Készítette: Trosztel Mátyás Konzulens: Hajós Gergely
|
|
- Liliána Lili Bakosné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Készítette: Trosztel Mátyás Konzulens: Hajós Gergely
2 Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A mintavételezett értékekből becsüljük a keresett mennyiséget.
3 A sorrendezések tere felett lépked. Ez a tér sokkal kisebb és kevésbé tüskés, így gyorsabb konvergenciát biztosít a stacionárius eloszláshoz. X 2 X 2 X 2 X 4 X 3 X 4 X 4 X 3 X 3 X 1 X 1 X 1 G 1, G 2,
4 Mennyire jó a sorrendezésünk? Ahol a score() azt a valószínűséget adja meg hogy D adat mellett X i változónak Pa G (X i ) a szülői halmaza. A szülői halmazok megválasztása független egymástól, ezért: Ahol U a sorrendezéssel kompatibilis szülői halmazok halmaza
5 A sorrendezések tere n! méretű, ezért zárt formában csak kevés változóra tudnánk kiszámolni. Itt jön segítségünkre az MCMC algoritmus. A Markov-láncot úgy hozzuk létre, hogy a stacionárius eloszlása P(D ) legyen. Ezek után bármilyen f( ) függvény várható értékét meg tudjuk határozni: Ahol T az iterációk száma
6 Globális cache építés MPI segítségével -> ~ score számítás párhuzamosítása 139 változó, futási idő lépés találat valószínűség lokális s 99,01% eloszott (6 klienssel) 5 938s 99,61% elosztott (12 klienssel) 5 349s 99,80%
7 Adat- és feladat párhuzamos modell Az ISO C99 szabvány részhalmaza párhuzamos kiegészítésekkel Heterogén platform támogatás Többmagos CPU-k Grafikus hardver (GPU) Jelfeldolgozó processzorok (DSP) Cell/B.E. processzor Az OpenCL elemei Platform modell Végrehajtási séma Memória modell Program modell
8 Cache miss minimalizálása Folytonos adatszerkezetek (felejtsük el az OOP-t) Az adat tömb belefér az L3 cache-be -> egyszerre több score-t számoljunk, ne csak szükség esetén. Vektoros (SIMD) utasításkészlet kihasználása (SSE) Gyors load/store biztosítása.
9 Egy feladatra több speciális kernel. Futásidejű fordítás. Jobb optimalizáció. Ciklus kifejtés (unroll) Elágazás megszüntetése (GPU-n különösen drága) Szükséges regiszterek csökkentése -> Külön kernel 1,2,,k szülő számú score kiszámításához. Optimális globális memória elérés biztosítása 64B-os igazítás, folytonos olvasás. (random memória elérés ~16x lassabb mint az ideális)
10 Adat tömb: CPU: 1load MMX regiszterbe (SSE) GPU: 1 32B tranzakció ushort16-ba d 1,1 d 1,2 d 1,3 d 1,4 d 1,L Padding 64B X 1 d 2,1 d 2,2 d 2,3 d 2,4 d 1,L Padding 64B X 2 d 3,1 d 3,2 d 3,3 d 3,4 d 1,L Padding 64B X 3 d n,1 d n,2 d n,3 d n,4 d n,l Padding 64B X n D 1 D 2 D 3 D 4 D L
11 Eredeti c++: 3ms/score OpenCL CPU: 0.025ms/score (AMD Phenom II 1 magra vetítve: 0.1ms -> 30x gyorsulás OpenCL GPU: 0.11ms/score (AMD Radeon 4850) 27x gyorsulás Nagy feltételes eloszlás táblák -> register spilling Kevés és egyszerű műveletek -> memória késleltetés nem fedhető el hatékonyan
12 Párhuzamosítás: Markov-láncok CPU: Ha több mag van mint lánc akkor kihasználatlan. GPU: nagyon kevés szál, optimálisan >1000 szál kell Párhuzamosítás: Ordering változó score Függetlenül számolható CPU: ok GPU: random memória olvasás kevés szál -> a szülői halmazok mentén is tudunk párhuzamosítani.
13 X 2 Cache-elt értékek X 2 X 4 X 4 Cache-elt értékek X 3 Szál 1 X 3 X 1 Szál 2 X 1 Szál 5 X 6 Szál 3 X 6 Szál 6 X 5 Szál 4 X 5 Szál 7 X 7 Cache-elt értékek X 7 Szál 8 X 8 1. Lánc X 8 2. Lánc Szál 9
14 Az MPI verzió futási idejének fele score számítással telt. Ezt jelentősen sikerült gyorsítani -> 2x gyorsulás. Ordering párhuzamos számítása ->?x gyorsulás. (~CPU mag/markov-lánc)
15
16 Szülő halmaz -> (0,C(N,k)+C(N,k-1)+ C(N,0)) l-binomiális ábrázolás pl. (l=k=4) m = 26 = C(6,4) + C(5,3) + C(2,2) Ez a {6,5,1,0} m = 126 = C(9,4) -> {8,7,6,5} Visszafelé: pl. {1,7,6,2} = {7,6,2,1} -> C(7,4) + C(6,3) + C(3,2)
17 X 2 X 4 X 3 X 2 X 4 X 5 Két tetszőleges változót felcserél a sorrendezésben. X 1 X 1 X 6 X 6 X 5 X 3 X 7 X 7 X 8 X 8
18 X 2 Nem változnak a szülői halmazok. X 4 Nem változik a score. X 3 X 1 Csak itt változnak a szülői halmazok. X 6 Ezekre kell újraszámolni a score-t! X 5 X 7 Nem változnak a szülői halmazok. X 8 Nem változik a score.
19 X 2 X 4 X 3 Két részre vágja a sorrendezést és a két halmaz sorrendjét felcseréli. X 5 X 7 X 8 Mindenhol változás történt a szülői halmazokban X 1 X 2 X 6 X 4 X 5 X 3 Mindenhol újra kell számolni a score-t! X 7 X 1 X 8 X 6
20 Csak 32B, 64B, 128B, (256B) tranzakciók. 64B igazított 128B igazított szálak
21 Optimális elérés: maximális sávszélesség 64B igazított 128B igazított szálak 1db 64B tranzakció
22 Nem igazított elérés 64B igazított 128B igazított szálak 1db 128B tranzakció 1db 64B + 1db 32B ha átlóg a 128B határon Nagy sávszél pazarlás!
23 Stride x=3. 64B igazított 128B igazított szálak 1db 128B + 1db 64B tranzakció Nagyon rossz kihasználtság nagy x esetén!
24 NDRange Gy Feladat egység Feladat egység Feladat egység Feladat egység Munkacsoport méret Sy NDRange Gx Munkacsoport méret Sx
25 OpenCL eszköz Számító egység Privát mem Privát mem Számító egység Privát mem Privát mem PE 1 PE M PE 1 PE M Lokális mem Lokális mem Globális/Konstans memória cache Globális memória Konstans memória
26 Hoszt <-> VRAM adatmozgatás Amit lehet tároljuk a GPU-n és dolgozzuk is fel ott. Async elérés. Kevés privát memória Rövid, egyszerű kernelek Divergens szálakat kerülni kell Probléma felbontása. De megéri? Indítási overhead Lassú double számítás Cél GPU, de még ez sem az igazi. Ahol csak lehet használjunk float típust. Mixed precision Optimális memória elérés Sokszor nehéz. Sok szál A globális ram elérése lassú, hogy ezt elfedjük sok szál szükséges (több ezer).
Magas szintű optimalizálás
Magas szintű optimalizálás Soros kód párhuzamosítása Mennyi a várható teljesítmény növekedés? Erős skálázódás (Amdahl törvény) Mennyire lineáris a skálázódás a párhuzamosítás növelésével? S 1 P 1 P N GPGPU
RészletesebbenOrdering MCMC gyorsítása OpenCL környezetben
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék Ordering MCMC gyorsítása OpenCL környezetben Önálló laboratórium 1 Készítette
RészletesebbenAliROOT szimulációk GPU alapokon
AliROOT szimulációk GPU alapokon Nagy Máté Ferenc & Barnaföldi Gergely Gábor Wigner FK ALICE Bp csoport OTKA: PD73596 és NK77816 TARTALOM 1. Az ALICE csoport és a GRID hálózat 2. Szimulációk és az AliROOT
RészletesebbenGPU alkalmazása az ALICE eseménygenerátorában
GPU alkalmazása az ALICE eseménygenerátorában Nagy Máté Ferenc MTA KFKI RMKI ALICE csoport ELTE TTK Fizika MSc Témavezető: Dr. Barnaföldi Gergely Gábor MTA KFKI RMKI ALICE csoport Elméleti Fizikai Főosztály
RészletesebbenKÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
RészletesebbenKÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
RészletesebbenGrafikus csővezeték 1 / 44
Grafikus csővezeték 1 / 44 Grafikus csővezeték Vertex feldolgozás A vertexek egyenként a képernyő térbe vannak transzformálva Primitív feldolgozás A vertexek primitívekbe vannak szervezve Raszterizálás
RészletesebbenSzámítógépek felépítése
Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák
RészletesebbenPárhuzamos és Grid rendszerek
Párhuzamos és Grid rendszerek (10. ea) GPGPU Szeberényi Imre BME IIT Az ábrák egy része az NVIDIA oktató anyagaiból és dokumentációiból származik. Párhuzamos és Grid rendszerek BME-IIT
RészletesebbenOpenCL alapú eszközök verifikációja és validációja a gyakorlatban
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban Fekete Tamás 2015. December 3. Szoftver verifikáció és validáció tantárgy Áttekintés Miért és mennyire fontos a megfelelő validáció és
RészletesebbenPárhuzamos programozási platformok
Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási
RészletesebbenPárhuzamos programozási platformok
Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási
RészletesebbenOpenCL - The open standard for parallel programming of heterogeneous systems
OpenCL - The open standard for parallel programming of heterogeneous systems GPU-k általános számításokhoz GPU Graphics Processing Unit Képalkotás: sok, általában egyszerű és független művelet < 2006:
RészletesebbenE.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.
E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek
RészletesebbenEichhardt Iván GPGPU óra anyagai
OpenCL modul 1. óra Eichhardt Iván iffan@caesar.elte.hu GPGPU óra anyagai http://cg.inf.elte.hu/~gpgpu/ OpenCL API és alkalmazása Gyakorlati példák (C/C++) Pl.: Képfeldolgozás Párhuzamos tervezési minták
RészletesebbenExact inference in general Bayesian networks
Exact inference in general Bayesian networks Peter Antal antal@mit.bme.hu Overview The Probability Propagation in Trees of Cliques (a.k.a. ~in join trees) Practical inference Exercises Literature: Valószínűségi
RészletesebbenIsmerkedjünk tovább a számítógéppel. Alaplap és a processzeor
Ismerkedjünk tovább a számítógéppel Alaplap és a processzeor Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív
RészletesebbenAdat- és feladat párhuzamos modell Az ISO C99 szabvány részhalmaza
Adat- és feladat párhuzamos modell Az ISO C99 szabvány részhalmaza párhuzamos kiegészítésekkel Numerikus műveletek az IEEE754 alapján Beágyazott és mobil eszközök támogatása OpenGL, OpenGL ES adatcsere
RészletesebbenEichhardt Iván GPGPU óra anyagai
OpenCL modul 1. óra Eichhardt Iván iffan@caesar.elte.hu GPGPU óra anyagai http://cg.inf.elte.hu/~gpgpu/ OpenCL API és alkalmazása Gyakorlati példák (C/C++) Pl.: Képfeldolgozás Párhuzamos programozás elméleti
RészletesebbenGPU-Accelerated Collocation Pattern Discovery
GPU-Accelerated Collocation Pattern Discovery Térbeli együttes előfordulási minták GPU-val gyorsított felismerése Gyenes Csilla Sallai Levente Szabó Andrea Eötvös Loránd Tudományegyetem Informatikai Kar
RészletesebbenSzimuláció RICHARD M. KARP és AVI WIGDERSON. (Készítette: Domoszlai László)
Szimuláció RICHARD M. KARP és AVI WIGDERSON A Fast Parallel Algorithm for the Maximal Independent Set Problem című cikke alapján (Készítette: Domoszlai László) 1. Bevezetés A következőkben megadott algoritmus
RészletesebbenGPU Lab. 4. fejezet. Fordítók felépítése. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc
4. fejezet Fordítók felépítése Grafikus Processzorok Tudományos Célú Programozása Fordítók Kézzel assembly kódot írni nem érdemes, mert: Egyszerűen nem skálázik nagy problémákhoz arányosan sok kódot kell
Részletesebbenegy szisztolikus példa
Automatikus párhuzamosítás egy szisztolikus példa Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus
RészletesebbenSZÁMÍTÓGÉP ARCHITEKTÚRÁK
SZÁMÍTÓGÉP ARCHITEKTÚRÁK Az utasítás-pipeline szélesítése Horváth Gábor, Belső Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-05-19 1 UTASÍTÁSFELDOLGOZÁS
RészletesebbenFordító részei. Fordító részei. Kód visszafejtés. Izsó Tamás szeptember 29. Izsó Tamás Fordító részei / 1
Fordító részei Kód visszafejtés. Izsó Tamás 2016. szeptember 29. Izsó Tamás Fordító részei / 1 Section 1 Fordító részei Izsó Tamás Fordító részei / 2 Irodalom Izsó Tamás Fordító részei / 3 Irodalom Izsó
RészletesebbenI. LABOR -Mesterséges neuron
I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,
RészletesebbenBánhelyi Balázs, Csendes Tibor, Palatinus Endre és Lévai. Szeptember 28-30, 2011, Balatonöszöd, Hungary
optimalizáló eljárás, Csendes Tibor, Palatinus Endre és Lévai Balázs László Szegedi Tudományegyetem Szeptember 28-30, 2011, Balatonöszöd, Hungary Közmegvilágítási feladat Adott egy megvilágítandó terület,
RészletesebbenProgramozás I gyakorlat
Programozás I. - 2. gyakorlat Változók, kiiratás, bekérés Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Számítástudomány Alkalmazása Tanszék Utolsó frissítés: September 24, 2007 1 tar@dcs.vein.hu
RészletesebbenSzámítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
RészletesebbenHardver Ismeretek IA32 -> IA64
Hardver Ismeretek IA32 -> IA64 Problémák az IA-32-vel Bonyolult architektúra CISC ISA (RISC jobb a párhuzamos feldolgozás szempontjából) Változó utasításhossz és forma nehéz dekódolni és párhuzamosítani
RészletesebbenBepillantás a gépházba
Bepillantás a gépházba Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív memória: A számítógép bekapcsolt
RészletesebbenKözösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
RészletesebbenIII.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ
infokommunikációs technológiák III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ KECSKEMÉTI ANNA KUN JEROMOS KÜRT Zrt. KUTATÁSI
RészletesebbenNemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával
Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával 1 1 Eötvös Loránd Tudományegyetem, Informatikai Kar Kari TDK, 2016. 05. 10. Tartalom 1 2 Tartalom 1 2 Optimalizálási
RészletesebbenVideókártya - CUDA kompatibilitás: CUDA weboldal: Példaterületek:
Hasznos weboldalak Videókártya - CUDA kompatibilitás: https://developer.nvidia.com/cuda-gpus CUDA weboldal: https://developer.nvidia.com/cuda-zone Példaterületek: http://www.nvidia.com/object/imaging_comp
RészletesebbenSAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával
SAT probléma kielégíthetőségének vizsgálata masszív parallel mesterséges neurális hálózat alkalmazásával Tajti Tibor, Bíró Csaba, Kusper Gábor {gkusper, birocs, tajti}@aries.ektf.hu Eszterházy Károly Főiskola
RészletesebbenPárhuzamos programok futásának kiértékelése Scalasca profiler segítségével
Párhuzamos programok futásának kiértékelése segítségével 2014. Április 24. Pécs, Networkshop 2014 Rőczei Gábor roczei@niif.hu Főbb témák Miért használjunk szuperszámítógépet?! Alapfogalmak Miért van szükség
RészletesebbenA CUDA előnyei: - Elszórt memória olvasás (az adatok a memória bármely területéről olvashatóak) PC-Vilag.hu CUDA, a jövő technológiája?!
A CUDA (Compute Unified Device Architecture) egy párhuzamos számításokat használó architektúra, amelyet az NVIDIA fejlesztett ki. A CUDA valójában egy számoló egység az NVIDIA GPU-n (Graphic Processing
RészletesebbenSzámítógép-rendszerek fontos jellemzői (Hardver és Szoftver):
B Motiváció B Motiváció Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver): Helyesség Felhasználóbarátság Hatékonyság Modern számítógép-rendszerek: Egyértelmű hatékonyság (például hálózati hatékonyság)
RészletesebbenMegerősítéses tanulás 7. előadás
Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig
RészletesebbenGPU-k a gravitációs hullám kutatásban
GPU-k a gravitációs hullám kutatásban Debreczeni Gergely MTA KFKI RMKI (Gergely.Debreczeni@rmki.kfki.hu) e-science Cafè 2011. november 14. Óbudai Egyetem Neumann János Informatikai Kar Á.R.: Megfigyelhető
RészletesebbenSzámítógép architektúrák záróvizsga-kérdések február
Számítógép architektúrák záróvizsga-kérdések 2007. február 1. Az ILP feldolgozás fejlődése 1.1 ILP feldolgozási paradigmák (Releváns paradigmák áttekintése, teljesítmény potenciáljuk, megjelenési sorrendjük
RészletesebbenUtolsó módosítás:
Utolsó módosítás: 2011. 09. 08. 1 A tantárggyal kapcsolatos adminisztratív kérdésekkel Micskei Zoltánt keressétek. 2 3 4 5 6 7 8 9 10 11 12 13 14 Erősen buzzword-fertőzött terület, manapság mindent szeretnek
RészletesebbenGPU Lab. 3. fejezet. Az X86 Utasításkészlet. Grafikus Processzorok Tudományos Célú Programozása. Berényi Dániel Nagy-Egri Máté Ferenc
3. fejezet Az X86 Utasításkészlet Grafikus Processzorok Tudományos Célú Programozása Assembly nyelv Assembly nyelv: Bitkódok (gépikód) helyett rövid párbetűs nevek (mnemonic) az utasításoknak és a regisztereknek.
RészletesebbenGPGPU-k és programozásuk Dezső, Sima Sándor, Szénási
GPGPU-k és programozásuk Dezső, Sima Sándor, Szénási GPGPU-k és programozásuk írta Dezső, Sima és Sándor, Szénási Szerzői jog 2013 Typotex Kivonat A processzor technika alkalmazásának fejlődése terén napjaink
RészletesebbenA számítógép egységei
A számítógép egységei A számítógépes rendszer két alapvető részből áll: Hardver (a fizikai eszközök összessége) Szoftver (a fizikai eszközöket működtető programok összessége) 1.) Hardver a) Alaplap: Kommunikációt
RészletesebbenA fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása
A fordítóprogramok szerkezete Forrásprogram Forrás-kezelő (source handler) Kódoptimalizálás Fordítóprogramok előadás (A,C,T szakirány) Lexikális elemző (scanner) Szintaktikus elemző (parser) Szemantikus
RészletesebbenGPGPU alapok. GPGPU alapok Grafikus kártyák evolúciója GPU programozás sajátosságai
GPGPU alapok GPGPU alapok Grafikus kártyák evolúciója GPU programozás sajátosságai Szenasi.sandor@nik.uni-obuda.hu GPGPU alapok GPGPU alapok Grafikus kártyák evolúciója GPU programozás sajátosságai Szenasi.sandor@nik.uni-obuda.hu
RészletesebbenDigitális rendszerek. Utasításarchitektúra szintje
Digitális rendszerek Utasításarchitektúra szintje Utasításarchitektúra Jellemzők Mikroarchitektúra és az operációs rendszer közötti réteg Eredetileg ez jelent meg először Sokszor az assembly nyelvvel keverik
RészletesebbenSzámítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd, Krankovits Melinda SZE MTK MSZT kmelinda@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? 2 Nem reprezentatív felmérés
RészletesebbenGyőri HPC kutatások és alkalmazások
Győri HPC kutatások és alkalmazások dr. Horváth Zoltán dr. Környei László Fülep Dávid Széchenyi István Egyetem Matema5ka és Számítástudomány Tanszék 1 HPC szimulációk az iparban Feladat: Rába- futómű terhelés
RészletesebbenNagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.
Nagyságrendek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 018. február 1. Az O, Ω, Θ jelölések Az algoritmusok
RészletesebbenOperandus típusok Bevezetés: Az utasítás-feldolgozás menete
Operandus típusok Bevezetés: Az utasítás-feldolgozás menete Egy gépi kódú utasítás általános formája: MK Címrész MK = műveleti kód Mit? Mivel? Az utasítás-feldolgozás általános folyamatábrája: Megszakítás?
Részletesebben2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése
2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )
RészletesebbenKonjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
RészletesebbenLosonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar
Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt
RészletesebbenSzámítógép felépítése
Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége
Részletesebben5-6. ea Created by mrjrm & Pogácsa, frissítette: Félix
2. Adattípusonként különböző regisztertér Célja: az adatfeldolgozás gyorsítása - különös tekintettel a lebegőpontos adatábrázolásra. Szorzás esetén karakterisztika összeadódik, mantissza összeszorzódik.
RészletesebbenFeladat. Bemenő adatok. Bemenő adatfájlok elvárt formája. Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. Például (bemenet/pelda.
Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. BEDTACI.ELTE Programozás 3ice@3ice.hu 11. csoport Feladat Madarak életének kutatásával foglalkozó szakemberek különböző településen különböző madárfaj
RészletesebbenAz informatika kulcsfogalmai
Az informatika kulcsfogalmai Kulcsfogalmak Melyek azok a fogalmak, amelyek nagyon sok más fogalommal kapcsolatba hozhatók? Melyek azok a fogalmak, amelyek más-más környezetben újra és újra megjelennek?
RészletesebbenSimon Balázs Dr. Goldschmidt Balázs Dr. Kondorosi Károly. BME, Irányítástechnika és Informatika Tanszék
Simon Balázs (sbalazs@iit.bme.hu) Dr. Goldschmidt Balázs Dr. Kondorosi Károly BME, Irányítástechnika és Informatika Tanszék Webszolgáltatások, WS-* szabványok WS-* implementációs architektúra Célkitűzés:
RészletesebbenBevezetés. Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar
Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar Bevezetés Motiváció Soros és párhuzamos végrehajtás, soros és párhuzamos programozás Miért? Alapfogalmak
RészletesebbenArchitektúra, cache. Mirıl lesz szó? Mi a probléma? Teljesítmény. Cache elve. Megoldás. Egy rövid idıintervallum alatt a memóriahivatkozások a teljes
Architektúra, cache irıl lesz szó? Alapfogalmak Adat cache tervezési terének alapkomponensei Koschek Vilmos Fejlıdés vkoschek@vonalkodhu Teljesítmény Teljesítmény növelése Technológia Architektúra (mem)
RészletesebbenSztochasztikus folyamatok alapfogalmak
Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos
RészletesebbenFolyamatok. 6. előadás
Folyamatok 6. előadás Folyamatok Folyamat kezelése, ütemezése folyamattábla új folyamat létrehozása átkpcsolás folyamatok elválasztása egymástól átlátszó Szál szálkezelő rendszer szálak védése egymástól
RészletesebbenAdatszerkezetek 1. előadás
Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk
RészletesebbenHátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8.
Hátizsák feladat Egy adott hátizsákba tárgyakat akarunk pakolni. Adott n tárgy minden tárgynak van egy fontossági értéke ( f [i]), és egy súlya (s[i]), a hátizsákba maximum összesen S súlyt pakolhatunk.
RészletesebbenSzámítógép Architektúrák
Cache memória Horváth Gábor 2016. március 30. Budapest docens BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu Már megint a memória... Mindenről a memória tehet. Mert lassú. A virtuális
RészletesebbenAlgoritmusok és adatszerkezetek I. 1. előadás
Algoritmusok és adatszerkezetek I 1 előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: elemi (vagy skalár, vagy strukturálatlan) összetett (más szóval strukturált) Strukturálási
RészletesebbenCUDA haladó ismeretek
CUDA haladó ismeretek CUDA környezet részletei Többdimenziós indextér használata Megosztott memória használata Atomi műveletek használata Optimalizálás Hatékonyság mérése Megfelelő blokkméret kiválasztása
RészletesebbenCsoportos üzenetszórás optimalizálása klaszter rendszerekben
Csoportos üzenetszórás optimalizálása klaszter rendszerekben Készítette: Juhász Sándor Csikvári András Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Automatizálási
RészletesebbenMemóriagazdálkodás. Kódgenerálás. Kódoptimalizálás
Kódgenerálás Memóriagazdálkodás Kódgenerálás program prológus és epilógus értékadások fordítása kifejezések fordítása vezérlési szerkezetek fordítása Kódoptimalizálás L ATG E > TE' E' > + @StPushAX T @StPopBX
RészletesebbenAdatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris
RészletesebbenProcesszusok (Processes), Szálak (Threads), Kommunikáció (IPC, Inter-Process Communication)
1 Processzusok (Processes), Szálak (Threads), Kommunikáció (IPC, Inter-Process Communication) 1. A folyamat (processzus, process) fogalma 2. Folyamatok: műveletek, állapotok, hierarchia 3. Szálak (threads)
RészletesebbenGPGPU: Általános célú grafikus processzorok cgpu: computational GPU GPGPU = cgpu Adatpárhuzamos gyorsító: dedikált eszköz, ami eleve csak erre
GPGPU: Általános célú grafikus processzorok cgpu: computational GPU GPGPU = cgpu Adatpárhuzamos gyorsító: dedikált eszköz, ami eleve csak erre szolgál. Nagyobb memória+grafika nélkül (nincs kijelzőre kimenet)
RészletesebbenProgramozás alapjai. (GKxB_INTM023) Dr. Hatwágner F. Miklós augusztus 29. Széchenyi István Egyetem, Gy r
Programozás alapjai (GKxB_INTM023) Széchenyi István Egyetem, Gy r 2019. augusztus 29. Feladat: írjuk ki az els 10 természetes szám négyzetét! #i n c l u d e i n t main ( v o i d ) { p r
RészletesebbenMATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005
2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus
RészletesebbenParciális rekonfiguráció Heterogén számítási rendszerek VIMIMA15
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Parciális rekonfiguráció Heterogén számítási rendszerek VIMIMA15 Fehér
RészletesebbenParciális rekonfiguráció Heterogán számítási rendszerek VIMIMA15
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Parciális rekonfiguráció Heterogán számítási rendszerek VIMIMA15 Fehér
RészletesebbenRendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat
9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:
RészletesebbenKereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
RészletesebbenIII. "JÖVŐ INTERNET" TECHNOLÓGIÁK: ELOSZTOTT ÉS FELHŐ SZOLGÁLTATÁSOK, TÁRGYAK INTERNETE DR. SIMON GYULA
infokommunikációs technológiák III. "JÖVŐ INTERNET" TECHNOLÓGIÁK: ELOSZTOTT ÉS FELHŐ SZOLGÁLTATÁSOK, TÁRGYAK INTERNETE DR. SIMON GYULA TÉMÁK 1. Szenzorhálózatra épülő elosztott felügyeleti rendszer kidolgozása
RészletesebbenMATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012
2012 2. Számhalmazok (a valós számok halmaza és részhalmazai), oszthatósággal kapcsolatos problémák, számrendszerek. 4. Hatványozás, hatványfogalom kiterjesztése, azonosságok. Gyökvonás és azonosságai,
RészletesebbenIntelligens adatelemzés
Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az
RészletesebbenULTIMATE TIC TAC TOE. Serfőző Péter
ULTIMATE TIC TAC TOE Serfőző Péter 2016.05.02. ULTIMATE TIC TAC TOE Amőba alapján Két változat, az első könnyű, a második nehéz A játék keletkezéséről nincsenek információk, de a játékelmélet elkezdett
RészletesebbenDigitális eszközök típusai
Digitális eszközök típusai A digitális eszközök típusai Digitális rendszer fogalma Több minden lehet digitális rendszer Jelen esetben digitális integrált áramköröket értünk a digitális rendszerek alatt
RészletesebbenUtolsó módosítás:
Utolsó módosítás:2011. 09. 29. 1 2 4 5 MMU!= fizikai memóriaillesztő áramkör. Az utóbbinak a feladata a memória modulok elektromos alacsonyszintű vezérlése, ez sokáig a CPU-n kívül a chipset északi hídban
RészletesebbenBevezetés a párhuzamos programozási koncepciókba
Bevezetés a párhuzamos programozási koncepciókba Kacsuk Péter és Dózsa Gábor MTA SZTAKI Párhuzamos és Elosztott Rendszerek Laboratórium E-mail: kacsuk@sztaki.hu Web: www.lpds.sztaki.hu Programozási modellek
RészletesebbenGépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
RészletesebbenBonyolultságelmélet. Thursday 1 st December, 2016, 22:21
Bonyolultságelmélet Thursday 1 st December, 2016, 22:21 Tárbonyolultság A futásidő mellett a felhasznált tárterület a másik fontos erőforrás. Ismét igaz, hogy egy Ram-program esetében ha csak a használt
RészletesebbenMatematikai és Informatikai Intézet. 4. Folyamatok
4. Folyamatok A folyamat (processzus) fogalma Folyamat ütemezés (scheduling) Folyamatokon végzett "mûveletek" Folyamatok együttmûködése, kooperációja Szálak (thread) Folyamatok közötti kommunikáció 49
RészletesebbenLegyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }.
. Markov-láncok. Definíció és alapvető tulajdonságok Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0,,,..., N}, {0,,,... }.. definíció. S értékű valószínűségi
RészletesebbenKriptográfia 0. A biztonság alapja. Számítás-komplexitási kérdések
Kriptográfia 0 Számítás-komplexitási kérdések A biztonság alapja Komplexitás elméleti modellek független, egyenletes eloszlású véletlen változó értéke számítással nem hozható kapcsolatba más információval
RészletesebbenDigitális rendszerek. Digitális logika szintje
Digitális rendszerek Digitális logika szintje CPU lapkák Mai modern CPU-k egy lapkán helyezkednek el Kapcsolat a külvilággal: kivezetéseken (lábak) keresztül Cím, adat és vezérlőjelek, ill. sínek (buszok)
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
RészletesebbenAdatbáziskezelő-szerver. Relációs adatbázis-kezelők SQL. Házi feladat. Relációs adatszerkezet
1 2 Adatbáziskezelő-szerver Általában dedikált szerver Optimalizált háttértár konfiguráció Csak OS + adatbázis-kezelő szoftver Teljes memória az adatbázisoké Fő funkciók: Adatok rendezett tárolása a háttértárolón
RészletesebbenMintavételes szabályozás mikrovezérlő segítségével
Automatizálási Tanszék Mintavételes szabályozás mikrovezérlő segítségével Budai Tamás budai.tamas@sze.hu http://maxwell.sze.hu/~budait Tartalom Mikrovezérlőkről röviden Programozási alapismeretek ismétlés
Részletesebben"A tízezer mérföldes utazás is egyetlen lépéssel kezdődik."
"A tízezert mérföldes utazás is egyetlen lépéssel kezdődik dik." A BINB INSYS Előadók: Kornafeld Ádám SYS PROJEKT Ádám MTA SZTAKI kadam@sztaki.hu Kovács Attila ELTE IK attila@compalg.inf.elte.hu Társszerzők:
RészletesebbenAz interrupt Benesóczky Zoltán 2004
Az interrupt Benesóczky Zoltán 2004 1 Az interrupt (program megszakítás) órajel generátor cím busz környezet RESET áramkör CPU ROM RAM PERIF. adat busz vezérlõ busz A periféria kezelés során információt
RészletesebbenProcesszusok (Processes), Szálak (Threads), Kommunikáció (IPC, Inter-Process Communication)
1 Processzusok (Processes), Szálak (Threads), Kommunikáció (IPC, Inter-Process Communication) 1. A folyamat (processzus, process) fogalma 2. Folyamatok: műveletek, állapotok, hierarchia 3. Szálak (threads)
Részletesebben