Nagy-György Judit. Szegedi Tudományegyetem, Bolyai Intézet

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Nagy-György Judit. Szegedi Tudományegyetem, Bolyai Intézet"

Átírás

1 Többváltozós statisztika Szegedi Tudományegyetem, Bolyai Intézet

2 Többváltozós módszerek Ezek a módszerek több változó együttes vizsgálatára vonatkoznak. Alapvető típusaik: többdimenziós eloszlásokra vonatkozó hipotézisvizsgálatok (általában többdimenziós normális eloszlás paramétereire vonatkoznak), varianciaanaĺızisek, klasszifikációs módszerek (diszkrimináló illetve klaszterező eljárások), dimenziócsökkentés,...

3 Egyszempontos varianciaanaĺızis (ANOVA) Tekintsük a ξ i,j N(µ i, σ 2 ), i = 1,..., r, j = 1,..., n i független mintákat. A várható értékek feĺırhatók a következő formában: µ i = µ + a i, ahol µ a várható értékek n i értékekkel súlyozott átlaga, a i pedig az i-edik csoporthatás. azaz minden csoporthatás 0. H 0 : µ 1 =... = µ r, Legyen n = n n r. Képezzük a következő statisztikákat: ξ i = ni j=1 ξ i,j n i, ξ = r ni i=1 j=1 ξ i,j. n

4 SSB = SST = r n i (ξ i,j ξ) 2, i=1 j=1 r n i (ξ i ξ) 2, SSW = i=1 Álĺıtás SST = SSB + SSW. Bizonyítás SST = r n i (ξ i,j ξ i ) 2. i=1 j=1 r n i ((ξ i,j ξ i ) + (ξ i ξ)) 2 i=1 j=1 = SSW + SSB + 2 = SSW + SSB + 2 r n i (ξ i,j ξ i )(ξ i ξ) i=1 j=1 r n i (ξ i ξ) (ξ i,j ξ i ). i=1 j=1 } {{ } 0

5 Visszatérve H 0 vizsgálatára: a próbastatisztika F = SSB SSW n r r 1, ami H 0 mellett F (r 1, n r) eloszlású. Tehát a kritikus érték α-hoz F α = Fr 1,n r (1 α). Döntés: ha F < F α, akkor H 0 -t elfogadjuk, különben elvetjük. Megjegyzések ANOVA a kétmintás t-próba általánosítása: könnyen látható, hogy ha r = 2 és 0 = 0, akkor F = t 2, és F α = t 2 α. Itt is feltétel a szórások egyezése, ami az általánosított F -próbával tesztelhető. Ha a szórások nem egyenlőek, akkor ANOVA helyett a többmintás Welch-próbát alkalmazzák. Az ANOVA-t diszkrét és normális eloszlású változó függetlenségének tesztelésére is használják. Van többszempontos varianciaanaĺızis is.

6 Lineáris regresszió Tekintsük a (ξ, η) véletlen vektort. Keressük η-t legjobban közeĺıtő lineáris függvényt, azaz a-t és b-t, amelyre E((η (aξ + b)) 2 ) négyzetes eltérés minimális. Ennek megoldása a = Cov(ξ, η) D 2 (ξ) = r(ξ, η) D(η) D(ξ), b = E(η) + Cov(ξ, η) D 2 E(ξ). (ξ) Definíció A fenti paraméterekkel feĺırt y = ax + b egyenes a regressziós egyenes, a, b paraméterek a lineáris regressziós együtthatók. Megjegyzés Ha ξ, η függetlenek, akkor a = r(ξ, η) D(η) D(ξ) = 0.

7 Regressziós egyenes paramétereinek becslése Cél Q(a, b) = n i=1 (y i ax i b) 2 minimalizálása, ez a (legkisebb négyzetek módszere). Q(a, b) minimumát az alábbi helyen veszi fel: â = r n (ξ, η) D n n(η) D n (ξ), ˆb = i=1 y n i i=1 â x i. n n Definíció Az â, ˆb értékeket becsült lineáris regressziós együtthatóknak, az y = âx + ˆb egyenest becsült lineáris regressziós egyenesnek nevezzük. Megjegyzések Q(a, b) az (x 1, y 1 ),..., (x n, y n ) pontok együttes négyzetes távolsága az y = ax + b egyenestől. A becsült lineáris regressziós egyenest η n+1 érték becslésére használjuk, ha x n+1 adott csak.

