Probabilisztikus modellek. Nagy Dávid
|
|
- Géza Szilágyi
- 8 évvel ezelőtt
- Látták:
Átírás
1 Probabilisztikus modellek Nagy Dávid Statisztikai tanulás az idegrendszerben, 2017
2 házi feladatok tdk
3 valószínűségi kalkulus
4 jelölések
5 jelölések valószínűségi változók megfázás köhögés valószínűség valószínűségi változók lehetséges értékei
6 jelölések M K P
7 jelölések M K P m k 0.01 m k 0.04 m k m k 0.095
8 jelölések M K P m k 0.01 m k 0.04 m k m k P (m ^ k) =P (m, k) = 0.04 P (M,K) =
9 jelölések M K P P (M,K) = m k 0.01 m k 0.04 m k m k P (m ^ k) =P (m, k) = 0.04 P (M = m, K = k) =P (m, k) 6= P (M,K)
10 M K P m k 0.01 m k 0.04 m k m k 0.095
11 P (M,K) m k m k m k m k
12 P (M,K) m k m k m k m k
13 P (M,K) probability mass function az igazságtáblázatot függvényként reprezentáljuk m k m k m k m k
14 valószínűségszámítás ö összegszabály s szorzatszabály
15 összegszabály P (k) =P (k, m)+p (k, m) P( köhögök ) P( köhögök és meg vagyok fázva ) vagy P( köhögök és nem vagyok megfázva ) P (x) = X y 0 2Y P (x, y 0 ) marginális valószínűség, vagy -szabály
16 összegszabály M K P m k 0.01 m k 0.04 m k m k M P m 0.05 m 0.95
17 szorzatszabály P (m, k) =P (m)p (k m) P( meg vagyok fázva és köhögök ) P( meg vagyok fázva ) és P( köhögök ha meg vagyok fázva ) P (x, y) =P (x y)p (y) lánc-szabály, és -szabály
18 szorzatszabály P (m, k) = P (m))p (k m)
19 szorzatszabály P (m, k) P (m) = )P P (k m)
20 szorzatszabály P (m, k) P (m) = )P P (k m)
21 szorzatszabály P (m, k) P (m) = )P P (k m) M K P m k 0.01 m k 0.04 m k m k } X P ( ) =1 P (m, k)+p (m, k) const =1 const = P (m)
22 valószínűségszámítás P (X, Y ) probabilisztikus modell P (x) = X y 0 2Y P (x, y 0 ) P (x, y) =P (x y)p (y) feltételes valószínűség Bayes szabály P (x, y) P (y) P (y x)p (x) P (y) = P (x y) = P (x y)
23 valószínűségszámítás P (A, B, C, D, E, F, G, H, I) teljes modell P (D, G H, I) = = P (D, G, H, I) P (H, I) P P A,B,C,E,F A,B,C,E,F,D,G (feltételes valószínűség) P (A, B, C, D, E, F, G, H, I) P (A, B, C, D, E, F, G, H, I)
24 mintavételezés egy adott probabilisztikus modellhez készíthető* mintavételező gép kimenetei (minták) lehetséges világok a lehetséges világok relatív gyakoriságai tartanak a valószínűségeikhez különböző trükökkel lehet mintát venni külön a változókból (marginális eloszlásból) vagy a feltételes eloszlásokból is P (M,K) = M K P m k 0.01 m k 0.04 m k m k nem fázott meg és nem köhög nem fázott meg és nem köhög nem fázott meg és nem köhög nem fázott meg és köhög nem fázott meg és nem köhög nem fázott meg és nem köhög nem fázott meg és nem köhög nem fázott meg és nem köhög nem fázott meg és nem köhög nem fázott meg és nem köhög
25
26
27 probléma Mi a valószínűsége hogy egy véletlenszerűen választott ember pontosan 1.7 m magas? P (X =1.7) = 0 P (X = ) = 0 pmf(x) x
28 probléma Mi a valószínűsége hogy egy véletlenszerűen választott ember pontosan 1.7 m magas? P (X =1.7) = 0 P (X = ) = 0 pdf(x) probability density function Z b a pdf(x) dx = P (a <x<b) sűrűségfüggvény x
29
30
31 mit jelölünk P-vel? Mindent. pmf pdf pdf(x) = X i pmf(x i ) (x x i )
32 valószínűségszámítás P (X, Y ) probabilisztikus modell P (x) = X y 0 2Y P (x, y 0 ) P (x, y) =P (x y)p (y)
33 valószínűségszámítás P (X, Y ) probabilisztikus modell P (x) = Z Y P (x, y) dy P (x, y) =P (x y)p (y) X! Z dy y
34 valószínűségszámítás P (X, Y ) probabilisztikus modell P (x) = Z Y P (x, y) dy P (x, y) =P (x y)p (y) feltételes valószínűség Bayes szabály P (x, y) P (y) P (y x)p (x) P (y) = P (x y) = P (x y)
35 összefoglalás ismerjük a valószínűségi kalkulus két szabályát, a szorzatszabályt és az összegszabályt tudjuk mit jelent mintákat venni egy eloszlásból ezeket ki tudjuk terjeszteni folytonosan sok értékű változókra a valószínűségszámításban már mindent* tudunk, most már csak kényelmi** fogalmakat vezetünk be * : azért nem mindent, mert ha (a valós számokhoz hasonlóan) más matematikai objektumokra is ki szeretnénk terjeszteni (pl val. változók amelyeknek a lehetséges értékei is valószínűségi eloszlások vagy végtelen sok val. változó), az nem mindig triviális. mértékelmélet ** : néha a kényelmi megoldások teszik lehetővé hogy praktikusan is ki lehessen számolni valamit, ne csak elméletben (exponenciális komplexitás)
36 függetlenség x? y p(x, y) =p(x)p(y) p(x y) =p(x) ha megtudjuk hogy y, az semmit nem változtat x valószínűségén az előbb 4-est dobtunk. Mit fogunk most dobni? P (d 1 d 2 )P (d 2 )=P (d 1 )P (d 2 ) az előbb 4-es dobtunk, most dobunk mégegyet, mi lesz a kettő összege? P (d 1 + d 2 d 2 )P (d 2 ) 6= P (d 1 + d 2 )P (d 2 )
37 feltételes függetlenség x? y z p(x, y z) =p(x z)p(y z) p(x y, z) =p(x z) ha már tudjuk hogy z, és megtudjuk hogy y, az semmit nem változtat x valószínűségén a kérdés hogy kapok-e vastapsot a koncert után. Ha tudjuk hogy általában jól zongorázom az változtat ezen a valószínűségen? z 6? t Ha tudjuk hogy jól sikerült a koncert, akkor számít hogy egyébként általában is jól zongorázom? z? t k a függetlenség és a feltételes függetlenség nem implikálják egymást, erre majd látunk több példát
38 irányított grafikus modellek
39 P (X 1,X 2,X 3,X 4 )= =P (X 1 X 2,X 3,X 4 ) P (X 2 X 3,X 4 ) P (X 3 X 4 ) P (X 4 ) X 3? X 4 X 2? X 4 X 3 X 1? X 3,X 4 X 2 = P (X 1 X 2 ) P (X 2 X 3 )P (X 3 )P (X 4 ) X4 X3 X2 P (X 1,X 2,...,X n )= ny i P (X i P arent(x i )) X1
40 grafikus modellek az eloszlás faktorizálódik a gráf szerint a gráf az eloszlás függetlenségi struktúráját kódolja a függetlenségi relációk leolvashatóak a gráfról hogyan? X4 X3 P (X 1,X 2,X 3,X 4 )= = P (X 1 X 2 ) P (X 2 X 3 )P (X 3 )P (X 4 ) X2 P (X 1,X 2,...,X n )= ny i P (X i P arent(x i )) X1
41 hatásterjedés Nehéz Intell. ZH pont Felv. pont ZH jegy
42 hatásterjedés Nehéz tud terjedni hatás? ZH pont
43 hatásterjedés Nehéz igen ZH pont
44 hatásterjedés Nehéz ZH pont tud terjedni hatás? ZH jegy
45 hatásterjedés Nehéz ZH pont igen ZH jegy
46 hatásterjedés Nehéz ZH pont tud terjedni hatás? megfigyelt változó ZH jegy
47 hatásterjedés Nehéz ZH pont nem ZH jegy
48 hatásterjedés Nehéz Intell. ZH pont Felv. pont tud terjedni hatás? ZH jegy
49 hatásterjedés Nehéz Intell. ZH pont Felv. pont igen ZH jegy
50 hatásterjedés Nehéz Intell. ZH pont Felv. pont tud terjedni hatás? ZH jegy
51 hatásterjedés Nehéz Intell. ZH pont Felv. pont nem ZH jegy
52 hatásterjedés Nehéz Intell. tud terjedni hatás? ZH pont Felv. pont ZH jegy
53 hatásterjedés Nehéz Intell. nem ZH pont Felv. pont ZH jegy
54 hatásterjedés Nehéz Intell. tud terjedni hatás? ZH pont Felv. pont ZH jegy
55 hatásterjedés (explaining away) Nehéz Intell. igen ZH pont Felv. pont ZH jegy
56 hatásterjedés Nehéz Intell. tud terjedni hatás? ZH pont Felv. pont ZH jegy
57 hatásterjedés Nehéz Intell. igen ZH pont Felv. pont ZH jegy
58 d-szeparáció tétel az előbbi kis gráfokból összekombinálható az összes lehetséges függőségi reláció azt akarjuk leolvasni hogy u és v változók függetlenek-e különböző m megfigyelések mellett u és v között minden lehetséges útra ellenőrizzük hogy blokkolva van-e, feltéve hogy megfigyeljük m-et ha minden út blokkolva van, akkor függetlenek (feltéve m)
59 v v u v m m m u u u m v d-szeparáció m u v u v m m u v d
60 v m u nem juthat át hatás
61 Markov takaró Y 8Y : X? Y MB(X) szülők X gyerekek gyerekek szülei
62
63
64
65 MB( ) =
66 MB( ) =
67 grafikus modell építés µ µ int int P (I) =N (I µ int, int) Nehéz Intell. P (N) =N (N µ, ) Z max ZH pont Felv. pont házi feladat P (Z) = Binomial(Z Z max, sig(i N)) ZH jegy
68 I N
69
70
71 irányítatlan grafikus modellek
72 összefoglalás tudjuk mit jelent a függetlenség probabilisztikus modellekben az irányított grafikus modellek az eloszlás függetlenségi struktúráját jelenítik meg a gráf a teljes eloszlás egy faktorizációját adja meg, amelynek segítségével kevesebb számmal is meg lehet adni az eloszlást ezt kihasználva hatékonyabb inferencia algoritmusokat lehet kitalálni a gráfról a függetlenségi relációkat a d-szeparáció tétel alapján le tudjuk olvasni a grafikus modell abban is segít hogy egy intuitívan ismert rendszerből probabilisztikus modellt tudjunk felírni
73 bayes-i inferencia
74 mi az amit megfigyelünk? inferencia fotonok becsapódása levegő gyors rezgései hőmérséklet ingadozása bizonyos molekulák mire vagyunk kíváncsiak? milyen tárgyak vannak körülöttem milyen messze kik vannak körülöttem mire gondolnak mik a fizika törvényei
75 f
76 f }generatív folyamat
77 f }generatív folyamat f
78 f } generatív folyamat inverz inferencia } f -1
79 P (o h) P (h o)
80 P (o h) ha ilyen lenne a világ akkor mit figyelnénk meg? P (h o)
81 P (o h) ha ilyen lenne a világ akkor mit figyelnénk meg? P (h o) ha ezt figyeljük meg akkor milyen a világ?
82 forward probability generatív irány prediktív irány szimulátor P (o h) ha ilyen lenne a világ akkor mit figyelnénk meg? P (h o) ha ezt figyeljük meg akkor milyen a világ?
83 forward probability generatív irány prediktív irány szimulátor P (o h) ha ilyen lenne a világ akkor mit figyelnénk meg? inverse probability Bayes-i inferencia modell inverzió P (h o) ha ezt figyeljük meg akkor milyen a világ?
