KÖZELÍTŐ INFERENCIA II.
|
|
- Sarolta Gál
- 6 évvel ezelőtt
- Látták:
Átírás
1 STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK
2 ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le. Ezek kiszámítása gyakran nehéz. Ekkor használunk közelítő módszereket: Variációs módszerek (egyszerűbb eloszlással közelítés) pl. Pontbecslések (pl. EM, k-means) Monte Carlo módszerek
3 INFERENCIA II. Közelítés szükségessége Mintavételezés Egyszerűbb Monte Carlo módszerek Markov Chain Monte Carlo módszerek
4 INFERENCIA II. Közelítés szükségessége Mintavételezés Egyszerűbb Monte Carlo módszerek Markov Chain Monte Carlo módszerek
5 MIXTURE OF GAUSSIANS
6 MIXTURE OF GAUSSIANS Valószínűségi modell: p(z n = i ) = i p(x n µ,,z n )=N (x; µ zn, z n ) z n
7 MIXTURE OF GAUSSIANS Valószínűségi modell: p(z n = i ) = i p(x n µ,,z n )=N (x; µ zn, z n ) Poszterior: p(z,,µ, x) = p(x z,µ, )= = NY n=1 NY n=1 p(x z,µ, )p(z )p(µ,, ) p(x) p(x n z n,µ, ) 1 p exp 2 2 zn (x µ) z n
8 MIXTURE OF GAUSSIANS X p(,µ, x) =? = p(z,,µ, x) Z Z Z z X p(x) =? = p(x,,µ,,z)d dµd Poszterior: p(z,,µ, x) = p(x z,µ, )= = z NY n=1 NY n=1 p(x z,µ, )p(z )p(µ,, ) p(x) p(x n z n,µ, ) 1 p exp 2 2 zn (x µ) z n
9 KÖZELÍTÉS Pontbecslés optimalizációs probléma k-means, EM Variációs módszerek Egyszerűbb modell, melyet könnyebb illeszteni Monte Carlo módszerek Az eloszlások mintákkal való reprezentálása
10 INFERENCIA II. Közelítés szükségessége Mintavételezés Egyszerűbb Monte Carlo módszerek Markov Chain Monte Carlo módszerek
11 MINTAVÉTELEZÉS Problémák: 1. Független mintákat szeretnénk venni egy eloszlásból (pl. a poszteriorból) x (r) P (x) 2. Egy tetszőleges függvény várhatóértékének kiszámítása Z E(f(x)) =< f> P (x) = f(x)p (x)dx
12 MINTAVÉTELEZÉS Tegyük fel, hogy valaki egy (bonyolult) kockajátékra invitál. Megadja, hogy milyen esetben mennyi nyereményt fizet. Azt is megmondja, hogy mennyibe kerül egy játék. Azt szeretnénk eldönteni, hogy akarunk-e játszani. A játék várhatóértékét szeretnénk kiszámolni. Ötlet: játsszuk le a játékot (magunkban) sokszor és vegyük az eredmények átlagát.
13 MINTAVÉTELEZÉS Játsszuk le a játékot (magunkban) sokszor és vegyük az eredmények átlagát. F = E(f(x)) Nyeremény egy x kimenetelnél Nyeremény várhatóértéke x n P (x) Minták a játékból ˆF = NX n=1 1 N f(x n) Becslés a várhatóértékre
14 MINTAVÉTELEZÉS Problémák: 1. Független mintákat szeretnénk venni egy eloszlásból (pl. a poszteriorból) 2. Egy tetszőleges függvény várhatóértékének kiszámítása
15 GALTON-DESZKA
16 MILYEN ELOSZLÁSOKBÓL TUDUNK KÖNNYEN MINTÁKAT VENNI? Dobókocka (egyenletes eloszlás egy hat elemű halmazon) Egyenletes eloszlás a [0,1] intervallumon (pseudo-random generátor) Pénzérme feldobás Tudjuk-e ezeket használni, hogy más eloszlásokból vegyünk mintákat?
17 INFERENCIA II. Közelítés szükségessége Mintavételezés Egyszerűbb Monte Carlo módszerek Markov Chain Monte Carlo módszerek
18 REJECTION SAMPLING Hogyan mintavételezzünk pontokat egyenletesen egy körlapon?
19 MINTAVÉTELEZÉS Problémák: 1. Független mintákat szeretnénk venni egy eloszlásból (pl. a poszteriorból) x (r) P (x) Tegyük fel, hogy csak P valamely többszöröséhez férünk hozzá: P (x) =Z P (x) P (x Data) / P (Data x)p(x) = P (x) Z Z Z X P (Data) = P (µ,,,z,data)dµd d z
20 MINTAVÉTELEZÉS Problémák: 1. Független mintákat szeretnénk venni egy eloszlásból (pl. a poszteriorból) x (r) P (x) Tegyük fel, hogy csak P valamely többszöröséhez férünk hozzá: P (x) =Z P (x) Lényeg: ki tudjuk értékelni P*(x)-et tetszőleges x-ben.
21 REJECTION SAMPLING P (x)
22 REJECTION SAMPLING P (x)
23 REJECTION SAMPLING C Q(x) P (x)
24 1. x Q(x) 2. y Unif(0,C Q(x)) 3. Elfogadás, ha: y<p (x) egyébként eldobjuk
25
26
27 REJECTION SAMPLING Problémák: Ha CQ(x) nem mindenhol nagyobb, mint P*(x), akkor nem a megfelelő eloszlásból mintavételezünk.
28 ANCESTOR SAMPLING
29 ANCESTOR SAMPLING Szeretnénk egy mintát az együttes eloszlásból. P (N) P (I) 1. Először mintát veszünk a legfelső változókból P (P ont N,I) (amelyeknek nincsen szülője). 2. Majd azokból, amelyeknek a szüleit már mintavételeztük. P (F I) 2. lépést ismételjük P (Jegy P ont)
30 STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN ANCESTOR SAMPLING Ha tudunk mintákat venni P (N,I,F,Pont,Jegy) eloszlásból, hogy tudunk inferenciát végezni, vagyis, kondícionálisokat számolni? pl: P (I Jegy = 5) =? Rejection sampling! Azokat a mintákat nézzük, amelyekben a Jegy a megadott értékű
31 REJECTION SAMPLING PROBLÉMA Dimenzió növekedésével csökken az elfogadott minták aránya Nehéz az eloszlást felülről becsülni.
32 IMPORTANCE SAMPLING Egy függvény várható értékét szeretnénk kiszámolni Z E x (f(x)) = f(x)p(x)dx Nem tudunk p(x) eloszlásból mintavételezni, de van egy mintavételező eljárásunk, ami q(x)-ből mintavételez. A várhatóértéket becsülhetjük úgy, hogy: E x (f(x)) NX i=1 1 N f(x i) p(x i) q(x i )
33 INFERENCIA II. Közelítés szükségessége Mintavételezés Egyszerűbb Monte Carlo módszerek Markov Chain Monte Carlo módszerek
34 MARKOV CHAIN MONTE CARLO Ahhoz, hogy a dimenzionalitás problémáját kikerüljük, megpróbálhatjuk felhasználni az eddigi mintáinkban rejlő információt. Viszont elveszítjük a függetlenséget!
35 METROPOLIS-HASTINGS ALGORITMUS Q(x t+1,x t ) P (x)
36 Elindulunk egy pontból: x1
37 Elindulunk egy pontból: x 1 Választunk egy x t+1 pontot a Q(x t+1,x t ) eloszlásból
38 Elindulunk egy pontból: x 1 Választunk egy x t+1 pontot a Q(x t+1,x t ) eloszlásból Generálunk egy u-t u Unif(0, 1)
39 Elindulunk egy pontból: x 1 Választunk egy x t+1 pontot a Q(x t+1,x t ) eloszlásból Generálunk egy u-t u Unif(0, 1) Mozgunk, ha u< P (x t+1 )Q(x t,x t+1 ) P (x t )Q(x t+1,x t )
40
41
42
43
44 Állítás: ha t nagy, akkor x t P (x)
45 Állítás: ha t nagy, akkor x t P (x) (burn-in)
46 Állítás: ha t nagy, akkor x t P (x) (burn-in) Megpróbálhatjuk az összes mintát használni, de ezek már nem függetlenek!
47 Állítás: ha t nagy, akkor x t P (x) (burn-in) Megpróbálhatjuk az összes mintát használni, de ezek már nem függetlenek! Minden k-adik mintát használjuk (thinning)
48 METROPOLIS HASTINGS VS. REJECTION SAMPLING MH: az algoritmikus lépések nem függenek a céleloszlás P(x) alakjától. Emiatt általános inferencia-algoritmus fejleszthető belőle. (Általános, mert bármilyen modellre alkalmazható, lásd: STAN) a rejection sampling esetében megfelelő Q(x) mintavételező eloszlás kell (CQ(x)>P*(x) Kevésbé sújtja a dimenzionalitás átka
49 HAMILTONIAN MONTE CARLO (HMC) Markov-lánc Kihasználja a mintavételezni kívánt eloszlás alakját. Ehhez szükséges, hogy differenciálható legyen az eloszlásfüggvény > nincsenek diszkrét változók (ld. STAN)
50 HAMILTONIAN MONTE CARLO (HMC)
51 HAMILTONIAN MONTE CARLO VS. METROPOLIS-HASTINGS
52 HAMILTONIAN MONTE CARLO VS. METROPOLIS-HASTINGS
53 HAMILTONIAN MONTE CARLO VS. METROPOLIS-HASTINGS
54 GIBBS SAMPLING Az egyes változókat sorban mintavételezzük, a többi változóra kondícionálva: x (1) t+1 p(x(1) x (2) t ) x (2) t+1 p(x(2) x (1) t+1 )
55 ÖSSZEFOGLALÁS Valószínűségi modellben végzünk inferenciát Egzakt poszterior-számítás nem mindig lehetséges Közelítő inferenciát használunk (pontbecslés, variációs módszer, mintavételezés) Mintavételezés
56 ÖSSZEFOGLALÁS Mintavételezés: Egyszerű eloszlásokból minták (kockadobás, uniform) Rejection sampling (speciálisan pl. kondícionálisok ancestor samplinggal) Metropolis-Hastings algorithmus Gibbs-sampling Hamiltonian Monte Carlo
57 SEGÉDANYAGOK David Mackay video lectures 12. rész Bishop: Pattern recognition and machine learning, 11. fejezet Brooks, Gelman, Jones & Meng: Handbook of Markov Chain Monte Carlo
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Inferencia. ADOTTAK:! generatív modell: például: DAG + prior(ok) + likelihood(ok) P(X 1,X 2,,X n ) megfigyelések: D = {X i = x i, X j = x j, }
Street1931 Falk1975 Falk1975 Inferencia ADOTTAK:! generatív modell: például: DAG + prior(ok) + likelihood(ok) P(X 1,X 2,,X n ) megfigyelések: D = {X i = x i, X j = x j, }! KISZÁMOLANDÓK:! normalizáció
Diszkrét idejű felújítási paradoxon
Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Inferencia valószínűségi modellekben
Statisztikai tanulás az idegrendszerben, 2016. Inferencia valószínűségi modellekben Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Inferencia valószínűségi modellekben
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére
Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére Bányai Mihály! MTA Wigner FK! Computational Systems Neuroscience Lab!! KOKI-VIK szeminárium! 2014. február 11. Struktúra és funkció
Készítette: Trosztel Mátyás Konzulens: Hajós Gergely
Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
Probabilisztikus modellek II: Inferencia. Nagy Dávid
Probabilisztikus modellek II: Inferencia Nagy Dávid Statisztikai tanulás az idegrendszerben, 2015 előző előadás előző előadás az agy modellt épít a világról előző előadás az agy modellt épít a világról
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés
i p i p 0 p 1 p 2... i p i
. vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT
Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
Probabilisztikus modellek. Nagy Dávid
Probabilisztikus modellek Nagy Dávid Statisztikai tanulás az idegrendszerben, 2019 elméleti Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Előadások-gyakorlatok 2018-ban (13 alkalom) IX.12, 19, 26, X. 3, 10, 17, 24, XI. 7, 14,
Sztochasztikus folyamatok alapfogalmak
Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos
Kauzális modellek. Randall Munroe
Kauzális modellek Randall Munroe A kauzalitás reprezentációi Determinisztikus Sztochasztikus Feltételes valószínűség < > hipergráf Irányított gráf: több ok, egy okozat < > Bayes-háló Cirkuláris kauzalitás
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Látórendszer modellezése
Statisztikai tanulás az idegrendszerben, 2015. Látórendszer modellezése Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ A látórendszer felépítése Prediktálhatóság
Abszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak
1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ
Exact inference in general Bayesian networks
Exact inference in general Bayesian networks Peter Antal antal@mit.bme.hu Overview The Probability Propagation in Trees of Cliques (a.k.a. ~in join trees) Practical inference Exercises Literature: Valószínűségi
Megerősítéses tanulás 7. előadás
Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig
Probabilisztikus modellek. Nagy Dávid
Probabilisztikus modellek Nagy Dávid Statisztikai tanulás az idegrendszerben, 2016 valószínűségi kalkulus jelölések jelölések valószínűségi változók megfázás köhögés valószínűség 1 0 0.01 1 1 0.04 0 0
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Valószínűségi modellek
Statisztikai tanulás az idegrendszerben, 2015. Valószínűségi modellek Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Hogyan kezeljük formálisan a bizonytalan
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny
Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Szűk elméleti összefoglaló Valószínűségi változó: egy függvény, ami az eseményteret a valós számok halmazára tudja vetíteni. A val.
A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 5. gyakorlat 013/14. tavaszi félév 1. Folytonos eloszlások Eloszlásfüggvény és sűrűségfüggvény Egy valószínűségi változó, illetve egy eloszlás eloszlásfüggvényének egy
A társadalomkutatás módszerei I. Outline. 1. Zh Egyéni eredmények. Notes. Notes. Notes. 9. hét. Daróczi Gergely november 10.
A társadalomkutatás módszerei I. 9. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. november 10. Outline 1 1. Zh eredmények 2 Újra a hibatényezőkről 3 A mintavételi keret 4 Valószínűségi mintavételi
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Kvantitatív módszerek
Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció
Data Security: Public key
Nyilvános kulcsú rejtjelezés RSA rejtjelező El-Gamal rejtjelező : Elliptikus görbe kriptográfia RSA 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2 2. m= p1p2 φ ( ) = ( p -1)( p -1) m 1 2 3.
Probabilisztikus modellek. Nagy Dávid
Probabilisztikus modellek Nagy Dávid Statisztikai tanulás az idegrendszerben, 2017 házi feladatok tdk valószínűségi kalkulus jelölések jelölések valószínűségi változók megfázás köhögés valószínűség 1 0
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg
LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott
A valószínűségszámítás elemei
Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet
Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n
Elemi statisztika >> =weiszd=
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Elemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
Baran Ágnes. Gyakorlat MATLAB. Baran Ágnes Gyakorlat 1 / 70
Valószínűségszámítás és matematikai statisztika Baran Ágnes Gyakorlat MATLAB Baran Ágnes Gyakorlat 1 / 7 Véletlenszám generátorok randi(n,n,m) n m pszeudorandom egész szám az [1, N]-en adott diszkrét egyenletes
Adaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
Statisztikai becslés
Kabos: Statisztika II. Becslés 1.1 Statisztikai becslés Freedman, D. - Pisani, R. - Purves, R.: Statisztika. Typotex, 2005. Reimann J. - Tóth J.: Valószínűségszámítás és matematikai statisztika. Tankönyvkiadó,
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás PI KISZÁMOLÁSI JÁTÉKOK A TENGERPARTON egy kört és köré egy négyzetet rajzolunk véletlenszerűen kavicsokat dobálunk megszámoljuk:
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
Matematika B4 VIII. gyakorlat megoldása
Matematika B4 VIII. gyakorlat megoldása 5.április 7.. Eloszlás- és sűrűségfüggvény Ha az X egy folytonos valószínűségi változó, akkor X-et jól jellemzi az eloszlás illetve a sűrűségfüggvénye. Az eloszlásfüggvény
MCMC szimuláció indítása
Monte Carlo következtetési módszerek beállítása, monitorozása, eredményeinek megjelenítése Nagy méretű Bayes-hálók esetén az egzakt következtető eljárások - még ha az eredeti hálót a hatékonyság növelése
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet
Gazdasági matematika II. vizsgadolgozat, megoldással,
Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
12. előadás - Markov-láncok I.
12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!
A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Elek Péter 1. Valószínűségi változók és eloszlások 1.1. Egyváltozós eset Ismétlés: valószínűség fogalma Valószínűségekre vonatkozó axiómák
Bizonytalanságok melletti következtetés
Bizonytalanságok melletti következtetés Mesterséges Intelligencia I. Valószínűségi alapfogalmak (ismétlés) A, B,C események esetén a priori valószínűség: feltételes (a posteiori) valószínűség: Bayes-formula
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!
1. Név:......................... Egy szabályos pénzérmét feldobunk, ha az els½o FEJ az i-edik dobásra jön, akkor a játékos nyereménye ( 1) i i forint. Vizsgálja szimulációval a játékot, különböz½o induló
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Számítógépes szimulációk: molekuláris dinamika és Monte Carlo
Számítógépes szimulációk: molekuláris dinamika és Monte Carlo Boda Dezső Fizikai Kémiai Tanszék Pannon Egyetem boda@almos.vein.hu 2014. március 21. Boda Dezső (Pannon Egyetem) Habilitációs előadás 2014.
Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }.
. Markov-láncok. Definíció és alapvető tulajdonságok Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0,,,..., N}, {0,,,... }.. definíció. S értékű valószínűségi
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai
Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 2. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás