7. Moduláció átviteli függvény mérése
|
|
- Brigitta Soósné
- 6 évvel ezelőtt
- Látták:
Átírás
1 7. Moduláció átviteli függvény mérése Bevezető A leképezőrendszerek képminőségét több ok miatt is fontos számszerűen jellemeznünk. Az egyik az, hogy a képminőség ezáltal válik specifikálhatóvá, magyarán egy leképező rendszer tervezésének elkezdésénél ez egy elengedhetetlen adat. A másik az, hogy a megtervezett és legyártott optikai rendszert bemérve el tudjuk dönteni, hogy megfelel-e a tervezéskor támasztott elvárásainknak. A harmadik ok, hogy amennyiben adott célra kell megvásárolnunk egy leképező rendszert, akkor csak számszerű adatok alapján tudjuk összehasonlítani a piacon kapható, szóba jöhető termékeket. A fentiek alapján a definiálandó paraméternek kiterjedt tárgy leképezését kell jellemeznie, célszerűen oly módon, hogy az optikai tervezésben nem feltétlenül jártas mérnökök is könnyen értelmezni tudják, ugyanakkor jól mérhetőnek és könnyen kiszámíthatónak kell lennie. Erre a célra a komplex értékű Optikai Átviteli Függvényt (angolul Optical Transfer Function, OTF)-et vezették be. Ennek amplitudóját szokták leggyakrabban mérni, ez az MTF, azaz Moduláció Átviteli Függvény (Modulation Transfer Function). Adatlap minta: részlet a Schneer-Kreuznach cég Cinegon 1.4 relatív nyílású, 8.2 mm effektív fókusztávolságú makro (CCD kamera) objektívjének specifikációjából. 9 / 1
2 Optikai Átviteli Függvény és Moduláció Átviteli Függvény (OTF, MTF) optikai tengely y x y' x' tárgysík o leképező rendszer (lineáris rendszer) z képsík i Időben koherens, skalárnak tekintett elektromágneses tér esetén a komplex elektromos téramplitudó őfüggését elhanyagolhatjuk: e iωt. A vektoriális E-t innentől az U skalár mennyiséggel jelöljük, ami megfeleltethető pl. az egyik térerősség vektorkomponensnek. Azaz, skalár közelítésben dolgozunk. Ezekkel a jelölésekkel, és a leképező rendszert lineáris rendszernek tekintve felírhatók a bemeneti és kimeneti jelek: Tárgy komplex amplitudó / intenzitás eloszlás: U o (x, y) ; I o(x, y) = U o (x, y) 2 Kép komplex amplitudó / intenzitás eloszlás: U i (x', y') ; I i(x', y') = U i (x', y') 2 Térben inkoherens (diffúz) megvilágítás esetén a intenzitásra érvényes a szuperpozíció elve: U o (x, y) = U o (x, y) 1 + U o (x, y) 2 I i (x', y') = I i (x', y') 1 + I i (x', y') 2, ahol o jelenti a tárgysíkot, i a képsíkot, 1 és 2 pedig két különböző tárgyat ill. képet. Lineáris rendszerek valamilyen bemenetre (tárgy) adott válaszát (kép) felírhatjuk az impulzusválasz függvény (PSF) segítségével, ahol PSF-el a rendszernek Dirac-delta (pontforrás) bemenetre adott válaszát jelöltük. I o (x, y) legyen a tárgy intenzitás eloszlása, I i (x', y') a képé. Ha a rendszer pontszórás függvénye (Point Spread Function optikában így nevezik az impulzusválaszt): PSF(x', y'), ami ne felejtsük intenzitás eloszlás (azaz felületegységre eső teljesítmény), a kép a következő konvolúciós integrállal írható fel: Ii ( x, y ) = I i, ( u, v) PSF( x u, y v) dudv = I i, PSF. (konvolúció-tétel) Hogy a kép teljesítményviszonyai is helyesek legyenek, a fenti képletben a PSF-et az összteljesítményére kell normálni, hogy területi integrálja egységnyi legyen: PSF ( x, y) dxdy = 1. (*) A konvolúciós módszert alkalmazzák kiterjedt tárgyak diffrakciós leképezésére. Fourier analízisből megtanultuk, hogy a konvolúció Fourier-transzformáltja a szorzás: F{I i }= F{I i, } F {PSF} = F{I i, } OTF (**) A PSF Fourier-transzformáltját optikai átviteli függvénynek (OTF Optical Transfer Function) nevezik. Ha az eális kép egyetlen szinuszos rács f térfrekvenciával, annak Fourier-transzformáltja egy f-be eltolt Dirac-delta. Ezt megszorozva az OTF-el, megakapjuk a valóságos kép Fourier-transzformáltját, ami értelemszerűen szintén Dirac-delta, egy komplex értékkel, OTF(f)-el, megszorozva. A valódi kép tehát szintén f térfrekvenciájú szinuszos rács lesz, amplitudóban átskálázva, fázisban eltolva. 9 / 2
3 I eális kép, M = 1 általános kép, M < 1 I max a = (I max I min ) / 2 b = (I max +I min ) / 2 M = a / b I min y' Ideális kép esetében a moduláció 1, legrosszabb esetben. Figyelem: az ábra egy f térfrekvenciájú és egy egyenáramú komponenst tartalmaz (f = 1/mm)! A komplex OTF okozta fázistolást általában nem szokták figyelembe venni, csak az abszolút értékével foglalkoznak. Az OTF abszolút értékét moduláció átviteli függvénynek, MTF-nek nevezik (Modulation Transfer Function). Abban az esetben, ha két különböző térfrekvenciájú szinuszos jel van jelen: egy 1/mm-es egyenáramú és egy f térfrekvenciájú hullám, mint a fenti ábrán, akkor a moduláció a következő képpen értelmezhető: I max I min A( f ) M( f ) =, I + I A() max min ahol A(f) az f térfrekvenciájú komponens amplitudúját jelöli. A valódi kép modulációja (M) az eális képével (M ) és az MTF-el kifejezve (** alapján): M( A( f ) A ( f ) MTF( f ) A f ) = = = A() A () MTF() A ( f ) MTF( f ) = MTF( f ) M () 9 / 3 ( f ), mivel a (*) normálás miatt MTF() 1. (Ha az MTF = F{PSF} értékét felírjuk 1/mm térfrekvencián, az intenzitás eloszlás teljes képsíkra vett integrálját kapjuk, ami egyenlő a nyaláb összteljesítményével. Ezért ha a PSF-et lenormáltuk az összteljesítményre, az MTF zérus térfrekvencián definíció szerint mindig egységnyi.) Ideális kép alatt a geometriai aberrációktól és diffrakciós hatásoktól mentesen leképezett, csupán nagyított/kicsinyített képet értjük. Az OTF fázisviszonyait két okból nem szokták mérni. Jelanalízisből tudjuk, hogy szimmetrikus függvény Fourier-transzformáltja valós, vagyis a fázisa minden térfrekvencián zérus. Mivel a mérésben alkalmazott műszer az optikai tengelyen lévő képpontban vizsgálja a mérendő lencserendszert, annak képfoltja (PSF) gyakorlatilag mindig forgásszimmetrikus, tehát OTF-jének fázisa gyakorlatilag konstans nulla. Az OTF zérustól eltérő fázisa az optikai tengelytől távol lévő képfoltok aszimmetria viszonyait jellemzi, amiből műszakilag értelmezhető információ nehezen nyerhető ki. Ez volt az egyik ok. A másik ok elég prózai: az OTF fázisát az amplitudónál sokkal nehezebb mérni, ezért inkább nem is foglalkoznak vele. Az MTF-et elterjedten használják kiterjedt tárgyat leképező rendszerek (pl. fényképezőgép objektív) minősítésére. A diffrakció korlátos rendszerek MTF görbéje nullára esik egy bizonyos f cutoff vágási frekvencia fölött. Inkoherens megvilágítás esetén: D f cutoff =, λ l ahol D a kilépő pupilla átmérője, l a kilépő pupillától a képsíkig mért távolság. Az F # = l/d értéket relatív nyílásnak nevezik ezt tüntetik fel fényképezőgépek blende állító tárcsáján.