84 P (o h) P (h o) = P (o h)p (h) P (o)
85 P (h o) = P (o h)p (h) P (o) } prior
86 P (h o) = P (o h)p (h) } } likelihood P (o) prior
87 }posterior P (h o) = P (o h)p (h) } } likelihood P (o) prior
88 }posterior P (h o) = P (o h)p (h) } } likelihood P (o) prior } evidence
89 }posterior P (h o) = } } likelihood prior P (o h)p (h) R P (o h)p (h)dh
90 posterior }prior P (h o) / P (o h)p (h) } } likelihood
91 megfordítottuk a generatív modellt posterior }prior P (h o) / P (o h)p (h) } } likelihood
92 megfordítottuk a generatív modellt posterior }prior P (h o) / P (o h)p (h) } } likelihood miért kell a prior?
93 betegség f tünet f -1 betegség
94 miért köhögök? P (illness symptom) / P (symptom illness)p (illness)
95 miért köhögök? megfázás tüdőrák kéztörés P (illness symptom) / P (symptom illness)p (illness)
96 megfázás tüdőrák kéztörés P (illness symptom) / P (symptom illness)p (illness) megfázás milyen gyakori a tüdőrák? kéztörés
97 megfázás tüdőrák kéztörés megfázás tüdőrák kéztörés P (illness symptom) / P (symptom illness)p (illness) megfázás ha tüdőrák kéztörés lenne a betegség attól köhögnék?
98 megfázás tüdőrák kéztörés megfázás tüdőrák kéztörés megfázás tüdőrák kéztörés P (illness symptom) / P (symptom illness)p (illness) valószínűleg megfáztam
99
100
101
102
103
104
105
106 f = b P XY Z Y X
107 f = b P XY nem injektív Z Y X
108 f = b P XY nem injektív f 1 nem egyértelmű Z Y X
109 hipotézis tér: minden lehetséges 3D drótváz
110 hipotézis tér: minden lehetséges 3D drótváz image data hipotézisek amelyekre magas a prior
111 hipotézis tér: minden lehetséges 3D drótváz image data hipotézisek amelyekre magas a prior hipotézisek amelyekre nem 0 a likelihood
112 hipotézis tér: minden lehetséges 3D drótváz image data posterior hipotézisek amelyekre magas a prior hipotézisek amelyekre nem 0 a likelihood
113 [Kulkarni et al 2014]
114 színek
115 szén v. hó hány foton?
116
117
118 megvilágítás elnyelési görbe (anyag) spektrális eloszlás
119 megvilágítás elnyelési görbe (anyag) látósejtek érzékenysége spektrális eloszlás 3 szám
120 megvilágítás elnyelési görbe (anyag) látósejtek érzékenysége spektrális eloszlás 3 szám anyag?
121
122
123
124 beszédfelismerés
125
126 mondatok értelmezése
127 történet 1 Egy férfi bement egy étterembe és rendelt egy hamburgert. Mikor a hamburgert kihozták, látta hogy szénné van égve. A férfi dühösen kirohant anélkül, hogy fizetett vagy borravalót hagyott volna.
128 történet 1 Egy férfi bement egy étterembe és rendelt egy hamburgert. Mikor a hamburgert kihozták, látta hogy szénné van égve. A férfi dühösen kirohant anélkül, hogy fizetett vagy borravalót hagyott volna. történet 2 Egy férfi bement egy étterembe és rendelt egy hamburgert. Mikor a hamburgert kihozták, nagyon elégedett volt vele és mielőtt elhagyta az éttermet nagy borravalót hagyott a pincérnek.
129 történet 1 Egy férfi bement egy étterembe és rendelt egy hamburgert. Mikor a hamburgert kihozták, látta hogy szénné van égve. A férfi dühösen kirohant anélkül, hogy fizetett vagy borravalót hagyott volna. történet 2 Egy férfi bement egy étterembe és rendelt egy hamburgert. Mikor a hamburgert kihozták, nagyon elégedett volt vele és mielőtt elhagyta az éttermet nagy borravalót hagyott a pincérnek. Megette a férfi a hamburgert?
130 - Elnézést, kártyával lehet fizetni? - Persze
131 - Elnézést, kártyával lehet fizetni? - Persze - Egy ászból és királyból tud visszaadni?
132 - Elnézést, kártyával lehet fizetni? - Persze - Egy ászból és királyból tud visszaadni? humor = téves inferencia felfedezése? [Hurley et al 2011]
133 a látótér határai nem látszanak csak középen látunk élesen (fovea) vakfolt a szakkádoktól nem rázkódik a világ
134 aszimptotikus bizonyosság a paraméter posterior végtelen adat esetén a valódi paraméterérték körüli delta eloszláshoz konvergál
135 aszimptotikus konszenzus a különböző priorokból induló posteriorok közötti különbség az adat növekedésével eltűnik
136 összefoglalás ami érdekel az általában közvetlenül nem megfigyelhető a rejtett állapotok kikövetkeztetésében segít a tapasztalatokat generáló folyamat ismerete ennek megfordítása a likelihood: melyek azok a rejtett állapotok amelyek összeegyeztethetőek a megfigyelésekkel? de ez még nem elég, kell prior is hogy feloldja az empirikus aluldetermináltság problémáját a kettő szorzata a posterior, ami megadja jelenlegi tudásunkat a nem megfigyelt változók értékeinek plauzibilitásáról
137 közelítő inferencia az adat és egy adott hipotézistér mellett a posterior eloszlások a legtöbb amit tudunk mondani viszont ezt sokszor nehéz vagy lehetetlen egzaktul kiszámolni, ezért közelítésekre kényszerülünk pontbecslések sztochasztikus közelítő módszerek (Monte Carlo) mintavételezés aszimptotikusan (végtelen sok ideig futtatva) egzaktak
138 Monte Carlo n=50 n=1000 n=10 e. n=1 mil
139 közelítő inferencia az adat és egy adott hipotézistér mellett a posterior eloszlások a legtöbb amit tudunk mondani viszont ezt sokszor nehéz vagy lehetetlen egzaktul kiszámolni, ezért közelítésekre kényszerülünk pontbecslések sztochasztikus közelítő módszerek (Monte Carlo) mintavételezés aszimptotikusan (végtelen sok ideig futtatva) egzaktak determinisztikus közelítő módszerek pl: variációs Bayes nem kell végtelen sok idő, de sosem egzakt eredmény
140 Variational Bayes
141 pontbecslések eloszlás egy szám
142 MAP becslés posterior * 0.7 * 0.5
143 várható érték E[X] = Z X xp(x) dx
144 variancia Var[X] =E[(X E[X]) 2 ]
145 kovariancia Cov[X, Y ]=E[(X E[X])(Y E[Y ])]
146 korreláció Corr[X, Y ]= Cov[X, Y ] Var[X] Var[Y ]
147 1. házi feladat Készíts generatív valószínűségi modellt, ami autógyártók éves bevételének jóslására használható (más témát is választhatsz). válaszd ki a fontos változókat a változók közötti függetlenségi viszonyok alapján rajzolj grafikus modellt válassz diszkrét vagy folytonos eloszlásokat a szükséges marginálisok és kondicionálisok formájául ( en.wikipedia.org/wiki/list_of_probability_distributions) gondolkodj el rajta, hogy mik azok a feltételezések, amiket beleépítettél a modellbe, de sejthetően nem egyeznek a valósággal
148 2. házi feladat x2 és x5 között terjedhet hatás? hogyan lehetne x1 és x4-et függetlenné tenni?
149 referenciák [Kulkarni et al 2014] Kulkarni, Tejas D., et al. "Inverse graphics with probabilistic CAD models." arxiv preprint arxiv: (2014). [Hurley et al 2011] Hurley, Matthew M., Daniel Clement Dennett, and Reginald B. Adams. Inside jokes: Using humor to reverseengineer the mind. MIT press, McGurk effect (video)
Probabilisztikus modellek. Nagy Dávid
Probabilisztikus modellek Nagy Dávid Statisztikai tanulás az idegrendszerben, 2016 valószínűségi kalkulus jelölések jelölések valószínűségi változók megfázás köhögés valószínűség 1 0 0.01 1 1 0.04 0 0
Probabilisztikus modellek. Nagy Dávid
Probabilisztikus modellek Nagy Dávid Statisztikai tanulás az idegrendszerben, 2017 elméleti Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer
Probabilisztikus modellek. Nagy Dávid
Probabilisztikus modellek Nagy Dávid Statisztikai tanulás az idegrendszerben, 2019 elméleti Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer
Probabilisztikus modellek II: Inferencia. Nagy Dávid
Probabilisztikus modellek II: Inferencia Nagy Dávid Statisztikai tanulás az idegrendszerben, 2015 előző előadás előző előadás az agy modellt épít a világról előző előadás az agy modellt épít a világról
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Inferencia valószínűségi modellekben
Statisztikai tanulás az idegrendszerben, 2016. Inferencia valószínűségi modellekben Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Inferencia valószínűségi modellekben
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
Valószínűségi modellek
Statisztikai tanulás az idegrendszerben, 2015. Valószínűségi modellek Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Hogyan kezeljük formálisan a bizonytalan
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére
Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére Bányai Mihály! MTA Wigner FK! Computational Systems Neuroscience Lab!! KOKI-VIK szeminárium! 2014. február 11. Struktúra és funkció
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Elek Péter 1. Valószínűségi változók és eloszlások 1.1. Egyváltozós eset Ismétlés: valószínűség fogalma Valószínűségekre vonatkozó axiómák
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
Együ ttes e s vetü leti eloszlá s, sü rü se gfü ggve ny, eloszlá sfü ggve ny
Együ ttes e s vetü leti eloszlá s, sü rü se gfü ggve ny, eloszlá sfü ggve ny Szűk elméleti összefoglaló Együttes és vetületi eloszlásfüggvény: X = (X, X, X n ) valószínűségi vektorváltozónak hívjuk. X
Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny
Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Szűk elméleti összefoglaló Valószínűségi változó: egy függvény, ami az eseményteret a valós számok halmazára tudja vetíteni. A val.
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 206/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Mesterséges Intelligencia I.
Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a
Kauzális modellek. Randall Munroe
Kauzális modellek Randall Munroe A kauzalitás reprezentációi Determinisztikus Sztochasztikus Feltételes valószínűség < > hipergráf Irányított gráf: több ok, egy okozat < > Bayes-háló Cirkuláris kauzalitás
Biológiai rendszerek modellellenőrzése bayesi megközelítésben
Biológiai rendszerek modellellenőrzése bayesi megközelítésben Gál Tamás Zoltán Szoftver verifikáció és validáció kiselőadás, 2013. ősz Forrás: Sumit K. Jha et al.: A Bayesian Approach to Model Checking
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet
Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS
Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS 1. Kihasználva a hosszasan elhúzódó jó időt, kirándulást szeretnénk tenni az ország tíz legmagasabb csúcsa közül háromra az elkövetkezendő
Exact inference in general Bayesian networks
Exact inference in general Bayesian networks Peter Antal antal@mit.bme.hu Overview The Probability Propagation in Trees of Cliques (a.k.a. ~in join trees) Practical inference Exercises Literature: Valószínűségi
i p i p 0 p 1 p 2... i p i
. vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
Funkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
Probabilisztikus modellek V: Struktúra tanulás. Nagy Dávid
Probabilisztikus modellek V: Struktúra tanulás Nagy Dávid Statisztikai tanulás az idegrendszerben, 2015 volt szó a normatív megközelítésről ezen belül a probabilisztikus modellekről láttatok példákat az
Villamosmérnök A4 11. hét Kétdimenziós normális eloszlás, cht - Megoldások
Villamosmérnök A 11. hét Kétdimenziós normális eloszlás, cht - Megoldások Kétdimenziós normális összefoglalás Egy kétdimenziós X, Y valószínűségi változó kovariancia mátrixa: VarX CovX, Y CovX, Y VarY
Mi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
Bizonytalan tudás kezelése
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Bizonytalan tudás kezelése Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz Valószínűségi
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Előadások-gyakorlatok 2018-ban (13 alkalom) IX.12, 19, 26, X. 3, 10, 17, 24, XI. 7, 14,
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
Loss Distribution Approach
Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Abszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
Valószín ségi döntéstámogató rendszerek
Valószín ségi döntéstámogató rendszerek Antos András Antal Péter Hullám Gábor Millinghoer András Hajós Gergely Kulcsszavak: döntés, becslés, költségfüggvény, kockázat, a priori és a posteriori valószín
Diszkrét idejű felújítási paradoxon
Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
A valószínűségszámítás elemei
Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - alapok Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Valószínűségi
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
Asszociációs szabályok
Asszociációs szabályok Nikházy László Nagy adathalmazok kezelése 2010. március 10. Mi az értelme? A ö asszociációs szabály azt állítja, hogy azon vásárlói kosarak, amik tartalmaznak pelenkát, általában
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n
Elemi statisztika >> =weiszd=
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában
A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában Horváth Gábor ghorvath@hit.bme.hu (Horváth András, Telek Miklós) - p. 1 Motiváció, problémafelvetés
Sztochasztikus folyamatok alapfogalmak
Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
Eloszlások jellemzése. Momentumok. Medián és kvantilis. Karakterisztikus függvény
Karakterisztikus függvény Eloszlások jellemzése Momentumok Karakterisztikus függvény Medián és kvantilis Medián Kvantilis Módusz Hogyan lehetne általánosítani a generátorfüggvényt folytonos okra? Karakterisztikus
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
Markov modellek 2015.03.19.
Markov modellek 2015.03.19. Markov-láncok Markov-tulajdonság: egy folyamat korábbi állapotai a későbbiekre csak a jelen állapoton keresztül gyakorolnak befolyást. Semmi, ami a múltban történt, nem ad előrejelzést
Gazdasági matematika II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdálkodási és menedzsment, pénzügy és számvitel szakok távoktatás tagozat Gazdasági matematika II. Tantárgyi útmutató 2016/17 tanév II. félév 1/6 A KURZUS ALAPADATAI Tárgy
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT
Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám
Változatos Véletlen Árazási Problémák. Bihary Zsolt AtomCsill 2014
Változatos Véletlen Árazási Problémák Bihary Zsolt AtomCsill 2014 Fizikus a befektetési bankban Remek társaság Releváns matematikai műveltség Számítástechnikai affinitás Intuitív gondolkodás Modellezési
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte
Kvantitatív módszerek
Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció
Bizonytalanságok melletti következtetés
Bizonytalanságok melletti következtetés Mesterséges Intelligencia I. Valószínűségi alapfogalmak (ismétlés) A, B,C események esetén a priori valószínűség: feltételes (a posteiori) valószínűség: Bayes-formula
Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában
Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze. Célja: - a sokaságot
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Hidden Markov Model. March 12, 2013
Hidden Markov Model Göbölös-Szabó Julianna March 12, 2013 Outline 1 Egy példa 2 Feladat formalizálása 3 Forward-algoritmus 4 Backward-algoritmus 5 Baum-Welch algoritmus 6 Skálázás 7 Egyéb apróságok 8 Alkalmazás
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
Valószínűségszámítás és statisztika
Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!
MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Valószínűségi hálók. Mesterséges Intelligencia - MI. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Mesterséges Intelligencia - MI Valószínűségi hálók Előadó: Hullám Gábor Pataki Béla Előadás anyaga: Dobrowiecki
Inferencia. ADOTTAK:! generatív modell: például: DAG + prior(ok) + likelihood(ok) P(X 1,X 2,,X n ) megfigyelések: D = {X i = x i, X j = x j, }
Street1931 Falk1975 Falk1975 Inferencia ADOTTAK:! generatív modell: például: DAG + prior(ok) + likelihood(ok) P(X 1,X 2,,X n ) megfigyelések: D = {X i = x i, X j = x j, }! KISZÁMOLANDÓK:! normalizáció
Bizonytalanság. Mesterséges intelligencia április 4.
Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel
Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika
Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra
Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg
LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott