, és Σ ˆψ) = σ 2 CX X) C 2 Lineáris hipotézis normális lineáris modellben Ebben a részben normális lineáris modellel foglalkozunk, azaz feltesszük, hogy a véletlen hibák ε vektora normális eloszlású Ekkor tehát y N n Xa, σ 2 Id n ), és az y = Xâ + ˆε ortogonális felbontásban az összeadandók függetlenek, továbbá mivel Ey L R, ezért Q R σ 2 χ 2 n r Legyen B q p méretű mátrix, b Im B, és tekintsük a H 0 : Ba = b lineáris hipotézist az ellenhipotézis H : Ba b) Elegendő azzal az esettel foglalkoznunk, amikor b = 0, az általános eset ugyanis átparaméterezéssel visszavezethető erre: legyen a 0 R p olyan, hogy Ba 0 = b, és legyen az új paraméter ā = a a 0, továbbá ȳ = y Xa 0 Ezzel ȳ = Xā + ε ismét normális lineáris modell, amelyben H 0 a Bā = 0 alakot ölti H 0 teszteléséhez az ún általánosított likelihood-hányados próbát alkalmazzuk Az X, B, P = {P ϑ : ϑ Θ}) statisztikai mezőn tekintsük a Θ = Θ 0 Θ hipotézisvizsgálati feladatot Általánosított likelihood-hányados statisztika alatt a következő mennyiséget értjük: T X) = sup{f ϑx) : ϑ Θ} sup{f ϑ X) : ϑ Θ 0 }

4 4 MÓRI TAMÁS Ha a nullhipotézis teljesül, akkor ez közel van -hez, míg ha nem, akkor a számláló jóval nagyobb a nevezőnél, ezért a hányados nagy A nullhipotézis tesztelése tehát úgy történhet, hogy ha az általánosított likelihood-hányados statisztika nagyobb, mint valamely kritikus érték, akkor H 0 -t elvetjük, ha kisebb, akkor H 0 -t elfogadjuk, egyenlőség esetén pedig, ha szükséges, randomizálunk Ha mind a nullhipotézis, mind az ellenhipotézis egyszerű, azaz a hipotézisünk szerint a sűrűségfüggvény f 0, az ellenhipotézis szerint pedig f, akkor a T X) statisztika a következő alakot ölti: max{f 0 X), f X)} f 0 X) { = max, f X) } f 0 X) Itt a második tag a Neyman Pearson lemmából ismerős likelihood-hányados, vagyis a klasszikus likelihood-hányados próbát kapjuk, ha a kritikus érték nagyobb -nél Bár a Neyman Pearson lemmában a mintanagyság növekedtével a kritikus érték exponenciális sebességgel 0-hoz tart, de ez azért van, mert ott a két hipotézis,,el van választva : DP 0 P ) > 0, míg az általánosított likelihood-hányados próbát olyan feladatokban szokták alkalmazni, ahol a hipotézisek érintkeznek, ezért a kritikus érték tipikusan nagy) Jelen esetben a paraméter a, σ), és az y megfigyelések likelihood-függvénye f a,σ y) = 2π) n/2 σ n exp 2σ 2 y Xa 2) Látható, hogy tetszőleges rögzített σ esetén az a-ban való maximalizálás azzal ekvivalens, hogy a kitevőben az y Xa 2 reziduális négyzetösszeget minimalizáljuk: a statisztika számlálójához a teljes R p -n, a nevezőhöz pedig csak a nullhipotézisnek megfelelő Ker B altéren: T y) = sup{f a,σy) : a R p sup, σ > 0} sup{f a,σ y) : a Ker B, σ > 0} = σ>0 sup σ>0 σ n exp ) 2σ 2 y Xâ 2 σ n exp ), 2σ 2 y Xã 2 ahol â a legkisebb négyzetes becslés, ã pedig a Ker B altér olyan a eleme, amelyre y Xa 2 minimális Maximalizáljunk most σ-ban! A maximalizálandó kifejezés mind a számlálóban, mind a nevezőben σ n exp C ) 2σ 2 alakú Logaritmálás után deriválva a n σ + C σ 3 = 0 egyenletet kapjuk, azaz σ2 = C n, és a szuprémum σ n exp C ) ) n/2 Ce 2σ 2 = n Tehát az általánosított likelihood-hányados statisztika T y) = y Xã n y Xâ n Legyen L 0 = {Xa : Ba = 0}, és L = L X L 0, azaz R n = L 0 L L R ortogonális alterek direkt összege Jelölje L 0 dimenzióját r 0, akkor L dimenziója r r 0 Világos, hogy Xã az y merőleges vetülete az L 0 altérre, tehát az y vektor ortogonális felbontása: y = y 0 + y + y R, ahol y 0 = Xã, y = Xâ Xã, és y R = ˆε E három komponens független nemcentralitási paraméter értéke Vezessük be a Q = y 2 és az s 2 = Q /r r 0 ) jelölést Q eloszlása σ 2 χ 2 r r 0 [λ ], ahol a λ λ = Ey 2 σ 2 Világos, hogy H 0 pontosan akkor teljesül, ha Ey = Xa L 0, azaz Ey = Ey) = 0, vagyis λ = 0 A Pitagorasz-tétel szerint y Xã 2 = y + y R 2 = y 2 + y R 2 = Q + Q R,

5 LINEÁRIS MODELL 5 tehát T y) = + Q ) n 2 Q R Nyilvánvaló, hogy T y) helyett használhatnánk bármely szigorúan monoton növő függvényét is próbastatisztika céljára A gyakorlatban az F y) = s2 s 2 = n r T y) 2/n ) R r r 0 statisztikát szokták használni Ez H 0 teljesülése esetén F r r0, n r)-eloszlású Tehát a lineáris hipotézis tesztelésére F -próbát alkalmazhatunk, mégpedig egyoldalit, mert ha H 0 nem teljesül, a próbastatisztika eloszlása úgynevezett nemcentrális F -eloszlás, ami a centrálisnak is nevezett hagyományos F -eloszlástól csak abban különbözik, hogy a számlálójában álló χ 2 -eloszlás nemcentrális A nemcentrális χ 2 és a nemcentrális F sztochasztikusan nagyobb a centrális párjánál, ezért H 0 nem teljesülése esetén az F y) statisztika inkább nagyobb értékeket vesz fel Tehát kimondhatjuk az alábbi tételt: 2 Tétel A H 0 : Ba = 0 lineáris hipotézis tesztelésére az általánosított likelihood-próba a következőképpen hajtható végre: az F y) = s2 s 2 R próbastatisztikával r r 0, n r) szabadságfokú egyoldali F -próbát végzünk A próba gyakorlati végrehajtásához szükség lenne s 2 explicit alakjára A következő tétel ezt adja meg abban az esetben, ha rang B = q, azaz maximális Ezt mindig feltehetjük, hiszen B-ből elegendő csak olyan sorokat megtartani, amelyek lineáris kombinációjaként az összes többi sor kifejezhető 22 Tétel Tegyük fel, hogy rang X = p és rang B = q Ekkor a) A := BX X) B q q méretű pozitív definit szimmetrikus mátrix, b) ã = [ Id p X X) B A B ] â = [ X X) X X) B A BX X) ] X y, c) ha H 0 teljesül, akkor Eã = a és Σ ã) = σ 2[ X X) X X) B A BX X) ], d) Q = â B A Bâ, továbbá r 0 = p q, tehát r r 0 = q Bizonyítás a) A = CC, ahol C = BX X) /2, tehát rang A = rang C = rang B = q b) y L 0 Xâ ã) X Ker B â ã) X X Ker B = 0 X Xâ ã) Ker B, tehát X Xâ ã) = B z valamilyen z R q vektorra Ezért â ã = X X) B z, így Bâ = Bâ ã) = Az Következésképpen z = A Bâ, és végül â ã = X X) B A Bâ, amiből a bizonyítandó már közvetlenül adódik c) A b) állítás első egyenlőségéből Eã = [ Id p X X) B A B ] a = a, továbbá Σ ã) = σ 2[ Id p X X) B A B ] X X) [ Idp X X) B A B ] = = σ 2[ X X) X X) B A BX X) X X) B A BX X) + + X X) B A BX X) B A BX X) ] = }{{} A = σ 2[ X X) X X) B A BX X) ] d) X injektív, ezért r 0 = dim X Ker B ) = dim Ker B = p q Végül Q = y 2 = â ã) X X â ã) = = â B A B X X) X X X X) B A B â = }{{} A = â B A B â

6 6 MÓRI TAMÁS 23 Következmény Tegyük fel ismét, hogy rang X = p és rang B = q A H 0 : Ba = b általános lineáris hipotézis tesztelésénél csak annyi a változás a b = 0 esethez képest, hogy az F y) statisztika számlálójában Q = Bâ b) A Bâ b) Bizonyítás Az ā = a a 0 átparaméterezés után Q = ā B A B ā = â a 0 ) B A B â a 0 ) = Bâ b) A Bâ b) Amikor B sorvektor, a hipotézis arról szól, hogy a paraméterek egy bizonyos lineáris kombinációja milyen értéket vesz fel Ekkor q =, tehát A pozitív skalármennnyiség, és a 23 Következményből az alábbit kapjuk 24 Következmény Tegyük fel, hogy rang X = p, és legyen a hipotézisünk H 0 : b a = β Ekkor F y) számlálójában s 2 = b â β) 2 b X X) b, és a nullhipotézis teljesülése esetén a próbastatisztika F, n p) -eloszlású 25 Megjegyzés Az F, n p) -eloszlás a t n p -eloszlás négyzete, ezért nem tűnik túl merésznek az a feltételezés, hogy a b â β ty) = s R b X X) b statisztika eloszlása a nullhipotézis teljesülése, azaz b a = β esetén t n p -eloszlású van: b â N b a, σ 2 b X X) b ), s 2 R függvénye, ezért független ˆε-tól, így s R -től is Ez valóban így σ2 n p χ2 n p, és mivel b â = b X X) X Xâ az Xâ Ennek alapján lehetőség nyílik a H 0 : b a = β nullhipotézist a H : b a > β egyoldali ellenhipotézis ellenében is tesztelni

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58 u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

5. előadás - Regressziószámítás

5. előadás - Regressziószámítás 5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Statisztika Elıadások letölthetık a címrıl

Statisztika Elıadások letölthetık a címrıl Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Dr. Karácsony Zsolt. Miskolci Egyetem november

Dr. Karácsony Zsolt. Miskolci Egyetem november Valószínűségszámítás és Matematikai statisztika Dr. Karácsony Zsolt Miskolci Egyetem, Alkalmazott Matematikai Tanszék 2013-2014 tanév 1. félév Miskolci Egyetem 2013. november 11-18 - 25. Dr. Karácsony

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások

Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Alkalmazott algebra - SVD

Alkalmazott algebra - SVD Alkalmazott algebra - SVD Ivanyos Gábor 20 sz Poz. szemidenit mátrixok spektrálfelbontásának általánosítása nem feltétlenül négyzetes mátrixokra LSI - mögöttes szemantikájú indexelés "Közelít " webkeresés

Részletesebben

Legkisebb négyzetek módszere, Spline interpoláció

Legkisebb négyzetek módszere, Spline interpoláció Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Haladó lineáris algebra

Haladó lineáris algebra B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Nagy-György Judit. Szegedi Tudományegyetem, Bolyai Intézet

Nagy-György Judit. Szegedi Tudományegyetem, Bolyai Intézet Többváltozós statisztika Szegedi Tudományegyetem, Bolyai Intézet Többváltozós módszerek Ezek a módszerek több változó együttes vizsgálatára vonatkoznak. Alapvető típusaik: többdimenziós eloszlásokra vonatkozó

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Szinguláris érték felbontás Singular Value Decomposition

Szinguláris érték felbontás Singular Value Decomposition Szinguláris érték felbontás Singular Value Decomposition Borbély Gábor 7. április... Tétel (teljes SVD. Legyen A C m n mátrix (valósra is jó, ekkor léteznek U C m m és V C n n unitér mátrixok (valósban

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

ANOVA,MANOVA. Márkus László március 30. Márkus László ANOVA,MANOVA március / 26

ANOVA,MANOVA. Márkus László március 30. Márkus László ANOVA,MANOVA március / 26 ANOVA,MANOVA Márkus László 2013. március 30. Márkus László ANOVA,MANOVA 2013. március 30. 1 / 26 ANOVA / MANOVA One-Way ANOVA (Egyszeres ) Analysis of Variance (ANOVA) = szóráselemzés A szórásokat elemezzük,

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Likelihood, deviancia, Akaike-féle információs kritérium

Likelihood, deviancia, Akaike-féle információs kritérium Többváltozós statisztika (SZIE ÁOTK, 2011. ősz) 1 Likelihood, deviancia, Akaike-féle információs kritérium Likelihood függvény Az adatokhoz paraméteres modellt illesztünk. A likelihood függvény a megfigyelt

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2. Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és

Részletesebben

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35 9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Lineáris regressziós modellek 1

Lineáris regressziós modellek 1 Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Lineáris algebra. =0 iє{1,,n}

Lineáris algebra. =0 iє{1,,n} Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

4. Előadás. A legkisebb négyzetek problémája a következő optimalizálási alapfeladat: Minimalizáljuk

4. Előadás. A legkisebb négyzetek problémája a következő optimalizálási alapfeladat: Minimalizáljuk OPTIMALIZÁLÁSI ELJÁRÁSOK 4. Előadás Matematika MSc hallgatók számára Előadó: Hajnal Péter Jegyzetelő: Magyari Nikolett 2011. március 2. 1. A legkisebb négyzetek probléma A legkisebb négyzetek problémája

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek 10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

A többváltozós lineáris regresszió III. Főkomponens-analízis

A többváltozós lineáris regresszió III. Főkomponens-analízis A többváltozós lineáris regresszió III. 6-7. előadás Nominális változók a lineáris modellben 2017. október 10-17. 6-7. előadás A többváltozós lineáris regresszió III., Alapok Többváltozós lineáris regresszió

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak 10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:

Részletesebben

Bevezetés az algebrába 2 Vektor- és mátrixnorma

Bevezetés az algebrába 2 Vektor- és mátrixnorma Bevezetés az algebrába 2 Vektor- és mátrixnorma Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2016.

Részletesebben

1. Homogén lineáris egyenletrendszer megoldástere

1. Homogén lineáris egyenletrendszer megoldástere X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,

Részletesebben

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28 Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Az impulzusnyomatékok általános elmélete

Az impulzusnyomatékok általános elmélete Az impulzusnyomatékok általános elmélete November 27, 2006 Az elemi kvantummechanika keretében tárgyaltuk már az impulzusnyomatékot. A továbbiakban általánosítjuk az impulzusnyomaték fogalmát a kvantummechanikában

Részletesebben

Illeszkedésvizsgálati módszerek összehasonlítása

Illeszkedésvizsgálati módszerek összehasonlítása Eötvös Loránd Tudományegyetem Természettudományi Kar Illeszkedésvizsgálati módszerek összehasonlítása Szakdolgozat Készítette: Tóth Alexandra Matematika BSc. Matematikai Elemző szakirány Témavezető: Zempléni

Részletesebben

Többváltozós lineáris regresszió 3.

Többváltozós lineáris regresszió 3. Többváltozós lineáris regresszió 3. Orlovits Zsanett 2018. október 10. Alapok Kérdés: hogyan szerepeltethetünk egy minőségi (nominális) tulajdonságot (pl. férfi/nő, egészséges/beteg, szezonális hatások,

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

Normális eloszlás paramétereire vonatkozó próbák

Normális eloszlás paramétereire vonatkozó próbák Normális eloszlás paramétereire vonatkozó próbák Az alábbi próbák akkor használhatók, ha a meggyelések függetlenek, és feltételezhetjük, hogy normális eloszlásúak a meggyelések függetlenek, véges szórású

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Diagnosztika és előrejelzés

Diagnosztika és előrejelzés 2018. november 28. A diagnosztika feladata A modelldiagnosztika alapfeladatai: A modellillesztés jóságának vizsgálata (idősoros adatok esetén, a regressziónál már tanultuk), a reziduumok fehérzaj voltának

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Sajátérték, sajátvektor, sajátaltér Kf87 2017-11-21

Részletesebben

Hadamard-mátrixok Előadó: Hajnal Péter február 23.

Hadamard-mátrixok Előadó: Hajnal Péter február 23. Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22 Mátrixfüggvények Wettl Ferenc 2016. április 28. Wettl Ferenc Mátrixfüggvények 2016. április 28. 1 / 22 Tartalom 1 Diagonalizálható mátrixok függvényei 2 Mátrixfüggvény a Jordan-alakból 3 Mátrixfüggvény

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Regressziós vizsgálatok

Regressziós vizsgálatok Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

SHk rövidítéssel fogunk hivatkozni.

SHk rövidítéssel fogunk hivatkozni. Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,

Részletesebben

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,

Részletesebben