4 Geometriai aberrációkat nem tartalmazó eális, ún. diffrakció korlátos rendszer MTF diagramja (MTF diffr ), és a vágási frekvencia, térben inkoherens megvilágítás esetén: 2 [ arccos( ξ ) ξ 1 ξ ] 2 ; ha ξ 1 MTF = π diffr ( ξ ) ; egyébként ahol ξ f / f cutoff (ld. Goodman: Introduction to Fourier Optics). f cutoff Az MTF mérése Az MTF mérését a legegyszerűbb, ún. képletapogatásos módszerrel végezhetjük el, az alábbi ábrának megfelelő mérési elrendezésben: Fényforrás Kondenzor Céltárgy Mérendő lencse f akromát = mm ; fényforrás: Seoul Semiconductor R4218 LED, λ = 625 ±5 nm, P = 22 mw ; detektor: EdmundOptics 5435, normal response, R =.33 A/W (625 nm), unbiased operation (I d = na), NEP W/Hz ½. Mivel szinuszos transzmissziójú céltárgyat nem lehet kereskedelmi forgalomban kapni, négyszögjelet tartalmazót viszont igen, ez utóbbival oldottuk meg a mérést. A céltárgy tehát egy ún. Siemens-csillag, amelyet saját síkjában eltolva a különböző térfrekvenciájú négyszögjelek képei letapogathatók egy detektor elé helyezett tűlyuk segítségével. A céltárgy mozgatását egy lineáris transzlátorral oldottuk meg, amelynek a mozgási irányát 3 mm hosszon ±3 µm pontossággal párhuzamosra állítottuk a céltárgy felületével. Erre azért van szükség, hogy a céltárgy mozgatásakor ne változzon a mérendő objektív fókusz pozíciója. A tűlyuk olyan kicsire (Ø5 µm) lett választva, hogy mérete kb. 1 vonalpár/mm (vp/mm) térfrekvenciáig nem befolyásolja a mérést. Annak érdekében, hogy a mérést oszcilloszkóppal lehessen elvégezni, a céltárgyat a saját középpontja körül forgatjuk. Így a tűlyuk letapogatja a 9 / 4 Akromát Tűlyuk Detektor
5 céltárgy előtte forgó képét, és egy periodikus őfüggő jellé alakítja át a térbeli intenzitás változást. A mért csúcstól-csúcsig (V pp ) és átlagos (V ave ) feszültségekből a moduláció (M) az alábbi módon számítható ki: V pp = c (I max I min ) ; V ave = c (I max + I min )/2 M = V pp / V ave / 2 A V ave átlagfeszültséget a detektor (kikapcsolt LED mellett mérhető) V sötétfeszültségével korrigálni kell! Ø5. mm Ø.1 mm 5. céltárgy (Siemens-csillag) sematikus ábra, ütés ±2 µm.46 vp/mm vp/mm A mérést úgy végezzük el, hogy a céltárgyat a mérendő objektív (minta) fókuszsíkjába pozícionáljuk, azaz a kapott kép a végtelenben keletkezik. Ezt a végtelenben levő képet egy akromát lencsével képezzük le a tűlyuk síkjába. Az akromát diffrakció korlátos (azaz eális), leképezést biztosít, tehát a mérést nem befolyásolja. A fentiek alapján nem közvetlenül az MTF-et mérjük, hiszen az szinuszos tárgy esetére van definiálva, hanem a négyszögjel átvitelt (Square Wave Response, SMTF). Ez utóbbi, a négyszögjel Taylor-sorba fejtése által egyértelműen meghatározható az MTF-ből: 4 MTF( f ) MTF(3 f ) MTF(5 f ) MTF(7 f ) SMTF( f ) = + + K π / 5
6 9 / 6
7 1. vizsgált objetkív: vizuális mérőobjektív (eális műszem ) l = 2.1 mm; D = 3.92 mm A tervezett objektív négyszögjel-átvitele: f [vp/mm] SMTF [-] f [vp/mm] SMTF [-] / 7
8 2. vizsgált objektív: PENTACON Electric 1.8/5 PENTACON Electric 1.8/5 (WJS, Modern Lens Design, 25, 322. o. alapján) Mérési feladatok 1. Fókuszálás (durva + finom) 2. Durván vízszintesen középre állunk 3. Függőleges beállítás 4. Vízszintes mozgató bekalibrálása 5. Mérőobjektív megmérése (1-5 vp/mm: 11 pont; 5-1 vp/mm: 5 pont) 6. Cutoff frekvencia meghatározása (mérés + számolás) 7. Objektív csere a Pentacon-ra 8. Beállítási folyamat megismétlése (1.-4.) 9. F1.8-nál mérés a fenti 16 pontban 1. F8.-nál mérés a fenti 16 pontban vp/mm-nél az összes blendeállás megmérése, és az optimális blende meghat. 12. Az optimális blendeállásnál mérés a fenti 16 pontban 9 / 8
9 Lineáris kalibráció Lineáris mozgató pozíció: x [mm] Csík periódus: p [mm] Térfrekvencia: f [1/mm] Min. periódus: P = mm Max. periódus: P 1 = 2.18 mm Pozíció min. periódusnál: X megmérni Pozíció max. periódusnál: X 1 megmérni Térfrekvencia min. periódusnál: F = 229 1/mm Térfrekvencia max. periódusnál: F 1 =.458 1/mm X X x = p P + X. P P 1 f p = 1/f ( ) 1 f [1/mm] p [mm] x [mm] SMTF [-] Minta táblázat a mérési adatok rögzítéséhez. 9 / 9
Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
Dekonvolúció a mikroszkópiában. Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ
Dekonvolúció a mikroszkópiában Barna László MTA Kísérleti Orvostudományi Kutatóintézet Nikon-KOKI képalkotó Központ 2015 Fourier-Sorok Minden 2π szerint periodikus függvény előállítható f x ~ a 0 2 + (a
Akusztikai tervezés a geometriai akusztika módszereivel
Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika
Optika gyakorlat 5. Gyakorló feladatok
Optika gyakorlat 5. Gyakorló feladatok. példa: Leképezés - Fruzsika játszik Fruzsika több nagy darab ívelt üveget tart maga elé. Határozd meg, hogy milyen típusú objektívek (gyűjtő/szóró) ezek, és milyen
Feszültségérzékelők a méréstechnikában
5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika
Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)
Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) 1. A D/A átalakító erısítési hibája és beállása Mérje meg a D/A átalakító erısítési hibáját! A hibát százalékban adja
Mikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport
Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 6. ea ősz
Képalkotás modellezése, metrikái Orvosi képdiagnosztika 6. ea. 2015 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza:
OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor
OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA Budpesti Műszki és Gzdságtudományi Egyetem Atomfizik Tnszék, dr. Erdei Gáor Ágzti felkészítés hzi ELI projekttel összefüggő képzési és K+F feldtokr Young-féle
Abszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
Az infravörös tartományú optikai rendszerek optikai átviteli függvényeinek rendszertechnikai származtatása Prof.Dr. Ábrahám György
Az infravörös tartományú optikai rendszerek optikai átviteli függvényeinek rendszertechnikai származtatása Prof.Dr. Ábrahám György Az időbeli vagy dinamikai rendszerek vizsgálatával foglalkozó rendszertechnika
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése
Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája
Digitális jelfeldolgozás
Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális
International GTE Conference MANUFACTURING 2012. 14-16 November, 2012 Budapest, Hungary. Ákos György*, Bogár István**, Bánki Zsolt*, Báthor Miklós*,
International GTE Conference MANUFACTURING 2012 14-16 November, 2012 Budapest, Hungary MÉRŐGÉP FEJLESZTÉSE HENGERES MUNKADARABOK MÉRETELLENŐRZÉSÉRE Ákos György*, Bogár István**, Bánki Zsolt*, Báthor Miklós*,
Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?
1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen
Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer
Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera
ELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Optika 8. (X. 5)
N j=1 d ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 8. (X. 5) Interferencia II. Többsugaras interferencia Diffrakciós rács, elhajlás rácson Hullámfront osztás d sinα α A e = A j e i(π/λo)
Összeállította: Juhász Tibor 1
A távcsövek típusai Refraktorok és reflektorok Lencsés távcső (refraktor) Galilei, 1609 A TÁVCSŐ objektív Kepler, 1611 Tükrös távcső (reflektor) objektív Newton, 1668 refraktor reflektor (i) Legnagyobb
A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel
A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina
Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez
1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet
Számítógépes gyakorlat MATLAB, Control System Toolbox
Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges
Keresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével
Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével Demonstrációs optikai készlet lézer fényforrással Az optikai elemeken mágnesfólia található, így azok fémtáblára
Akuszto-optikai fénydiffrakció
Bevezetés Akuszto-optikai fénydiffrakció A Brillouin által megjósolt akuszto-optikai kölcsönhatást 1932-ben mutatta ki Debye és Sears. Az effektus felhasználását, vagyis akuszto-optikai elven működő eszközök
Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
MIKRO-TÜKÖR BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY
MIKRO-TÜKÖR BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF ELECTRONICS TECHNOLOGY TV Kiforrott technológia Kiváló képminőség Környezeti fény nem befolyásolja 4:3, 16:9 Max méret 100 cm Mélységi
Elektronika 2. TFBE5302
Elektronika 2. TFBE5302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen
Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03
Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
Geometriai Optika (sugároptika)
Geometriai Optika (sugároptika) - Egyszerû optikai eszközök, ahogy már ismerjük õket - Mi van ha egymás után tesszük: leképezések egymásutánja (bonyolult) - Gyakorlatilag fontos eset: paraxiális közelítés
Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 2017 ősz
Képalkotás modellezése, metrikái Orvosi képdiagnosztika 2017 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza: h x x
Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén
Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert
8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ
8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 1. A gyakorlat célja: Az inkrementális adók működésének megismerése. Számítások és szoftverfejlesztés az inkrementális adók katalógusadatainak feldolgozására
Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető
Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal
Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú
Jegyzeteim 1. lap Fotó elmélet 2015. október 9. 14:42 Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Kardinális elemek A lencse képalkotását meghatározó geometriai elemek,
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR. Mikroelektronikai és Technológiai Intézet. Aktív Szűrők. Analóg és Hírközlési Áramkörök
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR Mikroelektronikai és Technológiai Intézet Analóg és Hírközlési Áramkörök Laboratóriumi Gyakorlatok Készítette: Joó Gábor és Pintér Tamás OE-MTI 2011 1.Szűrők
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 3. Fényelhajlás (Diffrakció) Cserti József, jegyzet, ELTE, 2007. Akadályok között elhaladó hullámok továbbterjedése nem azonos a geometriai árnyékkal.
A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv
Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv
Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv Lódi Péter(D1WBA1) 2015 Március 18. Bevezetés: Mérés helye: PPKE-ITK 3. emeleti 321-es Mérőlabor Mérés ideje: 2015.03.25. 13:15-16:00 Mérés
A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a
a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten
Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról
Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról A mérés helyszíne: A mérés időpontja: A mérést végezték: A mérést vezető oktató neve: A jegyzőkönyvet tartalmazó
Elektronika 2. TFBE1302
Elektronika 2. TFBE1302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését
OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István
OPTIKA Gömbtükrök képalkotása, Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek
L-transzformáltja: G(s) = L{g(t)}.
Tartalom 1. Stabilitáselmélet stabilitás feltételei inverz inga egyszerűsített modellje 2. Zárt, visszacsatolt rendszerek stabilitása Nyquist stabilitási kritérium Bode stabilitási kritérium 2018 1 Stabilitáselmélet
Zárt mágneskörű induktív átalakítók
árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre
A lencsék alkalmazásai optikai rendszerek
A lencsék alkalmazásai optikai rendszerek a lupe a vetítő a távcső a fényképezőgép az emberi szem a mikroszkóp A lupe Az egyszerű nagyító, vagy lupe egy domború lencse, a legegyszerűbb látószögnövelő eszköz.
Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt.
Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális jel esetében?
EGYENÁRAMÚ TÁPEGYSÉGEK
dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan
7. Koordináta méréstechnika
7. Koordináta méréstechnika Coordinate Measuring Machine: CMM, 3D-s mérőgép Egyiptomi piramis kövek mérése i.e. 1440 Egyiptomi mérővonalzó, Amenphotep fáraó (i.e. 1550) alkarjának hossza: 524mm A koordináta
2. Rugalmas állandók mérése
2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának
Vázlat a transzmissziós elektronmikroszkópiához (TEM) dr. Dódony István
Dódony István: TEM, vázlat vegyészeknek, 1996 1 Vázlat a transzmissziós elektronmikroszkópiához (TEM) dr. Dódony István A TEM a szilárd anyagok kémiai és szerkezeti jellemzésére alkalmas vizsgálati módszer.
Az optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
Elektromágneses hullámok - Interferencia
Bevezetés a modern fizika fejezeteibe 2. (d) Elektromágneses hullámok - Interferencia Utolsó módosítás: 2012 október 18. 1 Interferencia (1) Mi történik két elektromágneses hullám találkozásakor? Az elektromágneses
Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata
Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2. 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása
Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján
Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés
2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika
2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A
10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az
Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:
Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.
Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16
Optikai méréstechnika alkalmazása járműipari mérésekben Kornis János
Optikai méréstechnika alkalmazása járműipari mérésekben Kornis János PhD, okleveles villamosmérnök, Budapesti Műszaki és Gazdaságtudományi Egyetem Fizika Tanszék, kornis@phy.bme.hu Absztrakt: Az optikai
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés
100 kérdés Optikából (a vizsgára való felkészülés segítésére)
1 100 kérdés Optikából (a vizsgára való felkészülés segítésére) _ 1. Ismertesse a Rayleigh kritériumot? 2. Ismertesse egy objektív felbontóképességének definícióját? 3. Hogyan kell egy CCD detektort és
Irányítástechnika 2. előadás
Irányítástechnika 2. előadás Dr. Kovács Levente 2013. 03. 19. 2013.03.19. Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás
25. Képalkotás 1. Ha egy gyujtolencse fókusztávolsága f és a tárgy távolsága a lencsétol t, akkor t és f viszonyától függ, hogy milyen kép keletkezik. Jellemezd a keletkezo képet a) t > 2 f, b) f < t
Villamosságtan szigorlati tételek
Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok
Négypólusok tárgyalása Laplace transzformációval
Négypólusok tárgyalása Laplace transzformációval Segédlet az Elektrotechnika II. c. tantárgyhoz Összeállította: Dr. Kurutz Károly egyetemi tanár Szászi István egyetemi tanársegéd . Laplace transzformáció
STATISZTIKAI PROBLÉMÁK A
STATISZTIKAI PROBLÉMÁK A HULLÁMTÉR REPRODUKCIÓ TERÜLETÉN 2012. május 3., Budapest Firtha Gergely PhD hallgató, Akusztikai Laboratórium BME Híradástechnikai Tanszék firtha@hit.bme.hu Tartalom A hangtér
Automatizált frekvenciaátviteli mérőrendszer
Rendszertechnikai átviteli karakterisztika számítógépes mérése Automatizált frekvenciaátviteli mérőrendszer Samu Krisztián, BME-FOT megvalósítása Labview fejlesztőkörnyezetben Gyakori műszaki feladat,
A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra
A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
Elektrooptikai effektus
Elektrooptikai effektus Alapelv: A Pockels effektus az a jelenség, amikor egy eredendően kettőstörő anyag kettőstörő tulajdonsága megváltozik az alkalmazott elektromos tér hatására, és a változás lineáris
Első egyéni feladat (Minta)
Első egyéni feladat (Minta) 1. Készítsen olyan programot, amely segítségével a felhasználó 3 különböző jelet tud generálni, amelyeknek bemenő adatait egyedileg lehet változtatni. Legyen mód a jelgenerátorok
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két
Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem
Sapientia - Erdélyi Magyar Tudományegyetem 2007 Megnevezések Diszkrét Dirac jel Delta függvény Egységimpluzus függvény A diszkrét Dirac jel δ[n] = { 1, n = 0 0, n 0 d[n] { 1, n = n0 δ[n n 0 ] = 0, n n
Kiss Attila: A rezgési paraméter választás szempontjai
Kiss Attila: A rezgési paraméter választás szempontjai 1. Forgógépek rezgései A forgógépek működésekor a belső, dinamikus periodikus erőhatások periodikus rezgéseket keltenek. Minden egyes szerkezeti elem
A soros RC-kör. t, szög [rad]
A soros C-kör Az átmeneti jelenségek vizsgálatakor soros C-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI
3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok
1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
CÉLKOORDINÁTOROK alkalmazástechnikája CÉLKOORDINÁTOROK FELÉPÍTÉSI ELVE
Géczi József Dr. Szabó László CÉLKOORDINÁTOROK alkalmazástechnikája A rádiótechnikai célkoordinátorok (RCK) feladata azon szögkoordináták mérése, amelyek a távolságvektor koordinátor hossztengelyéhez viszonyított
Modern fizika laboratórium
Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos
Fourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
A mintavételezéses mérések alapjai
A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel
Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:
3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója
DENZITOMÉTER ÁTALAKÍTÁSA HOSSZÚSÁGMÉRŐVÉ
DENZITOMÉTER ÁTALAKÍTÁSA HOSSZÚSÁGMÉRŐVÉ Nagy Richárd MTA EK Óbudai Egyetem 2017. 01. 22. Az előadás tartalmából - Célkitűzés - Az optikai tervezés - A mérés menete - A képfeldolgozás - A pipe-line működése
Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Asztrofizika II. és Műszerismeret Megoldások
Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 4. Asztrofizika II. és Műszerismeret Megoldások Dálya Gergely, Bécsy Bence 1. Bemelegítő feladatok B.1. feladat Írjuk fel a Pogson-képletet:
17. Diffúzió vizsgálata
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.11.24. A beadás dátuma: 2011.12.04. A mérés száma és címe: 17. Diffúzió vizsgálata A mérést végezte: Németh Gergely Értékelés: Elméleti háttér Mi is
Hajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek
Tartalom. Tartalom. Anyagok Fényforrás modellek. Hajder Levente Fényvisszaverési modellek. Színmodellek. 2017/2018. II.
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek
7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL
7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív
Egy sík és a koordinátasíkok metszésvonalainak meghatározása
1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -