A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra"

Átírás

1 A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük meg az 1. ábrán. A valós terhelésen a és az azonos fázisú. Lényegében viszonyítás kérdése, de lássuk meg, hogy a valós terhelésen (ellenálláson) eső hez képest a kondenzátoron 90 o -ot késik a (1. ábra). π/4 π/ 3π/4 π 5π/4 3π/ 7π/4 π π/4 π/ 3π/4 π 5π/4 3π/ 7π/4 π R 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a kondenzátoron C. ábra a soros RC-kör kapcsolási rajza Tekintettel arra, hogy soros körről van szó, megállapítható, hogy közös az áram. Noha a soros egyenáramú köröknél megtanultuk, hogy Kirchhoff. törvénye (huroktörvény) szerint a részek összege egyenlő a forrás ével, itt ez nem járható számítási mód, a valós ellenálláson és a reaktancián eső ek által bezárt szög miatt. Tehát a Pitagorasz-tétel alkalmazása válik szükségessé. A 3. ábrán követhetjük nyomon a soros RC-kör viszonyait. A kapacitás és a valós ellenállás ének vektoriális összege adja soros RC-kört tápláló forrás ét (komplex ). Mint említettük, a Pitagorasz-tétel alkalmazása eme helyen kap aktualitást. Egy egyszerű eltolással a ( ) a. b) ábra szerinti háromszöget kapva a művelet egyértelműen elvégezhető: = +. a) b) 3. ábra AZ ELEKTROTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 1/9

2 A -fázorábra elkészítése Soros kapcsolásról beszélünk, vagyis közös az áram. Rajzoljuk fel vízszintesen a kör egyetlen közös mennyiségének az áramnak a fázorát (). Jelöljük a fázor forgásirányát! Az ellenálláson a mindig azonos fázisú, ennek megfelelően rajzoljuk fel a fázort ( )! A kondenzátoron a ( ) pontosan 90 o -ot késik az áramhoz képest. Ennek megfelelően vegyük fel a fázorát! Vektoriálisan összegezzük a kondenzátor és az ellenállás -fázorát, mely által megkapjuk a soros RC-kört tápláló generátor -fázorát! A () szög a kör áramának és a forrás ének fázora között értelmezett. Jelöljük be a () - szöget! 4. ábra A 4. ábra szerinti elrendezésben a következőkre lehetünk figyelmesek: A forrás e a két -komponens vektoriális összege; A () szög a forrás e és a hálózat által igényelt fázora között értelmezett; Az ellenálláson eső és a rajta átfolyó mindig azonos fázisú, így a fázoraik azonos irányúak. Mindebből az következik, hogy a () szög a forrás, valamint az ellenállás ének fázora között is értelmezhető; Ha az impedancia kapacitív jellegű, akkor a forrás éhez képest az áram siet! A. b) ábra szerinti eltolással kapott ábrában egy háromszöget kaptunk. A háromszög két befogója az és az komponens, az átfogó pedig az forrás. Trigonometriai ismereteinket felelevenítve (4. ábra) belátható, hogy az fázor az fázor koszinuszos vetülete: = cos, az fázor pedig a szinuszos vetülete: = sin. = cos = sin 5. ábra AZ ELEKTROTECHNKA ALKALMAZÁSA Készítette: Mike Gábor /9

3 Az impedancia-fázorábra elkészítése Ohm törvénye alapján tudjuk, hogy az ellenállás úgy számítható ki, hogy a kétpóluson eső et elosztjuk a rajta átfolyó gel. Ez igaz valós ellenállás esetén. Hasonlóan számítható a kapacitás látszólagos ellenállása is, vagyis a reaktanciája. smételjünk néhány vonatkozó fogalmat! ellenállás: az impedancia valós része: R= ; a kondenzátor kapacitív látszólagos ellenállása: kapacitív reaktancia, kapacitancia, az impedancia kapacitív képzetes része: X C = 1 C = ; impedancia: komplex ellenállás, amely valós ellenállásból és látszólagos ellenállásból tevődik össze. Mivel az impedancia képzetes és valós része nem azonos fázisú ( 90 o -os szöget zárnak be), ezért az impedancia kiszámítása a Pitagorasz-tétel segítségével lehetséges: Z = R + X C = Tanulmányaink folyamán láttuk, hogy mind a kapacitív, reaktancia frekvenciafüggő. Kapacitív reaktancia: X C = 1 C = 1 π f C, valamint frekvenciafüggése: X C 1 f. hanő,akkor az 1 C,vagyis X C csökken Amennyiben tehát egy adott soros RC-kapcsolás esetén változtatjuk a frekvenciát (f, ), úgy a kapacitív reaktancia értéke is változik, akkor is ha a forrás ét ( ) nem változtattuk. Ha a kapacitív reaktancia (X C ) értéke változik, s vele együtt az impedancia (Z ) értéke, az impedancia és a valós ellenállás által bezárt szög (), valamint a köráram () is változik. Ha csökkentjük a frekvenciát, akkor a kapacitív reaktancia megnő, vele együtt a () szög és az impedancia is, az áram viszont csökken. Ha növeljük a frekvenciát, megfordul a helyzet: a kapacitív reaktancia értéke csökken, vele együtt a () szög és az impedancia is, miközben a köráram megnő. Amennyiben a fázorábra valamennyi komponensét elosztjuk a soros RC-kör egyetlen közös mennyiségével (vagyis az árammal), akkor az impedancia komponenseket kapjuk eredményül. Lássuk meg, hogy az eredményül kapott impedancia-fázorábra a -fázorábrával arányos. Az impedancia koszinuszos vetülete az ellenállás, a szinuszos vetülete pedig a kapacitív reaktancia. R= ; X C = ; Z =. = + => / => Z = R + X C R= Z cos és X C = Z sin A fázorábra komponenseit osszuk el az egyetlen közös mennyiséggel, vagyis az árammal / X C = =Z sin R= =Z cos Z = 6. ábra Az impedancia-fázorábra származtatása AZ ELEKTROTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 3/9

4 Foglaljuk táblázatba az eddig ismert adatokat! Forrás (komplex fesz.): = + Az ellenálláson eső : = cos Fázistényező: cos= A valós (valamint áram) és a forrás által bezárt szög: =arccos A kondenzátoron eső : = sin mpedancia (komplex ellenállás): Z = R + X C Az ellenállás: R= Z cos Fázistényező: cos= R Z A valós ellenállás és az impedancia által bezárt szög: =arccos R Z A kapacitív reaktancia: X C = Z sin 1. táblázat A teljesítmény-fázorábra elkészítése Egyenáramú körök esetén megtanultuk, hogy egy valós terhelésen (ellenállás) hővé alakuló teljesítmény az ellenállás kapcsain mérhető, valamint a rajta átfolyó szorzataként számítható. Hővé alakuló teljesítmény (valós) jön létre az ellenálláson váltakozó áramú körben is, ám ilyenkor a pillanatnyi teljesítményt, csúcsteljesítményt, valamint effektív teljesítményt értelmezünk. Valós teljesítmény csak valós (ohmos, rezisztív) ellenálláson tud létrejönni, amely kétpóluson eső és a rajta átfolyó azonos fázisú. Egyenáramú teljesítmény: P= R Váltakozó áramú teljesítmény: Pillanatnyi teljesítmény: p=u R i R Csúcsteljesítmény: P^ =U^ ^ Effektív teljesítmény: P eff = P^ = U ^ ^ = U ^ ^ =U eff eff A kapacitív reaktancián átfolyó áramhoz képest a e pontosan 90 o -ot késik. A 7. ábrán látható, hogy ebben az esetben negyed periódusig azonos irányú az, negyed periódusig pedig ellentétes irányú. Ennek megfelelően negyed periódusig teljesítményt vesz fel a hálózatból, mely teljesítményt a következő negyed periódusban leadja. Lényegében teljes periódusra vonatkoztatva elmondható, hogy a kapacitív reaktancia teljesítménye nulla, nincs hatásos teljesítmény ( P=0) T 1. negyed periódus: P=U =(+) (+)=(+) => felvesz. negyed periódus: P () =U =(+) (-)=(-) => lead 3. negyed periódus: P (3) =U =(+) (+)=(+) => felvesz 4. negyed periódus: P (4) =U =(+) (-)=(-) => lead π/4 π/ 3π/4 π 5π/4 3π/ 7π/4 π ahol: P (1) = P () ; P (3) = P (4) és P (1) =P (3) és P () =P (4) felvesz lead felvesz lead Mindebből következik, hogy: P=P 1 +P +P 3 +P 4 =0 látszólag: P=U valójában: P=0 7. ábra A kapacitív reaktancia teljesítménye (a kondenzátor teljesítménye váltakozóáramú körben) AZ ELEKTROTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 4/9

5 A kondenzátoron (mint kapacitív reaktancián) eső és a rajta átfolyó áram szorzata tehát nem ad valós teljesítményt. Ez a teljesítmény az úgynevezett meddő teljesítmény: Q=U [var]. Amennyiben a -fázorábra valamennyi komponensét megszorozzuk a soros RC-kör egyetlen közös mennyiségével (vagyis az árammal), akkor a kör teljesítménykomponenseit kapjuk eredményül. Megfigyelhető, hogy az eredményül kapott teljesítmény-fázorábra a -fázorábrával arányos. A kapacitív reaktancia meddő teljesítményének, valamint az ellenállás valós teljesítményének vektoriális összege a hálózatból felvett komplex teljesítmény, vagyis a látszólagos teljesítmény. Mindezek tükrében az is belátható, hogy a komplex teljesítmény (látszólagos teljesítmény, S ) koszinuszos vetülete az ellenálláson létrejövő valós, vagyis a hatásos teljesítmény ( P), a szinuszos pedig a kapacitív reaktancia meddő teljesítménye. P= [ W] ; Q C = [var] ; S= [VA ]. = + => / => Z = R + X C P= S cos és Q C = S sin Összegezzünk minden eddig megismert adatot! R P Z S X C Q C a) Feszültség-fázorábra b) mpedancia-fázorábra c) Teljesítmény-fázorábra Forrás (komplex fesz.): = + Az ellenálláson eső : = cos Fázistényező: cos= A valós (valamint áram) és a forrás által bezárt szög: =arccos A kondenzátoron eső : = sin / 7. ábra A soros RC-kör fázorábrái mpedancia (komplex ellenállás): Z = R + X C x Az ellenállás: R= Z cos Fázistényező: cos= R Z A valós ellenállás és az impedancia által bezárt szög: =arccos R Z A kapacitív reaktancia (kapacitív látszólagos ellenállás, kapacitancia): X C = Z sin A látszólagos teljesítmény (komplex teljesítmény): S = P +Q C A valós teljesítmény: P= S cos Fázistényező: cos= P S A valós teljesítmény és a látszólagos teljesítmény által bezárt szög: =arccos P S A meddő teljesítmény: Q C = S sin. táblázat AZ ELEKTROTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 5/9

6 Nézzünk egy számpéldát! Állítsunk össze egy soros RC-kört, a következő értékek és adatok mellett! R R=1k Ω ; C=1μ F ; =100V ; C f 1 =50 1 s =50 Hz ; f =100 1 =100 Hz s 8. ábra Készítsük el a -, az impedancia-, valamint a teljesítmény fázorábrát két különböző frekvenciájú forrás esetén! Eme feladat kidolgozása során képet kaphatunk arról, hogy állandó mellett, ámde különböző frekvenciákon hogyan változnak a ek, az ellenállások, a teljesítmények, s vele együtt a fázisszög. A kondenzátor kapacitív látszólagos ellenállása, 50 Hz esetén: X C 50 = 1 C = 1 π f C = 1 1 π 50 1 = s 1μ F π 50 1 = 106 V As 100π A = 104 π V A 636,6Ω=3183,01Ω 10 6 s V Az impedancia, 50 Hz esetén: Z = R + X C = 1000Ω +3183,01Ω =3336,4Ω Az, 50 Hz esetén: 50 = Z = 100V 3336,4Ω =30mA A kondenzátoron eső, 50 Hz esetén: 50 =X C =3336,4Ω 30 ma=433,70 V =95,5V Az ellenálláson eső 50 Hz esetén: 50 =R 50 =1000Ω 30mA=30V A forrás ellenőrzése, 50 Hz esetén: = + = (95,5V ) +(30V ) =100V A kondenzátor meddő teljesítménye, 50 Hz esetén: Q C 50 = =95,5V 30mA=,865var Az ellenállás hatásos teljesítménye, 50 Hz esetén: P 50 =50 50 =30 V 30 ma=0,9 W A látszólagos teljesítmény, 50 Hz esetén: S 50 = P +Q C = 0,9W +,865var =3VA S 50 = 0 =100V 30mA=3VA A cos (a -fázorábrából), 50 Hz esetén: cos= = 30V 100V = R Z 50 = 1000Ω 3336,4Ω = P 50 S 50 = 0,9 W 3VA =0,3 A fázisszög (a -fázorábrából), 50 Hz esetén, : =arccos(0,3)=7,54 o AZ ELEKTROTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 6/9

7 A kondenzátor kapacitív látszólagos ellenállása, 100 Hz esetén: X C 100 = 1 C = 1 π f C = 1 1 π = s 1μ F π As 10 6 s V = π Az impedancia, 100 Hz esetén: Z 100 = R +X C = 1000 Ω +1591,55Ω =1879,64Ω Az, 100 Hz esetén: 100 = Z = 100V 1879,64Ω =53,mA V A = 5000 π V A 636,6Ω=1591,55Ω A kondenzátoron eső, 100 Hz esetén: 100 =X C 100 =1591,55Ω 53,mA=433,70V =84,67V Az ellenálláson eső, 100 Hz esetén: =R =1000Ω 53,mA=53,V A forrás ellenőrzése, 100 Hz esetén: = + = (84,67 V ) +(53,V ) =100 V A kondenzátor meddő teljesítménye, 100 Hz esetén: Q C 100 = =84,67 V 53, ma=4,49 var Az ellenállás hatásos teljesítménye, 100 Hz esetén: P 100 = =53,V 53,mA=,83W A látszólagos teljesítmény, 100 Hz esetén: S 100 = P +Q C =,83W +4,49var =5,3VA S 100 = 0 =100V 53,mA=5,3VA A cos, 100 Hz esetén: cos= 100 = 53, V 100V = R Z 100 = 1000Ω 1879,64Ω = P 100 S 100 =,83W 5,3VA =0,53 A fázisszög (a -fázorábrából), 100 Hz esetén, : =arccos(0.3)=7,54 o 50 Hz esetén 100 Hz esetén Az ellenállás, R 1000 Ω 1000 Ω A reaktancia, X C 3183,01Ω 1591,55Ω Az impedancia, Z 3336,04 Ω 1879,64 Ω Az ellenállás e, 30V 53,V A kondenzátor e, 95,5V 84,67V A forrás e, 100V 100V Az, 30 ma 53, ma A hatásos teljesítmény, P 0,9 W,83 W A meddő teljesítmény, X C,865var 4,49 var A látszólagos teljesítmény, S 3 VA 5,3VA A fázisszög, 7,54 o 57,86 o 3. táblázat AZ ELEKTROTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 7/9

8 / x a) -fázorábra b) impedancia-fázorábra c) teljesítmény-fázorábra 9. ábra Arányos fázorábrák 50 Hz-es frekvenciájú forrás esetén R P Z S X C Q C / x a) -fázorábra b) impedancia-fázorábra c) teljesítmény-fázorábra 10. ábra Arányos fázorábrák 100 Hz-es frekvenciájú forrás esetén AZ ELEKTROTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 8/9

9 LEAD FELVESZ LEAD FELVESZ 11. ábra A feladatban szereplő soros RC-kör áram- és viszonya, 50 Hz esetén LEAD FELVESZ LEAD FELVESZ 1. ábra A feladatban szereplő soros RC-kör áram- és viszonya, 100 Hz esetén AZ ELEKTROTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 9/9

A soros RC-kör. t, szög [rad]

A soros RC-kör. t, szög [rad] A soros C-kör Az átmeneti jelenségek vizsgálatakor soros C-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük

Részletesebben

A soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen

A soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen A soros L-kör Mint ismeretes, a tekercsen az áram 90 fokot késik a hez képest, ahogyan az az 1. ábrán látható. A valós terhelésen a és az áramerősség azonos fázisú. Lényegében viszonyítás kérdése, de lássuk

Részletesebben

Számítási feladatok megoldással a 6. fejezethez

Számítási feladatok megoldással a 6. fejezethez Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5

Részletesebben

2. ábra Soros RL- és soros RC-kör fázorábrája

2. ábra Soros RL- és soros RC-kör fázorábrája SOOS C-KÖ Ellenállás, kondenzátor és tekercs soros kapcsolása Az átmeneti jelenségek vizsgálatakor soros - és soros C-körben egyértelművé vált, hogy a tekercsen késik az áram a feszültséghez képest, a

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? .. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.

Részletesebben

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit! Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg

Részletesebben

Teljesítm. ltség. U max

Teljesítm. ltség. U max 1 tmény a váltakozó áramú körben A váltakozv ltakozó feszülts ltség Áttekinthetően szemlélteti a feszültség pillanatnyi értékét a forgóvektoros ábrázolás, mely szerint a forgó vektor y-irányú vetülete

Részletesebben

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások

Részletesebben

Egyfázisú hálózatok. Egyfázisú hálózatok. Egyfázisú hálózatok. komponensei:

Egyfázisú hálózatok. Egyfázisú hálózatok. Egyfázisú hálózatok. komponensei: Egyfázisú hálózatok Elektrotechnika Dr Vajda István Egyfázisú hálózatok komponensei: Egyfázisú hálózatok Feszültség- és áramforrások Impedanciák (ellenállás, induktivitás, and kapacitás) A komponensek

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

2.11. Feladatok megoldásai

2.11. Feladatok megoldásai Elektrotechnikai alaismeretek.. Feladatok megoldásai. feladat: Egy szinuszosan változó áram a olaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T 4 t 4 4µ s f,5 Hz 5 khz

Részletesebben

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit! Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg

Részletesebben

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 3. 1.1. Mekkora áramot (I w, I m ) vesz fel az a fogyasztó, amelynek adatai: U n = 0,4 kv (vonali), S n = 0,6 MVA (3 fázisú), cosφ

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30

Részletesebben

MUNKAANYAG. Danás Miklós. Váltakozó áramú hálózatok. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása

MUNKAANYAG. Danás Miklós. Váltakozó áramú hálózatok. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása Danás Miklós Váltakozó áramú hálózatok A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek: 3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Elektrotechnika. 7. előadás. Összeállította: Dr. Hodossy László

Elektrotechnika. 7. előadás. Összeállította: Dr. Hodossy László 7. előadás Összeállította: Dr. Hodossy László . Ellenállás 7.. Impedancia.. Csillag kapcsolás Váltakozóáramú Teljesítményszámítás Váltakozóáramú teljesítmény általában: Váltakozóáramú teljesítmény ellenálláson

Részletesebben

II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 4. Villamosságtani alapismeretek Hunyadi Sándor

II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 4. Villamosságtani alapismeretek Hunyadi Sándor A 2015. LVII-es energiahatékonysági törvényben meghatározott auditori és energetikai szakreferens vizsga felkészítő anyaga II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 4. Villamosságtani

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. október 15. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

A váltakozó áramú hálózatok

A váltakozó áramú hálózatok A váltakozó áramú hálózatok Az egyenáramú hálózatokkal foglalkozó fejezeteinkben a vizsgált áramkörökben minden ág árama és feszültsége az idő függvényében állandó volt, vagyis sem az irányuk, sem a nagyságuk

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐORRÁS

Részletesebben

Áramköri elemek mérése ipari módszerekkel

Áramköri elemek mérése ipari módszerekkel 3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint 08 ÉETTSÉGI VIZSG 00. október 8. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ NEMZETI EŐFOÁS MINISZTÉIUM Egyszerű, rövid feladatok

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény.

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény. 11/1. Teljesítén száítása szinuszos áraú álózatokban. Hatásos, eddô és látszólagos teljesítén. Szinuszos áraú álózatban az ára és a feszültség idıben változik. Íg a pillanatni teljesítén is változik az

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. május 23. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 23. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett

Részletesebben

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Váltakozó áram. A váltakozó áram előállítása

Váltakozó áram. A váltakozó áram előállítása Váltakozó áram A váltakozó áram előállítása Mágneses térben vezető keretet fogatunk. A mágneses erővonalakat metsző vezetőpárban elektromos feszültség (illetve áram) indukálódik. Az indukált feszültség

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2009. október 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. október 19. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! 1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01

Részletesebben

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK ÉRETTSÉGI VIZSGA 2018. május 16. VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2018. május 16. 8:00 I. Időtartam: 60 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Villamosipar és elektronika ismeretek emelt szint 8 ÉRETTSÉGI VIZSGA 08. május 6. VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

2. ábra Változó egyenfeszültségek

2. ábra Változó egyenfeszültségek 3.5.. Váltakozó feszültségek és áramok Időben változó feszültségek és áramok Az (ideális) galvánelem által szolgáltatott feszültség iránya és nagysága az idő múlásával nem változik. Ha az áramkörben az

Részletesebben

3.3. A feszültség-munkadiagram

3.3. A feszültség-munkadiagram 3.3. A feszültség-munkadiagram Eddig csak olyan eseteket vizsgáltunk, amelyeknél az áramkörre ideális feszültségforrást kapcsoltunk (kapocsfeszültsége a terhelés hatására nem változik), és a kör eredő

Részletesebben

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r A VAÓÁO TEKE É A VAÓÁO KONDENÁTO A JÓÁ A soos -modell vizsgálata A veszteséges tekecs egy tiszta induktivitással, valamint a veszteségi teljesítményből számaztatható ellenállással modellezhető. Ez utóbbi

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

VILLAMOS ENERGETIKA PÓTPÓTZÁRTHELYI DOLGOZAT - A csoport

VILLAMOS ENERGETIKA PÓTPÓTZÁRTHELYI DOLGOZAT - A csoport VLLAMOS ENERGETKA PÓTPÓTZÁRTHELY DOLGOZAT - A csoport 2013. május 22. NÉV:... NEPTN-KÓD:... Terem és ülőhely:... A dolgozat érdemjegye az összpontszámtól függően: 40%-tól 2, 55%-tól 3, 70%-tól 4, 85%-tól

Részletesebben

1. Feladat. Megoldás. Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω.

1. Feladat. Megoldás. Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω. 1. Feladat Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω. A 1 2 B 3 4 5 6 7 A B pontok között C 13 = 1 + 3 = 2 = 200 Ω 76

Részletesebben

Budapesti Műszaki- és Gazdaságtudományi Egyetem. Gazdaság- és Társadalomtudományi Kar. Fizika dolgozat. Kovács Emese. 4-es tankör április 30.

Budapesti Műszaki- és Gazdaságtudományi Egyetem. Gazdaság- és Társadalomtudományi Kar. Fizika dolgozat. Kovács Emese. 4-es tankör április 30. Budapesti Műszaki- és Gazdaságtudományi Egyetem Gazdaság- és ársadalomtudományi Kar Fizika dolgozat 4. Váltakozó áramú áramkörök munkája és teljesítménye Kovács Emese Műszaki szakoktató hallgató 4-es tankör

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40.) Töltse ki a táblázat üres celláit! A táblázatnak

Részletesebben

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe

Részletesebben

Vízgépészeti és technológiai berendezésszerelő Épületgépészeti rendszerszerelő

Vízgépészeti és technológiai berendezésszerelő Épületgépészeti rendszerszerelő Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2011. (VII. 18.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK zonosító ÉRETTSÉGI VIZSG 2016. május 18. ELEKTRONIKI LPISMERETEK EMELT SZINTŰ ÍRÁSELI VIZSG 2016. május 18. 8:00 z írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMERI ERŐFORRÁSOK

Részletesebben

Elektrotechnika- Villamosságtan

Elektrotechnika- Villamosságtan Elektrotechnika- Villamosságtan 1.Előadás Egyenáramú hálózatok 1 Magyar Attila Tömördi Katalin Villamos hálózat: villamos áramköri elemek tetszőleges kapcsolása. Reguláris hálózat: ha helyesen felírt hálózati

Részletesebben

21. laboratóriumi gyakorlat. Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú

21. laboratóriumi gyakorlat. Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú 1. laboratóriumi gyakorlat Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú kismintán 1 Elvi alapok Távvezetékek villamos számításához, üzemi viszonyainak vizsgálatához a következő

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

KÖZÖS EMITTERŰ FOKOZAT BÁZISOSZTÓS MUNKAPONTBEÁLLÍTÁSA

KÖZÖS EMITTERŰ FOKOZAT BÁZISOSZTÓS MUNKAPONTBEÁLLÍTÁSA KÖZÖS EMITTERŰ FOKOZT BÁZISOSZTÓS MUNKPONTBEÁLLÍTÁS Mint ismeretes, a tranzisztor bázis-emitter diódájának jelentős a hőfokfüggése. Ugyanis a hőmérséklet növekedése a félvezetőkben megnöveli a töltéshordozók

Részletesebben

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta) 4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.

Részletesebben

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ ATOMATKA ÉS ELEKTONKA SMEETEK KÖZÉPSZNTŰ ÍÁSBEL VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Egy A=,5 mm keresztmetszetű alumínium (ρ= 0,08 Ω mm /m)

Részletesebben

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 10. 1.1. Egy öntözőrendszer átlagosan 14,13 A áramot vesz fel 0,8 teljesítménytényező mellett a 230 V fázisfeszültségű hálózatból.

Részletesebben

Villamos teljesítmény mérése

Villamos teljesítmény mérése 4. mérés Villamos teljesítmény mérése Bevezetés A villamos teljesítmény az egyik villamos alapmennyiség, amely mind egyen-, mind váltakozó-áramon definiálható. Mérésével különféle összetett villamos áramkörök

Részletesebben

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 08 ÉRETTSÉGI VIZSGA 008. október 0. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMTATÓ OKTATÁSI ÉS KLTRÁLIS MINISZTÉRIM Az

Részletesebben

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) 1. - Mérőtermi szabályzat, a mérések rendje - Balesetvédelem - Tűzvédelem - A villamos áram élettani hatásai - Áramütés elleni védelem - Szigetelési

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 006. májs 8. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI MINISZTÉRIM Teszt jellegű kérdéssor

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Tranziens jelenségek rövid összefoglalás

Tranziens jelenségek rövid összefoglalás Tranziens jelenségek rövid összefoglalás Átmenet alakul ki akkor, ha van energiatároló (kapacitás vagy induktivitás) a rendszerben, mert ezeken a feszültség vagy áram nem jelenik meg azonnal, mint az ohmos

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. október 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

ELEKTROTECHNIKA. Áramkör számítási példák és feladatok. MISKOLCI EGYETEM Elektrotechnikai-Elektronikai Intézeti Tanszék

ELEKTROTECHNIKA. Áramkör számítási példák és feladatok. MISKOLCI EGYETEM Elektrotechnikai-Elektronikai Intézeti Tanszék MISKOLCI EGYETEM Elektrotechnikai-Elektronikai Intézeti Tanszék ELEKTROTECHNIKA Áramkör számítási példák és feladatok Összeállította: Dr. Radács László Gépészmérnöki és Informatikai Kar Villamosmérnöki

Részletesebben

MÉSZÁROS GÉZA okl. villamosmérnök villamos biztonsági szakértő

MÉSZÁROS GÉZA okl. villamosmérnök villamos biztonsági szakértő MÉSZÁOS GÉZA okl. villamosmérnök villamos biztonsági szakértő VLLAMOS ALAPSMEETEK villamos ----------- elektromos villamos áram villamos készülék villamos hálózat villamos tér villamos motor villamos

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő

Részletesebben

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.

Részletesebben

SZINUSZOS ÁRAMÚ HÁLÓZATOK Számítási feladatok

SZINUSZOS ÁRAMÚ HÁLÓZATOK Számítási feladatok DR. GYURCSEK ISTVÁN SZINUSZOS ÁRAMÚ HÁLÓZATOK Számítási feladatok Forrás és ajánlott irodalom q Iványi A. Hardverek villamosságtani alapjai, Pollack Press, Pécs 2015, ISBN 978-963-7298-59-2 q Gyurcsek

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01

Részletesebben

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

17/1. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram.

17/1. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram. 7/. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram. A szinuszos áramú hálózatok vizsgálatánál gyakran alkalmazunk különbözı komplex átviteli függvényeket. Végezzük ezt a hálózat valamilyen

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Huroktörvény általánosítása változó áramra

Huroktörvény általánosítása változó áramra Huroktörvény általánosítása változó áramra A tekercsben indukálódott elektromotoros erő: A tekercs L önindukciós együtthatója egyben a kör önindukciós együtthatója. A kondenzátoron eső feszültség (g 2

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉSI ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉSI ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK TÁVKÖZLÉSI ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK 1. Egyenáramú hálózat számítása 13 pont Az ábrán egy egyenáramú ellenállás hálózat látható, melyre Ug = 12 V feszültséget kapcsoltak. a)

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

1. mérés: Indukciós fogyasztásmérő hitelesítése wattmérővel

1. mérés: Indukciós fogyasztásmérő hitelesítése wattmérővel 1. mérés: ndukciós fogyasztásmérő hitelesítése wattmérővel 1.1. A mérés célja ndukciós fogyasztásmérő hibagörbéjének felvétele a terhelés függvényében wattmérő segítségével. 1.2. A méréshez szükséges eszközök

Részletesebben