5. mérés: Diszkrét Fourier Transzformáció (DFT), Gyors Fourier Transzformáció (FFT), számítógépes jelanalízis
|
|
- Margit Vassné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Híradástechnika II. laboratóriumi mérések 5. mérés: Diszkrét Fourier Transzformáció (DFT), Gyors Fourier Transzformáció (FFT), számítógépes jelanalízis Összeállította: Kármán József Általános bevezet Az elméleti összefoglaló Dr. Simán István Digitális Jelfeldolgozás és Hesselmann azonos cím könyvébl lett kiemelve.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 Ablakfüggvények összefoglalása: Derékszög (négyszögletes) ablak (ablakfüggvény) Ebben az esetben nincsen súlyozás!
21 Háromszögablak
22 Hann ablak (Hanning ablak)
23 Hamming ablak
24 Blackman ablak
25 Az ablakfüggvények összehasonlítása
26 Mérési feladatok: 1. A mérést az FFT_1.m file-ban található programmal hajtjuk végre. A program egy FFT algoritmust tartalmaz. A bemen jelet, és az ablakfüggvényt is ebben definiáljuk. Elször ismerkedjünk meg az FFT környezeti paramétereivel. Ez egy olyan spektrum-analizátor, amely Tf=5ms id alatt N=256 jelmintát vesz (td=tf/n=19,53us mintavételi idközzel), amelybl N=256 spektrummintát számol. A mintavételi frekvencia Fs=1/td=51,2kHz. Az analizátorunk felbontóképessége df=fs/n=200hz. Ez azt jelenti, hogy 200Hz-enként tud spektrumvonalat ábrázolni (0, 200, 400, Hz) egészen fs/2-ig (25,6KHzig), mind a pozitív, mind a negatív frekvenciatartományon, a komplex spektrumkép miatt. Az amplitúdókat logaritmikus db skálán ábrázolja (20xlog(U/Uref). A referenciaszint a 20V-os dinamikatartomány legkisebb lépcsje, 16 bites felbontás esetén (Uref=20V/2^16). A spektrumvonalak magasságát a marker-funkcióval lehet pontosan leolvasni! Elször súlyozás-mentesen veszzük a jelbl a mintákat (derékszög ablakfüggvény alkalmazása). A bemen jelek frekvenciája osztható 200Hz-el, azaz a bemen jel frekvenciái épp olyan pontra esnek, ahol az FFT spektrumvonalat ábrázolni képes. Futtassuk a programot! Látjuk, hogy egy nagy és egy kisebb amplitúdójú jel van a bemeneten! Olvassuk le az értékeket és vessük össze a valóságos amplitúdó-értékekkel! (10V megfelel 90,30831dB-nek, mert 20xlog(10/(20/2^16))) Mi okozza az eltérést? Gondoljunk a komplex spektrum tulajdonságaira! Mekkora korrekciót kell alkalmazni, hogy a pozitív frekvenciatartományon a valóságos amplitúdót olvassam le a spektrumképrl? Adjunk 3V DC-t az x1-nek! Nézzük meg a DC ábrázolását! Itt kell alkalmazni a korrekciót? Az x1 jel esetén a frekvencia 10kHz, k=0, ez esetben a tanultak szerint a négyszögablak sin(x)/x jelleg szelektivitásgörbéjének zérushelyei épp 200Hz-enként az ábrázolható spektrumvonalakra esnek, így azok 0 értéket vesznek fel, a fnyaláb maximuma épp a bejöv jel frekvenciájánál kiadja annak amplitúdóját. Ezt nevezzük vonalas fedésnek. ez csak és kizárólag a négyszög ablaknak a sajátja, más ablakfüggvény ilyen tiszta, valóságh spektrumképet sohasem ad (3.2 és 3.3 ábrák!). Hangoljuk feljebb az x1-et k=0,1-el (ez 200Hz frekvenciaközök esetén 20Hzet jelent). Értékeljük a látottakat! Most ez a szelektivitásgörbe maximuma 10020Hz-re csúszott. Ott nem találunk spektrumvonalat, tehát ez a frekvencia pontosan ezzel az analizátorral nem ábrázolható. A spektrumvonalak pedig a szelektivitásgörbének megfelel értékeket veszik fel. A spektrumban megjelenik a szivárgás (olyan frekvenciák, amelyek a bejöv jelben nincsenek). A szivárgás miatt a kisebb amplitúdójú jelkomponenst már nem is látjuk. A szivárgás azért lép fel, mert ha jól megnézzük, ebben az esetben a kép fels részén ábrázolt idfüggvény minták periodikus meghosszabbítása
27 (ahogyan azt az FFT látja ), a széleken ugrásokat eredményez, mivel a periodikus jelnek nem egész számú többszöröse esik a mintavételi ablakba (ld. még 3.1 ábra!). Nézzük meg a jelenséget! Válasszunk olyan k-t ahol ez a jelenség jól látszik! 2. Hozzuk létre a maximális mintavételi hiba esetét (hullámosság) x1 bemen jellel (k=0,5 10kHz-tl felfelé, azaz f=10100hz). Ekkor két egyforma spektrumvonalat látunk a fnyalábban, és ezek leolvasott értéke maximálisan eltér a vonalas fedés által mutatott valóságos amplitúdótól. Ha két azonos magasságú vonalat látunk, akkor a görbe szimmetriájából következleg biztosak lehetünk abban, hogy a bejöv jel frekvenciája épp a két spektrumvonal frekvenciájának számtani közepe. Határozzuk meg a hiba nagyságát és vessük össze a táblázatban megadott értékkel! Vigyázat! a mintavételi hiba meghatározásakor a szelektivitásgörbe maximumától való távolságot értjük db-ben. Ez a leolvasási hiba. Ebbe nem kalkuláljuk bele a leolvasás után szükséges korrekciós tényezt (derékszög ablak esetében 6,02dB)! A szelektivitásgörbe tanulmányozásakor láthatjuk, hogy az els melléknyaláb k=1,5-re van a maximumtól, azaz a bejöv jel frekvenciájától, mivel mindig erre esik a görbe maximuma. Így ebben az esetben a két azonos magasságú fnyaláb komponens mellett közvetlenül helyezkedik el az els melléknyaláb, amelynek lokális maximumára esik a spektrumvonal (a bemen jel frekvenciájától k=0,5-re találhatók a fnyaláb, majd még egy k=1-ra a melléknyaláb vonalai, azaz frekvenciában felfelé (1,5x200)=10400Hz). Az értékét csak le kell olvasni. Határozzuk meg az els fnyaláb nagyságát, és vessük össze a táblázat értékével! Nézzük meg, hogy a melléknyalábok milyen lassan csökkennek! Rossz a távolszelektivitás! A Négyszögablak tehát nem minden esetben jó választás! k=0,1 értékenként hangoljuk el az x1 bemen jelet 10kHz-rl, felfelé, és a maximális spektrumvonal csökkenését követve határozzuk meg a szelektivitásgörbe fnyalábjának pontjait ilyen lépésekben! Rajzosan, vagy táblázatosan rögzítsük az eredményt! Vessük össze a leírással! 3. A mintavételi ablak szélein elálló ugrások hatását különféle ablakfüggvényekkel lehet csökkenteni. Az ablakfüggvények hatására javul a szelektivitás, a fnyaláb viszont kiszélesedik. Ez a maximális mintavételi hibát csökkenti, azaz a leolvasott maximális spektrumvonal közelebb kerül a tényleges amplitúdó értékéhez, de a frekvencia leolvasását megnehezíti. A 6.3 táblázatban felsorolt ablakfüggvények alakját és a hozzájuk tartozó szelektivitásgörbéket a wintool paranccsal nézzük meg, és dokumentáljuk! Length: 256, de jól látható a fnyaláb környezete 2, , 64 értékek esetén. Ahol az ablakfüggvény külön paramétert is kér, ott a táblázat értékeit kell megadni. Ne zavarjon senkit az Length-tl függ eltolódás a db skálán! Ezt az eltolódást az FFT során külön osztással tudjuk korrigálni.
28 4. Az FFT-1.m programban válasszunk ki különböz ablakfüggvényeket (pl. Háromszög, Hann, Hamming, Blackman, Flat top), és vizsgáljuk meg az ablakozott idfüggvény mintákat (fels ábra), és az ablakfüggvény spektrumképre gyakorolt hatását! Nézzük meg, hogy hogyan szélesedik ki a fnyaláb (már nem csak két vonalat tartalmaz maximálisan, mint derékszög esetben), és hogyan javul a szelektivitás (kisebb els melléknyaláb, gyorsabb melléknyaláb csökkenés). Nézzük meg, hogy a kis amplitúdójú jel hogyan tnik el a spektrumképben k=0,1 esetben (x1 frekvenciája10020hz)! Már nem nyeli el a szivárgás! Hozzunk létre k=0 esetet x1 jelre (f=10000hz)! Különböz ablakfüggvények esetében nézzük meg, hogy mit látunk a vonalas fedés helyett. Elemezzük a kiszélesedett fnyalábot! A legnagyobb spektrumvonal a bejöv jel frekvenciájára esik, de az amplitúdó leolvasásakor további korrekciós tényezt kell alkalmazni. Nézzük meg, hogy mekkora korrekciós tényezket kell alkalmazni, és vessük össze a leírás szelektivitásgörbéinek megadásánál alkalmazott értékekkel ( ábrák)! Vigyázat! Ez a korrekció nem számolandó bele a mintavételi hibába! Hozzuk létre a k=0,5 esetét, azaz a maximális mintavételi hiba esetét. Ekkor a bejöv jel tényleges frekvenciája két ábrázolható spektrumvonal közé esik (pl. x1 fbe=10100 Hz). A különböz ablakfüggvények esetén nézzük meg, hogy mekkora a maximális mintavételi hiba! Vessük össze a 6.3 táblázat értékeivel! Szemrevételezéssel minsítsük a távolszelektivitást! A legnagyobb melléknyalábot a szelektivitásgörbe sajátossága alapján lehet meghatározni. Háromszög ablak esetében k=3-nál (pl. 10kHz bemen jel esetén 10,6kHz-nél), Hann ablak esetén k=2,5-nél (pl. 10,1kHz bemen jel esetén 10,6kHz-nél), Blackman és Hamming ablakok esetén pedig k=3,5-nél találjuk az els melléknyalábot. Határozzuk meg a nagyságukat és vessük össze a 6.3 táblázat értkeivel! 5. Ha maradt még id, opcionálisan megoldható a következ feladat. Írja át az FFT_1.m programot úgy, hogy 512 mintát vegyen a spektrum-analizátor, változatlan mintavételi frekvenciával! Ne feledje módosítani a megjelenítés frekvenciaskáláját is!
EGYENÁRAMÚ TÁPEGYSÉGEK
dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1
Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)
DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális
Shift regiszter + XOR kapu: 2 n állapot
DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)
Informatika Rendszerek Alapjai
Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának
Első egyéni feladat (Minta)
Első egyéni feladat (Minta) 1. Készítsen olyan programot, amely segítségével a felhasználó 3 különböző jelet tud generálni, amelyeknek bemenő adatait egyedileg lehet változtatni. Legyen mód a jelgenerátorok
Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni.
Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni. Kezdjük a sort a menetidőgörbékről, illetve az NMO korrekcióról tanultakkal. A következő ábrán
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két
2. gyakorlat Mintavételezés, kvantálás
2. gyakorlat Mintavételezés, kvantálás x(t) x[k]= =x(k T) Q x[k] ^ D/A x(t) ~ ampl. FOLYTONOS idı FOLYTONOS ANALÓG DISZKRÉT MINTAVÉTELEZETT DISZKRÉT KVANTÁLT DIGITÁLIS Jelek visszaállítása egyenköző mintáinak
Digitális szűrők - (BMEVIMIM278) Házi Feladat
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rszerek Tanszék Digitális szűrők - (BMEVIMIM278) FIR-szűrő tervezése ablakozással Házi Feladat Név: Szőke Kálmán Benjamin Neptun:
Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1
Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen
Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)
Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) 1. A D/A átalakító erısítési hibája és beállása Mérje meg a D/A átalakító erısítési hibáját! A hibát százalékban adja
M ű veleti erő sítő k I.
dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt
Laboratórium mérés Házi feladat. Készítette: Koszó Norbert (GTPL3A) Második (javított) kiadás
Laboratórium 1. 4. mérés Házi feladat Készítette: Koszó Norbert (GTPL3A) Második (javított) kiadás 4. mérés Koszó Norbert (GTPL3A) Feladat 1. Adott egy diszkrét jel mintasorozata. A mintavételi idő t
Wavelet transzformáció
1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan
1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió
Mérés és adatgyűjtés - Kérdések 2.0 verzió Megjegyzés: ezek a kérdések a felkészülést szolgálják, nem ezek lesznek a vizsgán. Ha valaki a felkészülése alapján önállóan válaszolni tud ezekre a kérdésekre,
A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása
A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása Összeállította: dr. Szuhay Péter Budapest, 2013 Filename, 1 Hang és zaj 1. rész Dr. Szuhay Péter B & K Components Kft
Digitális Fourier-analizátorok (DFT - FFT)
6 Digitális Fourier-analizátoro (DFT - FFT) Eze az analizátoro digitális műödésűe és a Fourier-transzformálás elvén alapulna. A digitális Fourier analizátoro a folytonos időfüggvény mintavételezett jeleit
1. ábra. Repülő eszköz matematikai modellje ( fekete doboz )
Wührl Tibor DIGITÁLIS SZABÁLYZÓ KÖRÖK NEMLINEARITÁSI PROBLÉMÁI FIXPONTOS SZÁMÁBRÁZOLÁS ESETÉN RENDSZERMODELL A pilóta nélküli repülő eszközök szabályzó körének tervezése során első lépésben a repülő eszköz
Akusztikus mérőműszerek
Akusztikus mérőműszerek Hangszintmérő: méri a frekvencia súlyozott, és nyomásátlagolt hangnyomás szintet (hangszintet). Felépítése Mikrofon + Erősítő Frekvencia Szint tartomány Időátlagolás Kijelzés Előerősítő
Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról
Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról A mérés helyszíne: A mérés időpontja: A mérést végezték: A mérést vezető oktató neve: A jegyzőkönyvet tartalmazó
Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás
Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 2. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-2/1 Ellenállás mérés és adatbeolvasás Rn ismert
Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ
Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ 20/7. sz. mérés HAMEG HM-5005 típusú spektrumanalizátor vizsgálata
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba
Méréselmélet és mérőrendszerek
Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o
Elektronikus műszerek Spektrum analizátorok
1 Spektrumanalizátorok 1. Alapogalmak Az energia jellegű ill. teljesítmény jellegű spektrumokat tehát a teljesítmény-, az energiasűrűség-, a teljesítménysűrűség- és a kereszt-teljesítménysűrűség-spektrumot,
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.
Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]
Pulzus Amplitúdó Moduláció (PAM) A Pulzus Amplitúdó Modulációról abban az esetben beszélünk, amikor egy impulzus sorozatot használunk vivőhullámnak és ezen a vivőhullámon valósítjuk meg az amplitúdómodulációt
Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN*
A Miskolci Egyetem Közleménye A sorozat, Bányászat, 66. kötet, (2004) p. 103-108 CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN* Dr.h.c.mult. Dr. Kovács Ferenc az
Feszültségérzékelők a méréstechnikában
5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.
Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR. Mikroelektronikai és Technológiai Intézet. Aktív Szűrők. Analóg és Hírközlési Áramkörök
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR Mikroelektronikai és Technológiai Intézet Analóg és Hírközlési Áramkörök Laboratóriumi Gyakorlatok Készítette: Joó Gábor és Pintér Tamás OE-MTI 2011 1.Szűrők
Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?
1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen
Kompenzációs kör vizsgálata. LabVIEW 7.1 4. előadás
Kompenzációs kör vizsgálata LabVIEW 7.1 4. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-4/1 Mágneses hiszterézis mérése előírt kimeneti jel mellett DAQ Rn Un etalon ellenállás etalon ellenállás
1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban
1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció
RC tag mérési jegyz könyv
RC tag mérési jegyz könyv Mérést végezte: Csutak Balázs, Farkas Viktória Mérés helye és ideje: ITK 320. terem, 2016.03.09 A mérés célja: Az ELVIS próbapanel és az ELVIS m szerek használatának elsajátítása,
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
Oszcilloszkópos mérések II. laboratóriumi gyakorlat
Oszcilloszkópos mérések II. laboratóriumi gyakorlat Készítette: Bodnár Péter bopnaat.sze mősz.info. III. évf. 2007. szeptember 19. Mérıtársak: Laczó Péter Szögi Balázs Szekeres Gábor 1.Feladatok 1.1. Kapcsoljon
Mûveleti erõsítõk I.
Mûveleti erõsítõk I. 0. Bevezetés - a mûveleti erõsítõk mûködése A következõ mérésben az univerzális analóg erõsítõelem, az un. "mûveleti erõsítõ" mûködésének alapvetõ ismereteit sajátíthatjuk el. A nyílthurkú
Digitális jelfeldolgozás
Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.
A hang mint mechanikai hullám
A hang mint mechanikai hullám I. Célkitűzés Hullámok alapvető jellemzőinek megismerése. A hanghullám fizikai tulajdonságai és a hangérzet közötti összefüggések bemutatása. Fourier-transzformáció alapjainak
3. Hangfrekvenciás mechanikai rezgések vizsgálata
3. Hangfrekvenciás mechanikai rezgések vizsgálata Tóth Bence fizikus,. évfolyam 005.03.04. péntek délelőtt beadva: 005.03.. . A mérés első részében a megvastagított végű rúd (a D jelű) felharmonikusait
07. mérés Erősítő kapcsolások vizsgálata.
07. mérés Erősítő kapcsolások vizsgálata. A leggyakrabban használt üzemi paraméterek a következők: - a feszültségerősítés Au - az áramerősítés Ai - a teljesítményerősítés Ap - a bemeneti impedancia Rbe
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. február 23. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2009. március 2. A mérést végezte: Zsigmond Anna Márton Krisztina
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális
1. ábra A Wien-hidas mérőpanel kapcsolási rajza
Ismeretellenőrző kérdések A mérések megkezdése előtt kérem, gondolja végig a következő kérdéseket, feladatokat! Szükség esetén elevenítse fel ismereteit az ide vonatkozó elméleti tananyag segítségével!
Érettségi feladatok: Függvények 1/9
Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett
Mérési jegyzőkönyv 9. mérés
Mérési jegyzőkönyv 9. mérés Elosztott rendszerek és szenzorhálózatok 1. című laboratóriumi gyakorlatról A mérés helyszíne: Méréstechnika és Információs Rendszerek Tanszék. IE. 225. BOSCH beágyazott rendszerek
Az előadás tartalma. Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai Endre Szűcs Péter Ciklusok felkutatása
Miskolci Egyetem Környezetgazdálkodási Intézet Geofizikai és Térinformatikai Intézet MTA-ME Műszaki Földtudományi Kutatócsoport Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk
1 1 Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk Jelfeldolgozás 1 Lineáris rendszerek jellemzõi és vizsgálatuk 2 Bevezetés 5 Kérdések, feladatok 6 Fourier sorok, Fourier transzformáció 7 Jelek
2. Az emberi hallásról
2. Az emberi hallásról Élettani folyamat. Valamilyen vivőközegben terjedő hanghullámok hatására, az élőlényben szubjektív hangérzet jön létre. A hangérzékelés részben fizikai, részben fiziológiai folyamat.
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond
Számítógépes Grafika SZIE YMÉK
Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a
E-Laboratórium 5 Közös Emitteres erősítő vizsgálata NI ELVIS-II tesztállomással Mérés menete
E-Laboratórium 5 Közös Emitteres erősítő vizsgálata NI ELVIS-II tesztállomással Mérés menete Mérési feladatok: 1. Egyenáramú munkaponti adatok mérése Tápfeszültség beállítása, mérése (UT) Bázisfeszültség
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.
DLDY. Négyszög egyenes hangcsillapító. Méretek
Négyszög egyenes hangcsillapító Méretek a + 00 b Leírás A egy kulisszás hangcsillapító, melyben a csatlakozó keresztmetszeten kívül beépített oldalsó kulisszák találhatók. A hangcsillapító minden standard
Hangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
ÁRAMKÖRÖK SZIMULÁCIÓJA
ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg
Orvosi Fizika és Statisztika
Orvosi Fizika és Statisztika Szegedi Tudományegyetem Általános Orvostudományi Kar Természettudományi és Informatikai Kar Orvosi Fizikai és Orvosi Informatikai Intézet www.szote.u-szeged.hu/dmi Orvosi fizika
Mérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek
1. Visszacsatolás nélküli kapcsolások
1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ
Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken
Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.
Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:
Műszaki akusztikai mérések. (Oktatási segédlet, készítette: Deák Krisztián)
Műszaki akusztikai mérések (Oktatási segédlet, készítette: Deák Krisztián) Az akusztika tárgya a 20 Hz és 20000 Hz közötti, az emberi fül számára érzékelhető rezgések vizsgálata. A legegyszerűbb jel, a
Elektromos nagybıgı megvalósítása DSP-vel
Budapesti Mőszaki és Gazdaságtudományi Egyetem Gyurász Gábor Tamás Elektromos nagybıgı megvalósítása DSP-vel MSc. Önálló laboratórium II. beszámoló Konzulensek: dr. Bank Balázs Lajos Orosz György Problémafelvetés
Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Folyadékkristályok vizsgálata.
Modern Fizika Labor A mérés dátuma: 2005.11.16. A mérés száma és címe: 17. Folyadékkristályok vizsgálata Értékelés: A beadás dátuma: 2005.11.30. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során
Analóg digitális átalakítók ELEKTRONIKA_2
Analóg digitális átalakítók ELEKTRONIKA_2 TEMATIKA Analóg vs. Digital Analóg/Digital átalakítás Mintavételezés Kvantálás Kódolás A/D átalakítók csoportosítása A közvetlen átalakítás A szukcesszív approximációs
Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.
El. II. 5. mérés. SZIMMETRIKUS ERŐSÍTŐK MÉRÉSE. A mérés célja : Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. A mérésre való felkészülés során tanulmányozza
5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA
5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA BMF-Kandó 2006 2 A mérést végezte: A mérés időpontja: A mérésvezető tanár tölti ki! Mérés vége:. Az oszcillátorok vizsgálatánál a megadott kapcsolások közül csak egyet
Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin
Szinkronizmusból való kiesés elleni védelmi funkció
Budapest, 2011. december Szinkronizmusból való kiesés elleni védelmi funkció Szinkronizmusból való kiesés elleni védelmi funkciót főleg szinkron generátorokhoz alkalmaznak. Ha a generátor kiesik a szinkronizmusból,
Digitális hőmérő Modell DM-300
Digitális hőmérő Modell DM-300 Használati útmutató Ennek a használati útmutatónak a másolásához, terjesztéséhez, a Transfer Multisort Elektronik cég írásbeli hozzájárulása szükséges. Bevezetés Ez a készülék
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését
2. Elméleti összefoglaló
2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
Inga. Szőke Kálmán Benjamin SZKRADT.ELTE május 18. A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt.
Inga Szőke Kálmán Benjamin SZKRADT.ELTE 2012. május 18. 1. Bevezetés A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt. A program forráskódját a labor honlapjáról lehetett elérni, és
Jelgenerálás virtuális eszközökkel. LabVIEW 7.1
Jelgenerálás virtuális eszközökkel (mágneses hiszterézis mérése) LabVIEW 7.1 3. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-3/1 Folytonos idejű jelek diszkrét idejű mérése A mintavételezési
Idő-frekvencia transzformációk waveletek
Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2015. április 23. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos
BDLD. Négyszög könyök hangcsillapító. Méretek
Négyszög könyök hangcsillapító Méretek Függőleges beépítés Vízszintes beépítés b a a Leírás egy hagyományos kulisszás könyök hangcsillapító, melynek külső mérete megegyezik a csatlakozó mérettel. A hangcsillapító
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Folyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
Négyszög egyenes hangcsillapító DLD. Méretek
Méretek DLD b a 0 Leírás A DLD egy hagyományos kulisszás, melynek külső mérete megegyezik a csatlakozó mérettel. A minden standard méretben elérhető. Kialakítás DLD háza trapéz merevítésű, mely javítja
Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ
Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Műszertechnikai és Automatizálási Intézet MÉRÉSTECHNIKA LABORATÓRIUMI MÉRÉSEK ÚTMUTATÓ 20/8. sz. mérés PC oszcilloszkóp Markella Zsolt Budapest 2013 második
A gyakorlat célja a fehér és a színes zaj bemutatása.
A gyakorlat célja a fehér és a színes zaj bemutatása. 1.@. FFT begyakorlása n = [:9]; % Harminc minta x = cos(*pi*n/1); % 1 mintát veszünk periodusonként N1 = 64; % Három módon számoljuk az FFT-t N = 18;
6. témakör. Mintavételezés elve Digitális jelfeldolgozás (DSP) alapjai
6. témakör Mintavételezés elve Digitális jelfeldolgozás (DSP) alapjai A mintavételezés blokkvázlata Mintavételezés: Digitális jel mintavevô kvantáló kódoló Átvitel Tárolás antialiasing szűrő Feldolgozás
MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (2) a NAH /2014 nyilvántartási számú (2) akkreditált státuszhoz
MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (2) a NAH-2-0177/2014 nyilvántartási számú (2) akkreditált státuszhoz A Nemzeti Média- és Hírközlési Hatóság Nemzeti Média- és Hírközlési Hatóság Hivatala Infokommunikációs
A mintavételezéses mérések alapjai
A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel
Digitális hangszintmérő
Digitális hangszintmérő Modell DM-1358 A jelen használati útmutató másolása, bemutatása és terjesztése a Transfer Multisort Elektronik írásbeli hozzájárulását igényli. Használati útmutató Óvintézkedések
Analóg-digitál átalakítók (A/D konverterek)
9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk
Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!
Elméleti kérdések: Második zárthelyi dolgozat biomatematikából * (Minta, megoldásokkal) E. Mit értünk hatványfüggvényen? Adjon példát nem invertálható hatványfüggvényre. Adjon példát mindenütt konkáv hatványfüggvényre.
Géprajz - gépelemek. Előadó: Németh Szabolcs mérnöktanár. Belső használatú jegyzet 2
Géprajz - gépelemek FELÜLETI ÉRDESSÉG Előadó: Németh Szabolcs mérnöktanár Belső használatú jegyzet http://gepesz-learning.shp.hu 1 Felületi érdesség Az alkatrészek elkészítéséhez a rajznak tartalmaznia
Alapvető Radar Mérések LeCroy oszcilloszkópokkal Radar impulzusok demodulálása és mérése
Alapvető Radar Mérések LeCroy oszcilloszkópokkal Radar impulzusok demodulálása és mérése Összefoglalás A radar rendszerekben változatos modulációs módszereket alkalmaznak, melyek közé tartozik az amplitúdó-,