Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 6. ea ősz

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 6. ea ősz"

Átírás

1 Képalkotás modellezése, metrikái Orvosi képdiagnosztika 6. ea ősz

2 Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza: h x, x h x x Konvolúció: g Fourier transzformáltja: G FT g g spektruma: G g sávszélessége: bwg X eloszlás várható értéke: X, szórása: std X 2 Szürkeárnyalatos képet leíró leképezés: I : R R Elemenkénti átlagolás: S f x h x, x0 LTI esetben: x i 1: M I x, y 1 M I x, y i

3 Tartalom Elméleti áttekintés lineáris rendszerek: LTI rendszerek leírása konvolúciós integrál Rendszer identifikáció Folytonos idejű Fourier transzformáció Képalkotás mérése lineáris rendszerekkel: Point Spread Function, Modulation Transfer Function, Noise Power Spectra, SNR, CNR NEQ, DQE

4 Lineáris rendszerek Komplex, fizikai rendszerek sosem lineárisak Linearizálás nélkül kezelhetetlenül bonyolultak Leginkább sztochasztikus folyamatok Lin. rendszerként várható értékük jellemezhető Lineáris rendszerek jellemzői Rendszer: S : A B Lineáris: S a f b g a S f b S g a, b R f, g : C A

5 Lineáris rendszerek vizsgálata Eltolás-invariáns (idő invariáns) rendszer: S f x x y x S f y 0 0 Dirac impulzus: 2 1 x x lim exp Impulzusválasz: h x, x S y x x Eltolás-invariáns rendszernél: 0 0 LTI rendszereket egyértelműen leírja h x, x h x x 0 0 h x

6 LTI rendszerek válasza (konvolúciós integrál) Közelítsük infinitezimális téglákkal f-et: S f x yˆ x : f j x hx, j x x Ha Közelítő modell helyességének feltételei: f folytonos h x, y is folytonos függvénye y -nak x 1 eltolás invariáns: Tömörebben: j S S f x lim yˆ x f x ' hx x ' dx ' x0 x ' y x : S f x f h x

7 LTI rendszerek válasza (konvolúciós integrál) + + :

8 LTI rendszerek válasza (konvolúciós integrál)

9 LTI rendszerek Impulzusválasz ( h) egyéb elnevezései: Súlyfüggvény Gerjesztés Válasz függvény Képalkotó rendszereknél: Point Spread Function Fizikai képalkotó rendszerek sajátosságai: Rögzített képek (projekciók, stb.): y h x 3 Általában x : R R, 2 y : R R a képalkotás, és a fizikai foton interakciók függvénye

10 Egyszerű rendszerek impulzusválasza Arányos tag: (szemléltetés) Integráló tag: Diffrenciáló tag: Holtidős tag:

11 Fourier Transzformáció Folytonos függvények lineáris transzformációja: 2 2 ; f x F e j e j F f x x dx x d Euler formula: LTI rendszerek vizsgálata Fourier tartományban: ' x ' Konvolúció tétel: exp j 2 x cos 2 x j sin 2 x j2 xx ' y x h x F e d dx ' 2 ' 2 ' j y x F h x e x dx ' e j x d x ' Y F H

12 LTI rendszerek konvolúció tétel LTI rendszer sajátfüggvényei az FT bázisfüggvényei (komplex exponenciálisak): frekvenciájú szinuszos jelre adott válasz is frekvenciájú szinuszos jel: LTI

13 LTI rendszerek átviteli függvény Átviteli függvény: H FT h H H exp j H értelmezése: H rendszer erősítése (1/ tehetetlensége): ~ jel változásának sebessége Fizikailag realizálható rendszerek sávkorlátozottak:, ha bw h H 1 Általában monoton csökkenő függvény H rendszer fázis tolása (késleltetése): FT f x x F exp j 2 x 0 0

14 LTI rendszerek identifikációja H meghatározása: Egységimpulzus ( x) gerjesztés Egységugrás gerjesztés: h x ds 1 x dx 1 x x ' dx ' Szinuszos vizsgálójellel (LTV-hez is jó): f x A cos 2 x 0 0 cos2 y x A A x H x 0 0 exp A j sign? esetén

15 LTI rendszerek identifikációja Multiszinuszos vizsgálójel (LTV rendszerekhez is): f x A cos2 i i x i i y x H i Fourier Sorfejtése megadja értékeit S Fehér zajjal: Bemeneti zaj: teljesítménysűrűség spektruma egyenletes Kimeneti zaj teljesítménysűrűség spektruma H 2

16 Képalkotó rendszerek jellemzése Képalkotás általános modellje: Lineáris rendszer: Lineáris rendszerek GV vizsgálat Ideális gerjesztés: dirac-delta Közelítése: pontszerű gerjesztés A gerjesztés is GV válasza egy lineáris rendszernek ( l,, ) Közvetlenül a ( h*l ) rendszert vizsgáljuk

17 Point Spread Function Általános modell (konv. integrál)- a gerjesztés képét elmosás és additív zaj degradálja: g x, y h x, y;, f, d dd x, y,, 0 f,, : gerjesztés (vizsgált objektum) xy, : additív zaj h x, y;,, : rendszer súlyfüggvénye PSF-je Inverz probléma később részletesen tárgyaljuk

18 Point Spread Function Nem szükségszerűen izotropikus: Fényképezőgépek / mikroszkópok inhomogén lencsék okozzák az anizotróp PSF-et PA röntgen, CT, DTS esetén tipikusan anizotróp MRI esetén felvételi paraméterek függvénye Nem szükségszerűen shift invariáns: Jelentősen nagyobb probléma Közelítés shift invariáns rendszerekkel: Alapelv: PSF folytonos függvény Isoplanatic régiók

19

20 Modulation Transfer Function (modulációs átviteli függvény) Tételezzük fel, hogy a PSF pozíció független Ekkor a PSF spektrumát érdemes vizsgálni: MTF: H F h Elterjedt még az OTF / MTF felbontás is: Optical Transfer Function: HH Modulation Transfer Function: Effektív felbontás (zaj nélkül): Képalkotásban 0.5-ös MTF érték határozza meg 0,0 HH bwh 0,0

21 Röntgen detektor MTF példák

22 MTF mérése MTF definiálásánál LTI modellt használtunk: Expected MTF: célja az alul-mintavételezés hatására keletkező moire hatásait degradálni Gyakori megvalósításai: Vonalpár fantom: MTF származtatható belőle Rés módszer: magas frekvencián pontosabb Él módszer: alacsony frekvencián pontosabb Általában egy irány mentén mérhető: Ami a fantom elhelyezésétől függ

23 MTF mérése vonalpár fantomok Catphan 500 FBP-vel rekonstruált axiális szelet

24 MTF mérése vonalpár fantom Digitális fényképezőgépekhez készült fantom:

25 MTF mérése: él módszer - A fantom éle nem párhuzamos az oszlopokkal. - Így lehetőség nyílik az él felül-mintavételezésére, korrigálható az alulmintavételezési probléma. - Az élre merőleges derivált adja meg a PSF-et.

26 MTF PSF közötti kapcsolat

27 MTF szerinti minősítés

28 Signal to Noise Ratio (jel / zaj viszony) Általános jelfeldolgozásban: Általában additív zaj Képalkotó rendszerek esete: f homogén objektum legyen SNR 10log P P 20 log A A db x,y 10 signal noise 10 signal noise N N a homogén objektum képének kiterjedése, fontos, hogy elegendően nagy legyen (pl.: 20 cm 20 cm) Egyéb módszerekkel is mérhető x, y x, y SNR I std I x,y N

29 Contrast to Noise Ratio (kontraszt / zaj viszony) Kontraszt önmagában nem jó minősítő: Gyakran főleg a zaj generálja Objektumok elkülönítését javítja a jobb kontraszt, de degradálja a nagyobb zaj CNRA, B CA, B N I x, y I x, y std I x, y x,y A A,B a két elkülöníteni kívánt objektum képe N azon régió, melyből becsülhető a képzaj: Ennek konkrét megválasztása esetfüggő Alkalmazása (mint metrika) főleg orvosi körben elterjedt x,y B x,y N

30 CNR mérése CT esetén - Fontos, hogy nem tételez fel lineáris képalkotást! - Szeleten belüli felbontás vs. sugárdózis optimalizáció - Nemlineáris rekonstrukciók minősítése Catphan 600

31 Röntgen kvantum jellemzői Kvantum: fotonok száma Fotonok eloszlása: Érzékelő felületén/ időben nem egyenletes Sugárzás inherens zaját ez a jelenség generálja Ergodikus eloszlással írható le Véletlen Poisson Folyamat: Q várható érték esetén Q szórás Ideális képalkotó rendszer: Plusz zajt nem generál ( SNR SNR ) out in

32 Noise Power Spectrum (zaj teljesítmény spektrum) A képzaj energiája frekvenciafüggő: DFT felbontásával szorzás oka: Összehasonlíthatóvá válnak különböző pixel méretű detektorok - mintavételezési területtel normálunk Parseval tétel:, lim bin 1:M 2 NPS u v f F I S Nx, Ny, M NPS u, v 2 N uv, 2D DFT felbontása (következő órán részletezzük): f f N 1 N N bin sampling samples x y x y

33 Normalized NPS: Noise Equivalent Quanta (zaj ekvivalens kvantum) Kompenzálja a rendszer erősítését (akkor van értelme, ha ROI-kat vizsgálunk) 2 NNPS u, v NPS u, v I x, y dxdy Noise Equivalent Quanta: xy, Mennyi foton lenne szükséges ugyanazon képminőség eléréséhez, ha ideális lenne a képalkotás NEQ u, v MTF u, v NNPS u, v SNR u, v 2 2

34 Detective Quantum Efficiency (kvantum feldolgozás hatékonysága) Eddigi metrikáknál nem vizsgáltuk a dózistól / fotonok számától való függést: DQE u, v NEQ u, v Q Q a vizsgált detektort elérő foton kvantum (kb. fotonok száma, dózis, ) Fontos interpretáció: 2 2 DQE u, v SNR u, v SNR u, v SNR out in u, v in : érzékelőelemre belépő jel (pl. röntgensugár, fotonok) SNR je A kész rendszer információ átvitelének hatékonyságát méri, értéke 0 és 1 között változik.

35 DQE számolási példák -1- Adott egy röntgen detektor, melyet az alábbi rendszer ír le: Egy ideális detektor és egy csillapító réteg soros kaszkádja (pl. CsI szcintillátor), a csillapító réteg nem változtatja az átmenő sugárzás eloszlásának osztályát. A szcintillátor a felületét elérő fotonok ¼-éből generál látható fotont, plusz zajt nem generál. Q=5000 röntgen foton/ pixel éri a teljes rendszert. NEQ=? DQE=? SNRin=? SNRout=?

36 DQE számolási példák -2- Adott egy röntgen detektor, mely: Ideális detektor, és zajos A/D átalakító soros kaszkádja, mely zaja ekvivalens 50 foton/pixel-el a belépő sugárzás fluxusában (inherens zaj). A kiolvasási zaj és a detektort érő fotonok zaja Poisson eloszlású, egymással korrelálatlan. Q=10000 foton/pixel éri a detektor felületét. NEQ=? DQE=? SNRin=? SNR=? Jó közelítéssel ez a két zajforrás aggregálódik (Hf. az aggregált rendszer metrikái).

37 Röntgen detektor kvantum modellje

Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 2017 ősz

Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 2017 ősz Képalkotás modellezése, metrikái Orvosi képdiagnosztika 2017 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza: h x x

Részletesebben

Jelfeldolgozás bevezető. Témalaboratórium

Jelfeldolgozás bevezető. Témalaboratórium Jelfeldolgozás bevezető Témalaboratórium Tartalom Jelfeldolgozás alapjai Lineáris rendszerelmélet Fourier transzformációk és kapcsolataik Spektrális képek értelmezése Képfeldolgozás alapjai Néhány nevezetesebb

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos

Részletesebben

Képalkotó diagnosztikai eljárások:

Képalkotó diagnosztikai eljárások: Képalkotó diagnosztikai eljárások: Soroljon fel néhány orvosi képalkotáson alapuló diagnosztikai eljárást, mely o Transzmissziós o Indukciós o Emissziós elv alkalmazásán alapul. Mire szolgálnak az egyes

Részletesebben

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen

Részletesebben

Irányítástechnika 2. előadás

Irányítástechnika 2. előadás Irányítástechnika 2. előadás Dr. Kovács Levente 2013. 03. 19. 2013.03.19. Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok

Részletesebben

Képrekonstrukció 3. előadás

Képrekonstrukció 3. előadás Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések

Részletesebben

RENDSZERTECHNIKA 8. GYAKORLAT

RENDSZERTECHNIKA 8. GYAKORLAT RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.

Részletesebben

Dekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ

Dekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ Dekonvolúció a mikroszkópiában Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ 2015 Fourier-Sorok Minden 2π szerint periodikus függvény előállítható f x ~ a 0 2 + (a

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

Rekonstrukciós eljárások. Orvosi képdiagnosztika 2017 ősz

Rekonstrukciós eljárások. Orvosi képdiagnosztika 2017 ősz Rekonstrukciós eljárások Orvosi képdiagnosztika 2017 ősz Élet a konvex optimalizáción túl CT-s szimuláció, 10 projekcióból (ΔΘ=18 ): Konvex: L2-TV Valóban ritkasági priorral Lineáris tomoszintézis Speciális

Részletesebben

Wavelet transzformáció

Wavelet transzformáció 1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu

Részletesebben

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n

Részletesebben

Z v 1 (t)v 2 (t τ)dt. R 12 (τ) = 1 R 12 (τ) = lim T T. ill. periódikus jelekre:

Z v 1 (t)v 2 (t τ)dt. R 12 (τ) = 1 R 12 (τ) = lim T T. ill. periódikus jelekre: 1 Korrelációs fügvények Hasonlóság mértéke a két függvény szorzatának integrálja Időbeli változások esetén lehet vizsgálni a hasonlóságot a τ relatív időkülönbség szerint: Keresztkorrelációs függvény:

Részletesebben

Jelek és rendszerek - 4.előadás

Jelek és rendszerek - 4.előadás Jelek és rendszerek - 4.előadás Rendszervizsgálat a komplex frekvenciatartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 6. Előadás tartalma Spektrumszivárgás Képfeldolgozás frekvencia tartományban: 2D Spektrum gépi ábrázolása Szűrések frekvenciatartományban

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 7-8. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 7-8. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 7-8. ea. 2015 ősz 7. előadás tartalma Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Frekvenciaszivárgás

Részletesebben

Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől

Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől 1. A szigorlat menete A szigorlatot a Fizikus MSc orvosi fizika szakirányos hallgatók a második vagy harmadik szemeszterük folyamán tehetik le. A szigorlat

Részletesebben

Jelfeldolgozás. Gyakorlat: A tantermi gyakorlatokon való részvétel kötelező! Kollokvium: csak gyakorlati jeggyel!

Jelfeldolgozás. Gyakorlat: A tantermi gyakorlatokon való részvétel kötelező! Kollokvium: csak gyakorlati jeggyel! 1 Jelfeldolgozás Jegyzet: http://itl7.elte.hu : Elektronika jegyzet (Csákány A., ELTE TTK 119) Jelek feldolgozása (Bagoly Zs. Csákány A.) angol nyelv DSP (PDF) jegyzet Gyakorlat: A tantermi gyakorlatokon

Részletesebben

Mintavétel: szorzás az idő tartományban

Mintavétel: szorzás az idő tartományban 1 Mintavételi törvény AD átalakítók + sávlimitált jel τ időközönként mintavétel Mintavétel: szorzás az idő tartományban 1/τ körfrekvenciánként ismétlődik - konvolúció a frekvenciatérben. 2 Nem fednek át:

Részletesebben

Rekonstrukciós eljárások. Orvosi képdiagnosztika 2017 ősz

Rekonstrukciós eljárások. Orvosi képdiagnosztika 2017 ősz Rekonstrukciós eljárások Orvosi képdiagnosztika 2017 ősz Előadások témája Röntgen tomográfia fizikai és matematikai alapjai 2D Radon transzformáció, szűrt visszavetítés: Fan beam / Cone beam felvételi

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 6-8. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 6-8. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 6-8. ea. 2016 ősz 6. előadás tartalma Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Spektrumszivárgás

Részletesebben

7. Előadás tartalma. Lineáris szűrők: Inverz probléma dekonvolúció: Klasszikus szűrők súly és átviteli függvénye Gibbs jelenség

7. Előadás tartalma. Lineáris szűrők: Inverz probléma dekonvolúció: Klasszikus szűrők súly és átviteli függvénye Gibbs jelenség 7. Előadás tartalma Lineáris szűrők: Klasszikus szűrők súly és átviteli üggvénye Gibbs jelenség Inverz probléma dekonvolúció: Inverz probléma ormális elírása Dekonvolúció nehézsége Közismert algoritmusok:

Részletesebben

ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS

ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS Földtudományi mérnöki MSc mesterszak 2018/19 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás

Részletesebben

Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)

Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!) DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem

Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem Sapientia - Erdélyi Magyar Tudományegyetem 2007 Megnevezések Diszkrét Dirac jel Delta függvény Egységimpluzus függvény A diszkrét Dirac jel δ[n] = { 1, n = 0 0, n 0 d[n] { 1, n = n0 δ[n n 0 ] = 0, n n

Részletesebben

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20. Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom

Részletesebben

Shift regiszter + XOR kapu: 2 n állapot

Shift regiszter + XOR kapu: 2 n állapot DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális

Részletesebben

7. Moduláció átviteli függvény mérése

7. Moduláció átviteli függvény mérése 7. Moduláció átviteli függvény mérése Bevezető A leképezőrendszerek képminőségét több ok miatt is fontos számszerűen jellemeznünk. Az egyik az, hogy a képminőség ezáltal válik specifikálhatóvá, magyarán

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás, zajszűrés) Képelemzés

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03 Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő

Részletesebben

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz MRI áttekintés Orvosi képdiagnosztika 3. ea. 2015 ősz MRI Alapelv: hogyan lehet mágneses vizsgálattal valamilyen anyag (jelen esetben az élő emberi szervezet) belső felépítéséről információt kapni? A mágneses

Részletesebben

Rekonstrukciós eljárások. Orvosi képdiagnosztika 2017 ősz

Rekonstrukciós eljárások. Orvosi képdiagnosztika 2017 ősz Rekonstrukciós eljárások Orvosi képdiagnosztika 2017 ősz Pozitron emissziós tomográfia alapelve Szervezetbe pozitron kibocsátására képes radioaktív izotópot tartalmazó anyagot visznek cukoroldatban. Sejtek

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

Számítógépes gyakorlat MATLAB, Control System Toolbox

Számítógépes gyakorlat MATLAB, Control System Toolbox Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

4. Szűrés frekvenciatérben

4. Szűrés frekvenciatérben 4. Szűrés frekvenciatérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) Unitér transzformációk Az unitér transzformációk olyan lineáris,

Részletesebben

2. témakör. Sztochasztikus, stacionárius és ergodikus jelek leírása idő és frekvenciatartományban

2. témakör. Sztochasztikus, stacionárius és ergodikus jelek leírása idő és frekvenciatartományban 2. témakör Sztochasztikus, stacionárius és ergodikus jelek leírása idő és frekvenciatartományban Bevezetés Egy összetett jel, amely nem feltétlen periodikus, de stabil amplitúdójó és frekvenciájú diszkrét

Részletesebben

Digitális képek. Zaj és tömörítés

Digitális képek. Zaj és tömörítés Digitális képek Zaj és tömörítés Jelforrások Fény (elektromágneses sugárzás) Látható Röntgen (CT, Röntgen, Tomo) Gamma (PET) Mágneses tér + Rádió hullám (MRI) Hang Ultrahang Továbbiakban a fénnyel foglalkozunk

Részletesebben

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók Elektronika 2 9. Előadás Digitális-analóg és analóg-digitális átalakítók Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök, Műszaki

Részletesebben

Objektív beszédminősítés

Objektív beszédminősítés Objektív beszédminősítés Fegyó Tibor fegyo@tmit.bme.hu Beszédinformációs rendszerek -- Objektív beszédminõsítés 1 Beszédinformációs rendszerek -- Objektív beszédminõsítés 2 Bevezető kérdések Mi a [beszéd]

Részletesebben

Mátrix-exponens, Laplace transzformáció

Mátrix-exponens, Laplace transzformáció 2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények

Részletesebben

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ

Részletesebben

1. Képalkotás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

1. Képalkotás. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 1. Képalkotás Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Képalkotás fizikai paraméterei Geometriai Vetítés típusa (perspectív) Kamera

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Ha sokáig mérünk: kiátlagoljuk a jelet Milyen lesz ez a súlyfüggvény? T idejű integrálás + delta függvény T ideig integrálva:

Ha sokáig mérünk: kiátlagoljuk a jelet Milyen lesz ez a súlyfüggvény? T idejű integrálás + delta függvény T ideig integrálva: 1 Integráló voltmérő Ha sokáig mérünk: kiátlagoljuk a jelet Milyen lesz ez a súlyfüggvény? T idejű integrálás + delta függvény T ideig integrálva: A súlyfüggvény: T széles impulzus 2 Ha a bemenő zaj B

Részletesebben

ELLENŐRZŐ KÉRDÉSEK. Váltakozóáramú hálózatok

ELLENŐRZŐ KÉRDÉSEK. Váltakozóáramú hálózatok ELLENŐRZŐ KÉRDÉSEK Váltakozóáramú hálózatok Háromfázisú hálózatok Miért használunk többfázisú hálózatot? Mutassa meg a háromfázisú rendszer fontosabb jellemzőit és előnyeit az egyfázisú rendszerrel szemben!

Részletesebben

M N. a. Spin = saját impulzus momentum vektor: L L nagysága:

M N. a. Spin = saját impulzus momentum vektor: L L nagysága: Az MR és MRI alapjai Magmágneses Rezonancia Spektroszkópia (MR) és Mágneses Rezonancia Képalkotás (MRI) uclear Magnetic Resonance: Alapelv felfedezéséért Fizikai obel díj, 1952 Felix Bloch és Edward M.

Részletesebben

Gépészeti rendszertechnika (NGB_KV002_1)

Gépészeti rendszertechnika (NGB_KV002_1) Gépészeti rendszertechnika (NGB_KV002_1) 3. Óra Kőrös Péter Közúti és Vasúti Járművek Tanszék Tanszéki mérnök (IS201 vagy a tanszéken) E-mail: korosp@ga.sze.hu Web: http://www.sze.hu/~korosp http://www.sze.hu/~korosp/gepeszeti_rendszertechnika/

Részletesebben

FODOR GYÖRGY JELEK ÉS RENDSZEREK

FODOR GYÖRGY JELEK ÉS RENDSZEREK FODOR GYÖRGY JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, 2006 Előszó A valóságos fizikai, kémiai, műszaki, gazdasági folyamatokat modellek segítségével írjuk le. A modellalkotás során leegyszerűsítjük

Részletesebben

Hadházi Dániel.

Hadházi Dániel. Hadházi Dániel hadhazi@mit.bme.hu Orvosi képdiagnosztika: Szerepe napjaink orvoslásában Képszegmentálás orvosi kontextusban Elvárások az adekvát szegmentálásokkal szemben Verifikáció és validáció lehetséges

Részletesebben

Rugózott vezetőülés vizsgálata

Rugózott vezetőülés vizsgálata Rugózott vezetőülés vizsgálata Modellezés, identifikáció és lengéstani vizsgálat 1/3 Modell készítése Modell: egy rendszer / jelenség / fogalom egyszerűsített leképezése, működésének leírása Modell tárgya

Részletesebben

Mechatronika alapjai órai jegyzet

Mechatronika alapjai órai jegyzet - 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája

Részletesebben

Orvosi képdiagnosztika

Orvosi képdiagnosztika Orvosi képdiagnosztika Hadházi Dániel, Horváth Áron, Horváth Gábor Követelmények Aláírás feltételei: 6 db házi feladatból minimum 3 elfogadott megoldás Sikeres ZH/PZH/PPZH Kredit megszerzésének feltételei:

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz

Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika 9. ea ősz Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika 9. ea. 2015 ősz Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás,

Részletesebben

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera

Részletesebben

2. gyakorlat Mintavételezés, kvantálás

2. gyakorlat Mintavételezés, kvantálás 2. gyakorlat Mintavételezés, kvantálás x(t) x[k]= =x(k T) Q x[k] ^ D/A x(t) ~ ampl. FOLYTONOS idı FOLYTONOS ANALÓG DISZKRÉT MINTAVÉTELEZETT DISZKRÉT KVANTÁLT DIGITÁLIS Jelek visszaállítása egyenköző mintáinak

Részletesebben

Számítógépes gyakorlat Irányítási rendszerek szintézise

Számítógépes gyakorlat Irányítási rendszerek szintézise Számítógépes gyakorlat Irányítási rendszerek szintézise Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

Idő-frekvencia transzformációk waveletek

Idő-frekvencia transzformációk waveletek Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2015. április 23. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos

Részletesebben

Az ipari komputer tomográfia vizsgálati lehetőségei

Az ipari komputer tomográfia vizsgálati lehetőségei Az ipari komputer tomográfia vizsgálati lehetőségei Dr. Czinege Imre, Kozma István Széchenyi István Egyetem 6. ANYAGVIZSGÁLAT A GYAKORLATBAN KONFERENCIA Cegléd, 2012. június 7-8. Tartalom A CT technika

Részletesebben

1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban

1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban 1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz

Részletesebben

A gyakorlat célja a fehér és a színes zaj bemutatása.

A gyakorlat célja a fehér és a színes zaj bemutatása. A gyakorlat célja a fehér és a színes zaj bemutatása. 1.@. FFT begyakorlása n = [:9]; % Harminc minta x = cos(*pi*n/1); % 1 mintát veszünk periodusonként N1 = 64; % Három módon számoljuk az FFT-t N = 18;

Részletesebben

Képalkotó diagnosztikai eljárások:

Képalkotó diagnosztikai eljárások: Képalkotó diagnosztikai eljárások: Soroljon fel néhány orvosi képalkotáson alapuló diagnosztikai eljárást, mely o Transzmissziós o Indukciós o Emissziós alkalmazásán alapul. Mire szolgálnak az egyes diagnosztikai

Részletesebben

Képrestauráció Képhelyreállítás

Képrestauráció Képhelyreállítás Képrestauráció Képhelyreállítás Képrestauráció - A képrestauráció az a folyamat mellyel a sérült képből eltávolítjuk a degradációt, eredményképpen pedig az eredetihez minél közelebbi képet szeretnénk kapni

Részletesebben

Számítógép-vezérelt szabályozás- és irányításelmélet

Számítógép-vezérelt szabályozás- és irányításelmélet Számítógép-vezérelt szabályozás- és irányításelmélet 2. gyakorlat Feladattípusok két függvény konvolúciója ÿ + aẏ + by = e at, y(), ẏ() típusú kezdetiérték feladatok megoldása (Laplace transzformációval)

Részletesebben

Objektív beszédminısítés

Objektív beszédminısítés Objektív beszédminısítés Fegyó Tibor fegyo@tmit.bme.hu Beszédinformációs rendszerek -- Objektív beszédminõsítés 1 Bevezetı kérdések Mi a [beszéd] minıség [a beszédkommunikációban]? Mi befolyásolja a minıséget?

Részletesebben

Mérési struktúrák

Mérési struktúrák Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést

Részletesebben

DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG:

DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG: DIGITÁLIS KÉPANALÍZIS KÉSZÍTETTE: KISS ALEXANDRA ELÉRHETŐSÉG: kisszandi@mailbox.unideb.hu ImageJ (Fiji) Nyílt forrás kódú, java alapú képelemző szoftver https://fiji.sc/ Számos képformátumhoz megfelelő

Részletesebben

illetve, mivel előjelét a elnyeli, a szinuszból pedig kiemelhető: = " 3. = + " 2 = " 2 % &' + +

illetve, mivel előjelét a elnyeli, a szinuszból pedig kiemelhető: =  3. = +  2 =  2 % &' + + DFT 1. oldal A Fourier-sorfejtés szerint minden periodikus jel egyértelműen felírható különböző amplitúdójú és fázisú szinusz és koszinusz jelek összegeként: = + + 1. ahol az együtthatók, szintén a definíció

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK Dr. Soumelidis Alexandros 2018.10.18. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérések

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Rekonstrukciós eljárások. Orvosi képdiagnosztika előadás 2015 ősz

Rekonstrukciós eljárások. Orvosi képdiagnosztika előadás 2015 ősz Rekonstrukciós eljárások Orvosi képdiagnosztika 14.-15. előadás 2015 ősz Előadások témája Röntgen tomográfia fizikai és matematikai alapjai 2D Radon transzformáció, szűrt visszavetítés: Fan beam / Cone

Részletesebben

π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]

π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ] Pulzus Amplitúdó Moduláció (PAM) A Pulzus Amplitúdó Modulációról abban az esetben beszélünk, amikor egy impulzus sorozatot használunk vivőhullámnak és ezen a vivőhullámon valósítjuk meg az amplitúdómodulációt

Részletesebben

Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk

Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk 1 1 Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk Jelfeldolgozás 1 Lineáris rendszerek jellemzõi és vizsgálatuk 2 Bevezetés 5 Kérdések, feladatok 6 Fourier sorok, Fourier transzformáció 7 Jelek

Részletesebben

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika jellemzőinek Rendszerek stabilitása és minőségi jellemzői. Soros kompenzátor. Irányítástechnika Budapest, 29 2 Az

Részletesebben

Mintavételezés és AD átalakítók

Mintavételezés és AD átalakítók HORVÁTH ESZTER BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM JÁRMŰELEMEK ÉS JÁRMŰ-SZERKEZETANALÍZIS TANSZÉK ÉRZÉKELÉS FOLYAMATA Az érzékelés, jelfeldolgozás általános folyamata Mérés Adatfeldolgozás 2/31

Részletesebben

Fény- és fluoreszcens mikroszkópia. Optikai szeletelés

Fény- és fluoreszcens mikroszkópia. Optikai szeletelés Fény- és fluoreszcens mikroszkópia Optikai szeletelés Widefield mikroszkópia Z Focal plane Z Focal plane Widefield mikroszkópia vs optikai szeletelés http://zeiss-campus.magnet.fsu.edu/tutorials/opticalsectioning/confocalwidefield/index.html

Részletesebben

Idő-frekvencia transzformációk waveletek

Idő-frekvencia transzformációk waveletek Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 013. áprils 17. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS Dr. Soumelidis Alexandros 2019.03.13. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY Dr. Soumelidis Alexandros 2018.10.25. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mintavételezés

Részletesebben

Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata

Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2. 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

Történeti Áttekintés

Történeti Áttekintés Történeti Áttekintés Történeti Áttekintés Értesülés, Információ Érzékelő Ítéletalkotó Értesülés, Információ Anyag, Energia BE Jelformáló Módosító Termelőeszköz Folyamat Rendelkezés Beavatkozás Anyag,

Részletesebben

Informatika Rendszerek Alapjai

Informatika Rendszerek Alapjai Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának

Részletesebben