8 Varianciaanaĺızis lineáris modellben Tekintsük a η = ax + b + ε, ε N(0, σ 2 ) regressziós modellt és az η 1,..., η n mintát. H 0 : a = 0. Vegyük a regressziós egyenes paramétereinek â, ˆb becsléseit és legyen ˆη i = âx i + ˆb. Képezzük a következő négyzetösszegeket: n n n SST = (η i η) 2, SSR = (ˆη i η) 2, SSE = (η i ˆη i ) 2. i=1 a próbastatisztika i=1 F = SSR (n 2), SSE ami H 0 mellett F (1, n 2) eloszlású. Tehát a kritikus érték α-hoz F α = F1,n 2 1 (1 α). Döntés: ha F < F α, akkor H 0 -t elfogadjuk, különben elvetjük. i=1

9 Álĺıtás SST = SSR + SSE. Bizonyítás n SST = ((η i ˆη i )+(ˆη i η)) 2 = SSR+SSE+2 i=1 n (η i ˆη i )(ˆη i η), i=1 }{{} 2 n i=1 (η i âx i ˆb)(âx i + ˆb η) = â Q a (ˆb η) Q b = 0. Álĺıtás SSR = SST r 2 n (x, η). Bizonyítás n n (η i âx i ˆb) 2 = â 2 (x i x) = rn 2 (x, η) V n(η) V n (x) nv n(x). i=1 i=1 Következmény SSE = SST (1 r 2 n (x, η)) és SSR SSE = r 2 n (x, η) 1 r 2 n (x, η).

10 Többváltozós regresszió A modell η = a 1 x a r x r + b + ε, ε N(0, σ 2 ). H 0 : a 1 =... = a r = 0. Vesszük a 1,..., a r, b legkisebb négyzetes becsléseit, ˆη i = â 1 x i, â r x i,r + ˆb i és képezzük SST, SSR és SSE négyzetösszegeket. A próbastatisztika most F = SSR SSE n r 1, ami H 0 mellett r F (r, n r 1) eloszlású. Megjegyzések Az x i -k a teljes variancia r 2 n (x, η)-részét magyarázzák. Ha (ξ, η) kétdimenziós normális eloszlású és ξ, η függetlenek, akkor r n 2 n(ξ,η) aszimptotikusan t(n 2) eloszlású. 1 r 2 n (ξ,η) Az általános regressziós modell η = f (ξ) + ε. Általában a nemlineáris regressziót a lineárisra vezetik vissza.

11 Főkomponensanaĺızis Legyen X egy d-dimenziós véletlen vektor m várható érték vektorral és pozitív definit C kovarianciamátrixszal. Cél a változók számának csökkentése minél kevesebb információ vesztésével. C szimmetrikus, spektrálfelbontása C = VΛV, ahol Λ = diag(λ 1,..., λ d ) a C mátrix λ 1... λ d > 0 sajátértékeinek diagonális mátrixa, V oszlopvektorai pedig a hozzá tartozó ortonormált sajátvektorrendszer a megfelelő sorrendben. Definíció A Y = V 1 (X m) = V T (X m) az X főkomponensvektora, Y k-adik komponense (Y k ) a k-adik főkomponens.

12 Álĺıtás Y kovarianciamátrixa Λ. Bizonyítás E(Y) = E(V T (X m)) = V T (E(X) m) = 0, E(YY ) = E(V T (X m)(x m) V) = V T E((X m)(x m) )V = V CV = Λ. Tétel x 1,..., x d ortonormált vektorrendszer. Ekkor k k x i Cx i λ i, k = 1,..., d. i=1 i=1 Ha x i = v i, i = 1,..., d, akkor egyenlőség teljesül. Következmény Y k szórása maximális az z (X m) alakú vv-k között, amelyre x = 1 és z (X m) korrelálatlan Y i -vel minden i < k-ra.

13 Tétel A k(< d)-dimenziós P projekciók közül E( X PX ) kifejezést a v 1,..., v k által feszített altérre vetítő projekció minimalizálja. (Tehát X négyzetes középben vett legjobb k-dimenziós becslésének első k koordinátája a sajátvektorok bázisában az első k főkomponens, a többi pedig 0.) k megválasztása λ λ k λ λ d hányados azt mutatja, hogy az első k főkomponens a teljes variancia hányadrészét magyarázza. Megjegyzés A gyakorlatban egy minta empirikus kovarianciamátrixából indulunk, ennek sajátértékei és sajátvektorai lesznek λ i és v i (i = 1,..., d) becslései.

14 Faktoranaĺızis Definíció Legyen X egy d-dimenziós véletlen vektor m várható érték vektorral és C kovarianciamátrixszal. A k-faktor modell a következő: X = AY + W + m, ahol A átviteli mátrix vagy faktorsúlymátrix d k-as, az Y közös faktor k-dimenziós véletlen vektor, amelyre E(Y) = 0 és E(YY ) = I k, valamint W egyedi faktor egy d-dimenziós véletlen vektor, amelyre E(W) = 0, E(WW ) = D diagonális mátrix, valamint E(YW ) = 0. A modell paraméterei A és D, feltevése, hogy a faktorkomponensek korrelálatlanok, továbbá a közös faktorok szórásnégyzete 1.

15 Álĺıtás C = AA + D. (Ezt nevezzük a modell mátrixalakjának.) Bizonyítás X i = k j=1 a i,jy j + W i + m i (1 i d) szórásnégyzete c ii = k j=1 a2 i,j + d i,i, mivel a faktorkomponensek korrelálatlanok. ( k j=1 a2 i,j az X i változó kommunalitása, d i,i az egyedi variancia.) Tétel Adott k < d esetén a k-faktor modellnek pontosan akkor van megoldása, ha van olyan d d-s D nemnegatív elemű diagonális mátrix, hogy C D egy legfeljebb k-adrangú, pozitív szemidefinit. Bizonyítás Ha van megoldás, akkor C D = AA rangja legfeljebb k, mivel A egy d k-as mátrix. Fordítva, ha C D szimmetrikus, rangja r( k), akkor feĺırható AA alakban, ahol A d r-es.

16 Megjegyzések Ha C D-nek van AA alakú felbontása, akkor mivel ez nem egyértelmű: ha U egy ortogonális mátrix, akkor B = AU -ra AA = BB, sokszor további feltételeket is tesznek A-ra. Közeĺıtő megoldásokat szoktak adni (ML; legkisebb négyzetek módszere; főkomponensanaĺızis módosított változata;...). A faktorsúlyok értelmezése és a faktorok rotációja Cov(X i, Y j ) = E((X i m i )Y j ) = E(( k j=1 a i,jy j + W i )Y j ) = a i,j a faktorsúlyok korrelálatlansága miatt. X i az Y j faktorral akkor áll szoros kapcsolatban, ha a i,j nagy. A faktorok értelmezése szempontjából az a jó, ha minden i-re kevés (esetleg egy) a i,j nagy, a többi kicsi. A rotáció célja olyan U k k-s ortogonális mátrix keresése, amelyre az X = X = A Y + W + m modell, ahol A = AU és Y = U Y, teljesíti a fentieket.

17 Diszkriminanciaanaĺızis Legyen X változó N(m 1, C) vagy N(m 2, C) eloszlású. Ezt az osztálybatartozást szeretnénk eldönteni a tér egy X 1 X 2 partícionálásával. Legyen f i az i-edik osztályhoz tartozó sűrűségfüggvény. (Általában m i -t és C-t a mintából becsüljük.) Két megközeĺıtést tekintünk. I. Az f 2 (x) dx + X 1 f 1 (x) dx X 2 veszteségfüggvényt minimalizáló partícionálást keresünk. Belátható, hogy az átlagos veszteség akkor minimális, ha x osztálya j, amire m j C 1 x 1 2 m j C 1 m j nagyobb. Ez alapján L(x) = (m 1 m 2 ) C 1 x + c alakú Fisher-féle diszkriminancia-függvényt használjuk: x pontosan akkor tartozik az első osztályba, ha L(x) > 0.

18 II. Legyen A = (m 1 m 2 )(m 1 m 2 ). Tekintsük a Rayleigh-hányadost: R(v) = v Av v Cv Heurisztika: R maximumhelyének irányában jól tudunk szeparálni. Legyenek C 1 A sajátértékei λ 1... λ d és v 1,..., v d hozzájuk tartozó sajátvektorok a kanonikus főirányok. Belátható, hogy R maximumhelye v 1. Egy L(x) = v 1 x + b alakú diszkriminanciafüggvény segítségével döntünk: x akkor esik az első osztályba, ha L(x) > 0. Megjegyzések A két diszkriminanciafüggvény pozitív konstans faktorban tér el, ugyanazt az osztályozást eredményezik. A szeparálás jóságát a Wilks-féle Λ = (1 + ˆλ 1 ) 1 statisztikával jellemezzük. Ha az osztályok jól szeparálhatók, akkor Λ kicsi.

19 Logisztikus regresszió Legyen η ismeretlen p paraméterű Bernoulli-változó és x egy d-dimenziós vektor. Tegyük fel, hogy p = p(x), ezt a függést a következő logisztikus regressziós modell (logitmodell) írja le: ln p 1 p = a x + b. Tekintsük egy n elemű mintát. Meghatározzuk â, ˆb ML becsléseket (kihasználva, hogy az x i vektorhoz tartozó n i mintaelem összege binomiális eloszlású n i és p(x i ) paraméterekkel). Ebből kapjuk p becslését: ˆp = e â x ˆb. η értékei szerinti osztálybatartozás előrejelzése ennek segítségével úgy történik, hogy rögzítünk egy 0 < p 0 < 1 értéket, és ˆη = 1, ha ˆp > p 0.

20 Klaszteranaĺızis Különböző eloszlásból vett minták esetén nem tudjuk, melyik mintaelem melyik osztályba (klaszterbe) tartozik, esetleg az osztályok száma is ismeretlen. Célunk az osztályok meghatározása. Tekintsük az x 1,..., x n realizációt. Tegyük fel, hogy van k klaszter: C 1,..., C k. Legyen x C = 1 C x j C x j a C klaszterközéppontja. Legyen SST = n i=1 x i x 2, SSW = k i=1 x j C i x j x Ci 2, SSB = k i=1 C i x Ci x 2. Most is SST = SSW + SSB. A klasztereket úgy szeretnénk meghatározni, hogy a SSW SSB = SSW SST SSW kifejezést minimalizálják, ami egyenértékű SSW minimalizálásával.

21 SSW minimumának meghatározása már két klaszter esetén is 2 n 1 1 eset vizsgálatát jelenti az n elemű mintán, ezért heurisztikákat alkalmaznak. A klaszterező eljárásoknak két alapvető fajtája van aszerint, hogy a klaszterek száma ismert-e. k-közép módszer Veszünk k kezdeti klaszterközéppontot, minden mintaelemet ahhoz a klaszterhez soroljuk, amelyik középpontjához közelebb van, majd a középpontokat újraszámítjuk. Függ a kezdeti középpontoktól. Hierarchikus módszerek Vannak a klaszterszámot csökkentő (agglomeratív vagy összevonó) és növelő (divizív vagy felosztó) módszerek. Pl. előbbi esetében kezdetben minden pont külön klaszterbe tartozik, minden lépésben a két legközelebbi klasztert vonjuk össze, míg egy klaszter nem lesz. Függ a klaszterek távolságának definíciójától.

22 Klaszterek távolsága (d(c i, C j )) Legközelebbi szomszéd (nearest neighbor vagy single linkage): min x y. x C i,y C j Legtávolabbi szomszéd (furthest neighbor vagy complete linkage): max x y. x C i,y C j Átlagos távolság (between-groups linkage vagy average linkage): 1 x y. C i C j x C i,y C j Unió pontjainak átlagos távolsága (within-groups linkage): 1 ) ( Ci + C j 2 x,y C i C j x y. Klaszterközéppontok távolsága (centroid): x Ci x Cj.

23 Medián távolság: x Ci x Cj, ahol x C a C klaszter súlyozott közepe, amit rekurzívan számolunk a következő módon: ha C klaszter C C unióként jött létre, akkor x C = 1 2 ( x C + x C ). Ward távolság: x C i C j x x Ci C j 2 = C i C j C i + C j x C i x Cj 2. l {i,j} x C l x x Cl 2 (Tehát a Ward módszer azt a két klasztert vonja össze, amelyek összevonásával SSW legkevésbé nő.)

24 Irodalom Bolla Marianna, Krámli András: i következtetések elmélete, Typotex Fazekas István (szerk.): Bevezetés a matematikai statisztikába, Kossuth Egyetemi Kiadó Móri F. Tamás, Szeidl László, Zempléni András: Matematikai statisztika példatár, ELTE Eötvös Kiadó, Osztényiné Krauczi Éva, Székely László: Valószínűségszámítás és statisztika példatár, Polygon Jegyzettár Viharos László: A sztochasztika alapjai, Polygon Jegyzettár

Bevezetés a matematikai statisztikába

Bevezetés a matematikai statisztikába Bevezetés a matematikai statisztikába Szegedi Tudományegyetem, Bolyai Intézet i alapfogalmak Tekintsünk egy ξ valószínűségi változót. i minta (n elemű minta) ξ 1,..., ξ n fae vv, eloszlásuk megegyezik

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!

2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az

Részletesebben

LINEÁRIS MODELLBEN május. 1. Lineáris modell, legkisebb négyzetek elve

LINEÁRIS MODELLBEN május. 1. Lineáris modell, legkisebb négyzetek elve BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT LINEÁRIS MODELLBEN Móri Tamás ELTE TTK Valószínűségelméleti és Statisztika Tanszék 2008 május Lineáris modell, legkisebb négyzetek elve Tegyük fel, hogy egy bizonyos pl fizikai)

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

ANOVA,MANOVA. Márkus László március 30. Márkus László ANOVA,MANOVA március / 26

ANOVA,MANOVA. Márkus László március 30. Márkus László ANOVA,MANOVA március / 26 ANOVA,MANOVA Márkus László 2013. március 30. Márkus László ANOVA,MANOVA 2013. március 30. 1 / 26 ANOVA / MANOVA One-Way ANOVA (Egyszeres ) Analysis of Variance (ANOVA) = szóráselemzés A szórásokat elemezzük,

Részletesebben

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet

Részletesebben

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták

Részletesebben

5. előadás - Regressziószámítás

5. előadás - Regressziószámítás 5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,

Részletesebben

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58 u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

ahol m = EX, V p p-s ortogonális mátrix (azaz V 1 = V T ), Y pedig független komponensű, p-dimenziós normális eloszlású véletlen vektor.

ahol m = EX, V p p-s ortogonális mátrix (azaz V 1 = V T ), Y pedig független komponensű, p-dimenziós normális eloszlású véletlen vektor. æ TÖBBVÁLTOZÓS STATISZTIKAI MÓDSZEREK A többdimenziós normális eloszlás kulcsszerepet játszik itt, bár a legtöbb módszer akkor is alkalmazható, ha a háttéreloszlás többdimenziós folytonos és csak a változók

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,

Részletesebben

Dr. Karácsony Zsolt. Miskolci Egyetem november

Dr. Karácsony Zsolt. Miskolci Egyetem november Valószínűségszámítás és Matematikai statisztika Dr. Karácsony Zsolt Miskolci Egyetem, Alkalmazott Matematikai Tanszék 2013-2014 tanév 1. félév Miskolci Egyetem 2013. november 11-18 - 25. Dr. Karácsony

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés

Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Elek Péter 1. Valószínűségi változók és eloszlások 1.1. Egyváltozós eset Ismétlés: valószínűség fogalma Valószínűségekre vonatkozó axiómák

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Matematikai statisztika feladatsor

Matematikai statisztika feladatsor Matematikai statisztika feladatsor Nagy-György Judit A feladatsor Bolla Marianna és Krámli András Statisztikai következtetések elmélete cím könyvének [1] elméletére épül, a fejezetek számozása és a jelölések

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Elméleti összefoglaló a Valószín ségszámítás kurzushoz Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek

Részletesebben

Többváltozós lineáris regresszió 3.

Többváltozós lineáris regresszió 3. Többváltozós lineáris regresszió 3. Orlovits Zsanett 2018. október 10. Alapok Kérdés: hogyan szerepeltethetünk egy minőségi (nominális) tulajdonságot (pl. férfi/nő, egészséges/beteg, szezonális hatások,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

A többváltozós lineáris regresszió III. Főkomponens-analízis

A többváltozós lineáris regresszió III. Főkomponens-analízis A többváltozós lineáris regresszió III. 6-7. előadás Nominális változók a lineáris modellben 2017. október 10-17. 6-7. előadás A többváltozós lineáris regresszió III., Alapok Többváltozós lineáris regresszió

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

GVMST22GNC Statisztika II.

GVMST22GNC Statisztika II. GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás

Részletesebben

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O 1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.

Részletesebben

Bevezetés a hipotézisvizsgálatokba

Bevezetés a hipotézisvizsgálatokba Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 6. előadás: Vektor- és mátrixnormák Lócsi Levente ELTE IK 2013. október 14. Tartalomjegyzék 1 Vektornormák 2 Mátrixnormák 3 Természetes mátrixnormák, avagy indukált normák 4 Mátrixnormák

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak 10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:

Részletesebben

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

1.1. Vektorok és operátorok mátrix formában

1.1. Vektorok és operátorok mátrix formában 1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Regressziós vizsgálatok

Regressziós vizsgálatok Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Diszkriminancia-analízis

Diszkriminancia-analízis Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független

Részletesebben

Szinguláris érték felbontás Singular Value Decomposition

Szinguláris érték felbontás Singular Value Decomposition Szinguláris érték felbontás Singular Value Decomposition Borbély Gábor 7. április... Tétel (teljes SVD. Legyen A C m n mátrix (valósra is jó, ekkor léteznek U C m m és V C n n unitér mátrixok (valósban

Részletesebben

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =

Részletesebben

Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb

Részletesebben

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba

STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum

Részletesebben

Az impulzusnyomatékok általános elmélete

Az impulzusnyomatékok általános elmélete Az impulzusnyomatékok általános elmélete November 27, 2006 Az elemi kvantummechanika keretében tárgyaltuk már az impulzusnyomatékot. A továbbiakban általánosítjuk az impulzusnyomaték fogalmát a kvantummechanikában

Részletesebben

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102

Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102 Tárgy- és névmutató A a priori kontraszt 174 175 a priori kritérium 259, 264, 276 adatbevitel 43, 47, 49 52 adatbeviteli nézet (data view) 45 adat-elôkészítés 12, 37, 62 adatgyûjtés 12, 15, 19, 20, 23,

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció

Részletesebben

5. elıadás március 22. Portfólió-optimalizálás

5. elıadás március 22. Portfólió-optimalizálás 5. elıadás 203. március 22. Portfólió-optimalizálás Alapfeladat Cél: minél nagyobb várható hozam elérése De: közben a kockázat legyen minél kisebb Kompromisszum: elvárt hozamot érje el a várható érték

Részletesebben

[Biomatematika 2] Orvosi biometria. Visegrády Balázs

[Biomatematika 2] Orvosi biometria. Visegrády Balázs [Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35 9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Adatbányászati szemelvények MapReduce környezetben

Adatbányászati szemelvények MapReduce környezetben Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

1. Az euklideszi terek geometriája

1. Az euklideszi terek geometriája 1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz

Részletesebben

Statisztikai becslés

Statisztikai becslés Kabos: Statisztika II. Becslés 1.1 Statisztikai becslés Freedman, D. - Pisani, R. - Purves, R.: Statisztika. Typotex, 2005. Reimann J. - Tóth J.: Valószínűségszámítás és matematikai statisztika. Tankönyvkiadó,

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,

Részletesebben

Matematikai statisztika Gazdaságinformatikus MSc október 8. lineáris regresszió. Adatredukció: Faktor- és főkomponensanaĺızis.

Matematikai statisztika Gazdaságinformatikus MSc október 8. lineáris regresszió. Adatredukció: Faktor- és főkomponensanaĺızis. i Matematikai statisztika Gazdaságinformatikus MSc 6. előadás 2018. október 8. 1/52 - Hol tartottunk? Modell. Y i = β 0 + β 1 X 1,i + β 2 X 2,i +... + β k X k,i + u i i minden t = 1,..., n esetén. X i

Részletesebben