A soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen"

Átírás

1 A soros L-kör Mint ismeretes, a tekercsen az áram 90 fokot késik a hez képest, ahogyan az az 1. ábrán látható. A valós terhelésen a és az áramerősség azonos fázisú. Lényegében viszonyítás kérdése, de lássuk meg, hogy a valós terhelésen (ellenálláson) eső hez képest a tekercsen 90 o -ot siet a. π/4 π/ 3π/4 π 5π/4 3π/ 7π/4 π π/4 π/ 3π/4 π 5π/4 3π/ 7π/4 π áram áram 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen U C. ábra a soros C-kör kapcsolási rajza Tekintettel arra, hogy soros körről van szó, megállapítható, hogy közös az áram. Noha a soros egyenáramú köröknél megtanultuk, hogy Kirchhoff. törvénye (huroktörvény) szerint a részek összege egyenlő a forrás ével, itt ez nem járható számítási mód, a valós ellenálláson és a reaktancián eső ek által bezárt szög miatt. Tehát a Pitagorasz-tétel alkalmazása válik szükségessé. A 3. ábrán követhetjük nyomon a soros L-kör viszonyait. A kapacitás és a valós ellenállás ének vektoriális összege adja a soros C-kört tápláló forrás ét (komplex ). Mint említettük, a Pitagorasz-tétel alkalmazása eme helyen kap aktualitást. Egy egyszerű eltolással a ( ) a 3. b) ábra szerinti háromszöget kapva a művelet egyértelműen elvégezhető: = +. a) b) 3. ábra AZ ELEKTOTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 1/11

2 A -fázorábra elkészítése Soros kapcsolásról beszélünk, vagyis közös az áram. ajzoljuk fel vízszintesen a kör egyetlen közös mennyiségének az áramnak a fázorát (). Jelöljük a fázor forgásirányát! Az ellenálláson a mindig azonos fázisú, ennek megfelelően rajzoljuk fel a fázort ( )! A tekercsen a ( ) pontosan 90 o -ot siet az áramhoz képest. Ennek megfelelően vegyük fel a fázorát! Vektoriálisan összegezzük a tekercs és az ellenállás -fázorát, mely által megkapjuk a soros L-kört tápláló generátor -fázorát ( )! A () szög a kör áramának és a forrás ének fázora között értelmezett. Jelöljük be a () - szöget! 4. ábra A 4. ábra szerinti elrendezésben a következőkre lehetünk figyelmesek: A forrás e a két -komponens vektoriális összege; A () szög a forrás e és a hálózat által igényelt áramerősség fázora között értelmezett; Az ellenálláson eső és a rajta átfolyó áramerősség mindig azonos fázisú, így a fázoraik azonos irányúak. Mindebből az következik, hogy a () szög a forrás, valamint az ellenállás ének fázora között is értelmezhető; Ha az impedancia induktív jellegű, akkor a forrás éhez képest az áram késik! A. b) ábra szerinti eltolással kapott ábrában egy háromszöget kaptunk. A háromszög két befogója az és az komponens, az átfogó pedig az forrás. Trigonometriai ismereteinket felelevenítve (4. ábra) belátható, hogy az fázor az fázor koszinuszos vetülete: = cos, az fázor pedig a szinuszos vetülete: = sin. = sin 5. ábra = cos AZ ELEKTOTECHNKA ALKALMAZÁSA Készítette: Mike Gábor /11

3 Az impedancia-fázorábra elkészítése Ohm törvénye alapján tudjuk, hogy az ellenállás úgy számítható ki, hogy a kétpóluson eső et elosztjuk a rajta átfolyó áramerősséggel. Ez igaz valós ellenállás esetén. Hasonlóan számítható a kapacitás látszólagos ellenállása is, vagyis a reaktanciája. smételjünk néhány vonatkozó fogalmat! ellenállás: az impedancia valós része: = ; a tekercs induktív látszólagos ellenállása: induktív reaktancia, induktancia, az impedancia induktív képzetes része: = L= ; impedancia: komplex ellenállás, amely valós ellenállásból és látszólagos ellenállásból tevődik össze. Mivel az impedancia képzetes és valós része nem azonos fázisú ( 90 o -os szöget zárnak be), ezért az impedancia kiszámítása a Pitagorasz-tétel segítségével lehetséges: Z = + = Tanulmányaink folyamán láttuk, hogy mind a induktív, reaktancia frekvenciafüggő. nduktív reaktancia: X C = L= π f L, valamint frekvenciafüggése: f. ha nő, akkor L, vagyis nő Amennyiben tehát egy adott soros L-kapcsolás esetén változtatjuk a frekvenciát (f, ), úgy az induktív reaktancia értéke is változik, akkor is, ha a forrás ét ( ) nem változtattuk. Ha az induktív reaktancia ( ) értéke változik, s vele együtt az impedancia (Z) értéke, az impedancia és a valós ellenállás által bezárt szög (), valamint a köráram () is változik. Ha csökkentjük a frekvenciát, akkor az induktív reaktancia csökken, vele együtt a () szög és az impedancia is, az áram viszont nő. Ha növeljük a frekvenciát, megfordul a helyzet: az induktív reaktancia értéke nő, vele együtt a () szög és az impedancia is, miközben a köráram csökken. Amennyiben a fázorábra valamennyi komponensét elosztjuk a soros C-kör egyetlen közös mennyiségével (vagyis az árammal), akkor az impedancia komponenseket kapjuk eredményül. Lássuk meg, hogy az eredményül kapott impedancia-fázorábra a -fázorábrával arányos. Az impedancia koszinuszos vetülete az ellenállás, a szinuszos vetülete pedig az induktív reaktancia. = ; = ; Z =. = + => / => Z = + A fázorábra komponenseit osszuk el az egyetlen közös mennyiséggel, vagyis az árammal / = Z cos és = Z sin Z= = =Z cos = U C =Z sin 6. ábra Az impedancia-fázorábra származtatása AZ ELEKTOTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 3/11

4 A teljesítmény-fázorábra elkészítése Egyenáramú körök esetén megtanultuk, hogy egy valós terhelésen (ellenállás) hővé alakuló teljesítmény az ellenállás kapcsain mérhető, valamint a rajta átfolyó áramerősség szorzataként számítható. Hővé alakuló teljesítmény (valós) jön létre az ellenálláson váltakozó áramú körben is, ám ilyenkor a pillanatnyi teljesítményt, csúcsteljesítményt, valamint effektív teljesítményt értelmezünk. Valós teljesítmény csak valós (ohmos, rezisztív) ellenálláson tud létrejönni, amely kétpóluson eső és a rajta átfolyó áramerősség azonos fázisú. Egyenáramú teljesítmény: Váltakozó áramú teljesítmény: P= Pillanatnyi teljesítmény: p=u i Csúcsteljesítmény: ^P= ^U ^ Effektív teljesítmény: P eff = ^P = ^U ^ = ^U ^ =U eff eff Az induktív reaktancia áramához képest a e pontosan 90 o -ot siet. A 7. ábrán látható, hogy ebben az esetben negyed periódusig azonos, negyed periódusig pedig ellentétes előjelű a és az áramerősség. Ennek megfelelően negyed periódusig teljesítményt vesz fel a hálózatból, mely teljesítményt a következő negyed periódusban leadja. Lényegében teljes periódusra vonatkoztatva elmondható, hogy az induktív reaktancia teljesítménye nulla, tehát nincs hatásos teljesítmény ( P=0). 1. negyed periódus: P (1) =U =(+) (+)=(+) => felvesz. negyed periódus: P () =U =(+) (-)=(-) => lead 3. negyed periódus: P (3) =U =(+) (+)=(+) => felvesz 4. negyed periódus: P (4) =U =(+) (-)=(-) => lead ahol: P (1) = P () és P (3) = P (4 ) ; P (1) =P (3) és P () =P (4). Mindebből következik, hogy: P=P 1 +P +P 3 + P 4 =0 Látszólag: P=U Valójában: P=0 T T lead felvesz lead felvesz felvesz felvesz -π/4 π/4 π/ 3π/4 π 5π/4 3π/ 7π/4 π -π/4 π/4 π/ 3π/4 π 5π/4 3π/ 7π/4 π áram áramerősség 7. ábra Az induktív reaktancia teljesítménye 8. ábra Az ellenállás teljesítménye Lássuk meg: a tekercsen (mint reaktancián) eső és a rajta átfolyó áram szorzata tehát nem ad valós teljesítményt (7. ábra)! Ez a teljesítmény az úgynevezett meddő teljesítmény: Q= [VAr]. Emellett jól megfigyelhető a 8. ábrán, hogy az ellenálláson bármely félperiódus esetén a teljesítményszorzat pozitív értékű, tehát a rezisztív (ohmos) terheléseken mindig valós, más néven hatásos (hővé, fénnyé, mozgási energiává alakuló) a teljesítmény: 1. félperiódus: P (1) =U =(+) (+)=(+) => felvesz;. félperiódus: P () =U =(-) (-)=(+) => felvesz. AZ ELEKTOTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 4/11

5 Amennyiben a -fázorábra valamennyi komponensét megszorozzuk a soros L-kör egyetlen közös mennyiségével (vagyis az árammal), akkor a kör teljesítménykomponenseit kapjuk eredményül. Megfigyelhető, hogy az eredményül kapott teljesítmény-fázorábra a -fázorábrával arányos. Az induktív reaktancia meddő teljesítményének, valamint az ellenállás valós teljesítményének vektoriális összege a hálózatból felvett komplex teljesítmény, vagyis a látszólagos teljesítmény. Mindezek tükrében az is belátható, hogy a komplex teljesítmény (látszólagos teljesítmény, S ) koszinuszos vetülete az ellenálláson létrejövő valós, vagyis a hatásos teljesítmény (P), a szinuszos pedig az induktív reaktancia meddő teljesítménye. P= [ W] ; Q L = [VAr ] ; S= [VA ]. = + => => S = P +Q L P= S cos és Q L = S sin Összegezzünk minden eddig megismert adatot! P Z S U C X C Q C / x 9. ábra A soros L-kör fázorábrái (-, impedancia- és teljesítmény-) Forrás (komplex fesz.): = + Az ellenálláson eső : = cos Fázistényező: cos= mpedancia (komplex ellenállás): Z = + Az ellenállás: = Z cos Fázistényező: cos= Z A látszólagos teljesítmény (komplex teljesítmény): S = P +Q L A valós teljesítmény: P= S cos Fázistényező: cos= P S A valós (valamint áram) és a forrás által bezárt szög: =arccos A kondenzátoron eső : = sin A valós ellenállás és az impedancia által bezárt szög: =arccos Z Az induktív reaktancia (induktív látszólagos ellenállás, kapacitancia): = Z sin A valós teljesítmény és a látszólagos teljesítmény által bezárt szög: =arccos P S A meddő teljesítmény: Q L = S sin 1. táblázat AZ ELEKTOTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 5/11

6 Nézzünk egy számpéldát! Állítsunk össze egy soros L-kört, a következő értékek és adatok mellett! =1k Ω ; L=10 H ; =100V ; f 1 =50 1 s =50 Hz ; f =5 1 =100 Hz s U C 10. ábra Készítsük el a -, az impedancia-, valamint a teljesítmény fázorábrát két különböző frekvenciájú forrás esetén! Eme feladat kidolgozása során képet kaphatunk arról, hogy állandó mellett, ámde különböző frekvenciákon hogyan változnak a ek, az ellenállások, a teljesítmények, s vele együtt a fázisszög. A tekercs induktív látszólagos ellenállása, 50 Hz esetén: 50 = L= π f L= π 50 1 s 10 H= π 50 1 Vs 10 =1000π Ω=3141,59Ω s A Az impedancia, 50 Hz esetén: Z 50 = + = 1000Ω +3141,59 Ω =396,9Ω Az áramerősség, 50 Hz esetén: 50 = Z = 100V =30,33 ma 396,9 Ω A tekercsen eső, 50 Hz esetén: 50 = 50 =3141,59 Ω 30,33mA=433,70V =95,9V Az ellenálláson eső 50 Hz esetén: 50 = 50 =1000Ω 30,33 ma=30,33v A forrás ellenőrzése, 50 Hz esetén: = +U C = (95,9V ) +(30,33V ) =100V A tekercs meddő teljesítménye, 50 Hz esetén: Q C50 =U C =95,9V 30,33 ma=,89var Az ellenállás hatásos teljesítménye, 50 Hz esetén: P 50 = =30,33V 30,33mA=0,9W A látszólagos teljesítmény, 50 Hz esetén: S 50 = P +Q C = 0,9W +,89 var =3,033VA A cos (a -fázorábrából), 50 Hz esetén: S 50 = 0 =100 V 30,33 ma=3,033va cos 50 = 50 = 30,33V 100V = Z 50 = 1000Ω 396,9 Ω = P 50 S 50 = 0,9W =0, ,033VA A fázisszög (a -fázorábrából), 50 Hz esetén, : 50 =arccos(0,3033)=7,345 o AZ ELEKTOTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 6/11

7 A tekercs induktív látszólagos ellenállása, 5 Hz esetén: 5 = L= π f L= π 5 1 s 10 H= π 5 1 Vs 10 =500π Ω=1570,8 Ω s A Az impedancia, 5 Hz esetén: Z 5 = + = 1000Ω +1570,8 Ω =186,1Ω Az áramerősség, 5 Hz esetén: 5 = = 100V =53,7 ma Z 5 186,1Ω A kondenzátoron eső, 5 Hz esetén: 5 =5 5 =1570,8Ω 53,7 ma=433,70 V =84,35V Az ellenálláson eső, 5 Hz esetén: 5 = 5 =1000Ω 53,7mA=53,7V A forrás ellenőrzése, 5 Hz esetén: = 5 +5 = (84,35V ) +(53,7V ) =100V A kondenzátor meddő teljesítménye, 5 Hz esetén: Q L5 = 5 5 =84,35V 53,7 ma=4,5var Az ellenállás hatásos teljesítménye, 5 Hz esetén: P 5 = 5 5 =53,7 V 53,7 ma=,88w A látszólagos teljesítmény, 5 Hz esetén: S 5 = P 5 +Q L5 =,88W +4,5var =5,37VA S 5 = 5 =100V 53,7 ma=5,37 VA A cos, 5 Hz esetén: cos 5 = 5 = 53,7V 100V = Z 5 = 1000Ω 186,1Ω = P 100 S 100 =,88W 5,37VA =0,537 A fázisszög (a -fázorábrából), 5 Hz esetén, : 5 =arccos (0,537)=57,5 o 50 Hz esetén 5 Hz esetén Az ellenállás, 1000 Ω 1000 Ω A reaktancia, 3141,59Ω 1570,8Ω Az impedancia, Z 396,9Ω 186,1Ω Az ellenállás e, 30,33V 53,V A kondenzátor e, 95,9V 84,35V A forrás e, 100V 100V Az áramerősség, 30,33 ma 53,7 ma A hatásos teljesítmény, P 0,9W,88W A meddő teljesítmény, Q L,89VAr 4,5VAr A látszólagos teljesítmény, S 3,033 VA 5,37 VA A fázistényező, cos 0,3033 0,537 A fázisszög, 7,54 o 57,5 o. táblázat AZ ELEKTOTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 7/11

8 x / Z Q L S P 11. ábra A fázorábrák 50 Hz-es frekvenciájú forrás esetén (-, impedancia- és teljesítmény-) x / Z Q L S P 1. ábra A fázorábrák 5 Hz-es frekvenciájú forrás esetén (-, impedancia- és teljesítmény-) A fázorábrákból megállapítható, hogy csökkenő frekvencia esetén a tekercs reaktanciája csökken, a hatásos teljesítményhez képest arányaiban csökken a meddő teljesítmény, valamint a szög is. A cos értéke nő, így az impedancia kevésbé induktív jellegű. f => => P és Q L és => a soros L-kör impedanciája kevésbé induktív AZ ELEKTOTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 8/11

9 i Q L S u P áramerősség 13. ábra A feladatban szereplő soros L-kör áram- és viszonya, valamint a teljesítményfázorábrája 50 Hz esetén ( =100V, =30,33mA, =7,54 o ) i Q L S u 14. ábra A feladatban szereplő soros L-kör áram- és viszonya, valamint a teljesítményfázorábrája 5 Hz esetén ( =100V, =53,7 ma, =57,5 o ) A 11. és 1. ábra tanúsága szerint, amennyiben csökken a frekvencia, a csökkenő induktív reaktancia miatt a hatásos teljesítmény és a meddő teljesítmény aránya javul, a szög csökken, a cos értéke nő. Ennek eredménye az, hogy a soros L-kör, mint impedancia egyre kevésbé mutat induktív jelleget. A teljes periódusra vonatkoztatott hatásos (felvett) teljesítmény egyre nagyobb. áramerősség P 3. táblázat Tisztán induktív terhelés nduktív jellegű terhelés ( >0 ; >0) Tisztán ohmos terhelés ( =0 ;>0) Fázistényező, cos : 0 [0 ; 1] 1 Fázisszög, : 90 [0 ; 90] 0 Teljesítmény: S= P +Q L ; P=0 S= P +Q L ; Q L =0 S= P +Q S=Q L L S=P AZ ELEKTOTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 9/11

10 Z [ohm] Z (=1kohm, L=10H) A soros L-kör impedanciáját a frekvencia-fázisszög, valamint frekvencia-impedancia karakterisztikájával is jellemezhetjük, melyekkel a fázisszög és az impedancia frekvenciafüggéséről kaphatunk képet. Ez fontos lehet az ilyen jellegű impedanciákból kialakított négypólusok viselkedésének vizsgálatakor is π/ fázistolás [rad] határfrekvencia alatt határfrekvencia felett ohmos dominancia induktív dominancia f [Hz] Létezik egy nevezetes frekvencia, melyet határfrekvenciának nevezünk (f h ). A határfrekvencián az induktív reaktancia nagysága megegyezik az ellenállás értékével: (f h ) => =. = Z= π/4 =45 o 16. ábra Fázorábra a határfrekvencián ábra A soros L-kör fázisszögének és impedanciájának frekvenciafüggése f [Hz] A reaktanciák egyezése esetén természetesen a komponensek einek, valamint a teljesítményeinek nagysága is megegyező: f h => = ; Q L =P. f h => = L= π f h L= f h = π L A fázisszög kiszámítására két mód van: 1. cos = Z = +X = L +( L) = +( π f L). sin = Z = + X = L π f L L +( L) = +( π f L) => =arccos ( Z ) => =arcsin ( Z ) AZ ELEKTOTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 10/11

11 Végezetül tekintsük át, hogy a 15. ábra szerinti f - Z és f - karakterisztikák függvényeit miként tudjuk megalkotni. Frekvencia-impedancia karakterisztika Az impedancia frekvenciafüggősége: Z= + ebből Z= +( L) Z= +( π f L) Példánkban =1k Ω és L=1 H, így Z= (1000 Ω) +( π f 10 H) Az állandókat írjuk be mértékegység nélkül: Z= π f 10 A független változó a frekvencia, a függvényérték pedig az impedancia, így az ábrázolandó függvény: y= π x 1 Átírva hatványalakba: y=( π x ) A Graph függvényrajzoló program 1 segítségével könnyen ábrázolhatjuk a kapott függvényt: 1 y=( π x ) ebből a Graph megadás: y=(10^6+400*pi^*x^)^(1/) Frekvencia-fázisszög karakterisztika A fázisszög frekvenciafüggősége: cos = Z = + X = L +( L) = +( π f L) =arccos ( Z ) tehát =arccos +( π f L) Példánkban =1k Ω és L=1 H, így 1000Ω =arccos (1000Ω) +( π f 10 H) 10 3 Az állandókat írjuk be mértékegység nélkül: =arccos π f 10 A független változó a frekvencia, a függvényérték pedig a fázisszög, így az ábrázolandó függvény: y=arccos átírva hatványalakba: y= π x ( π x ) Az y=arccos ( π x ) 1 függvényből a Graph alak: y=acos(10^3/((10^6+400*pi^*x^)^(1/))) 1 Graph függvényrajzoló program: AZ ELEKTOTECHNKA ALKALMAZÁSA Készítette: Mike Gábor 11/11

A soros RC-kör. t, szög [rad]

A soros RC-kör. t, szög [rad] A soros C-kör Az átmeneti jelenségek vizsgálatakor soros C-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük

Részletesebben

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük

Részletesebben

Számítási feladatok megoldással a 6. fejezethez

Számítási feladatok megoldással a 6. fejezethez Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

2. ábra Soros RL- és soros RC-kör fázorábrája

2. ábra Soros RL- és soros RC-kör fázorábrája SOOS C-KÖ Ellenállás, kondenzátor és tekercs soros kapcsolása Az átmeneti jelenségek vizsgálatakor soros - és soros C-körben egyértelművé vált, hogy a tekercsen késik az áram a feszültséghez képest, a

Részletesebben

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? .. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.

Részletesebben

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

Teljesítm. ltség. U max

Teljesítm. ltség. U max 1 tmény a váltakozó áramú körben A váltakozv ltakozó feszülts ltség Áttekinthetően szemlélteti a feszültség pillanatnyi értékét a forgóvektoros ábrázolás, mely szerint a forgó vektor y-irányú vetülete

Részletesebben

2.11. Feladatok megoldásai

2.11. Feladatok megoldásai Elektrotechnikai alaismeretek.. Feladatok megoldásai. feladat: Egy szinuszosan változó áram a olaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T 4 t 4 4µ s f,5 Hz 5 khz

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások

Részletesebben

Egyfázisú hálózatok. Egyfázisú hálózatok. Egyfázisú hálózatok. komponensei:

Egyfázisú hálózatok. Egyfázisú hálózatok. Egyfázisú hálózatok. komponensei: Egyfázisú hálózatok Elektrotechnika Dr Vajda István Egyfázisú hálózatok komponensei: Egyfázisú hálózatok Feszültség- és áramforrások Impedanciák (ellenállás, induktivitás, and kapacitás) A komponensek

Részletesebben

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit! Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐORRÁS

Részletesebben

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit! Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 3. 1.1. Mekkora áramot (I w, I m ) vesz fel az a fogyasztó, amelynek adatai: U n = 0,4 kv (vonali), S n = 0,6 MVA (3 fázisú), cosφ

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. október 15. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Áramköri elemek mérése ipari módszerekkel

Áramköri elemek mérése ipari módszerekkel 3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek

Részletesebben

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. május 23. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 23. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! 1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint 08 ÉETTSÉGI VIZSG 00. október 8. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ NEMZETI EŐFOÁS MINISZTÉIUM Egyszerű, rövid feladatok

Részletesebben

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek: 3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója

Részletesebben

Elektrotechnika. 7. előadás. Összeállította: Dr. Hodossy László

Elektrotechnika. 7. előadás. Összeállította: Dr. Hodossy László 7. előadás Összeállította: Dr. Hodossy László . Ellenállás 7.. Impedancia.. Csillag kapcsolás Váltakozóáramú Teljesítményszámítás Váltakozóáramú teljesítmény általában: Váltakozóáramú teljesítmény ellenálláson

Részletesebben

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ ATOMATKA ÉS ELEKTONKA SMEETEK KÖZÉPSZNTŰ ÍÁSBEL VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Egy A=,5 mm keresztmetszetű alumínium (ρ= 0,08 Ω mm /m)

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 08 ÉRETTSÉGI VIZSGA 008. október 0. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMTATÓ OKTATÁSI ÉS KLTRÁLIS MINISZTÉRIM Az

Részletesebben

A váltakozó áramú hálózatok

A váltakozó áramú hálózatok A váltakozó áramú hálózatok Az egyenáramú hálózatokkal foglalkozó fejezeteinkben a vizsgált áramkörökben minden ág árama és feszültsége az idő függvényében állandó volt, vagyis sem az irányuk, sem a nagyságuk

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2009. május 22. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KLTRÁLIS

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

MUNKAANYAG. Danás Miklós. Váltakozó áramú hálózatok. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása

MUNKAANYAG. Danás Miklós. Váltakozó áramú hálózatok. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása Danás Miklós Váltakozó áramú hálózatok A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40.) Töltse ki a táblázat üres celláit! A táblázatnak

Részletesebben

Váltakozó áram. A váltakozó áram előállítása

Váltakozó áram. A váltakozó áram előállítása Váltakozó áram A váltakozó áram előállítása Mágneses térben vezető keretet fogatunk. A mágneses erővonalakat metsző vezetőpárban elektromos feszültség (illetve áram) indukálódik. Az indukált feszültség

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint 06 ÉETTSÉGI VIZSG 007. május 5. EEKTONIKI PISMEETEK EMET SZINTŰ ÍÁSBEI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKEÉSI ÚTMTTÓ OKTTÁSI ÉS KTÁIS MINISZTÉIM Teszt jellegű kérdéssor

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

1. Feladat. Megoldás. Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω.

1. Feladat. Megoldás. Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω. 1. Feladat Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω. A 1 2 B 3 4 5 6 7 A B pontok között C 13 = 1 + 3 = 2 = 200 Ω 76

Részletesebben

3.3. A feszültség-munkadiagram

3.3. A feszültség-munkadiagram 3.3. A feszültség-munkadiagram Eddig csak olyan eseteket vizsgáltunk, amelyeknél az áramkörre ideális feszültségforrást kapcsoltunk (kapocsfeszültsége a terhelés hatására nem változik), és a kör eredő

Részletesebben

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2009. október 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. október 19. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Budapesti Műszaki- és Gazdaságtudományi Egyetem. Gazdaság- és Társadalomtudományi Kar. Fizika dolgozat. Kovács Emese. 4-es tankör április 30.

Budapesti Műszaki- és Gazdaságtudományi Egyetem. Gazdaság- és Társadalomtudományi Kar. Fizika dolgozat. Kovács Emese. 4-es tankör április 30. Budapesti Műszaki- és Gazdaságtudományi Egyetem Gazdaság- és ársadalomtudományi Kar Fizika dolgozat 4. Váltakozó áramú áramkörök munkája és teljesítménye Kovács Emese Műszaki szakoktató hallgató 4-es tankör

Részletesebben

2. ábra Változó egyenfeszültségek

2. ábra Változó egyenfeszültségek 3.5.. Váltakozó feszültségek és áramok Időben változó feszültségek és áramok Az (ideális) galvánelem által szolgáltatott feszültség iránya és nagysága az idő múlásával nem változik. Ha az áramkörben az

Részletesebben

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r A VAÓÁO TEKE É A VAÓÁO KONDENÁTO A JÓÁ A soos -modell vizsgálata A veszteséges tekecs egy tiszta induktivitással, valamint a veszteségi teljesítményből számaztatható ellenállással modellezhető. Ez utóbbi

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN

Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK zonosító ÉRETTSÉGI VIZSG 2016. május 18. ELEKTRONIKI LPISMERETEK EMELT SZINTŰ ÍRÁSELI VIZSG 2016. május 18. 8:00 z írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMERI ERŐFORRÁSOK

Részletesebben

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény.

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény. 11/1. Teljesítén száítása szinuszos áraú álózatokban. Hatásos, eddô és látszólagos teljesítén. Szinuszos áraú álózatban az ára és a feszültség idıben változik. Íg a pillanatni teljesítén is változik az

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK ÉRETTSÉGI VIZSGA 2018. május 16. VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2018. május 16. 8:00 I. Időtartam: 60 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Elektrotechnika- Villamosságtan

Elektrotechnika- Villamosságtan Elektrotechnika- Villamosságtan 1.Előadás Egyenáramú hálózatok 1 Magyar Attila Tömördi Katalin Villamos hálózat: villamos áramköri elemek tetszőleges kapcsolása. Reguláris hálózat: ha helyesen felírt hálózati

Részletesebben

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Villamosipar és elektronika ismeretek középszint 7 ÉETTSÉGI VIZSGA 08. májs 6. VILLAMOSIPA ÉS ELEKTONIKA ISMEETEK KÖZÉPSZINTŰ ÍÁSBELI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ EMBEI EŐFOÁSOK MINISZTÉIMA Útmtató

Részletesebben

Elektromechanika. 6. mérés. Teljesítményelektronika

Elektromechanika. 6. mérés. Teljesítményelektronika Elektromechanika 6. mérés Teljesítményelektronika 1. Rajzolja fel az ideális és a valódi dióda feszültségáram jelleggörbéjét! Valódi dióda karakterisztikája: Ideális dióda karakterisztikája (3-as jelű

Részletesebben

SZINUSZOS ÁRAMÚ HÁLÓZATOK Számítási feladatok

SZINUSZOS ÁRAMÚ HÁLÓZATOK Számítási feladatok DR. GYURCSEK ISTVÁN SZINUSZOS ÁRAMÚ HÁLÓZATOK Számítási feladatok Forrás és ajánlott irodalom q Iványi A. Hardverek villamosságtani alapjai, Pollack Press, Pécs 2015, ISBN 978-963-7298-59-2 q Gyurcsek

Részletesebben

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2016. május 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 18. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia

Részletesebben

II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 4. Villamosságtani alapismeretek Hunyadi Sándor

II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 4. Villamosságtani alapismeretek Hunyadi Sándor A 2015. LVII-es energiahatékonysági törvényben meghatározott auditori és energetikai szakreferens vizsga felkészítő anyaga II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 4. Villamosságtani

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc

Részletesebben

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Villamosipar és elektronika ismeretek emelt szint 8 ÉRETTSÉGI VIZSGA 08. május 6. VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

Marcsa Dániel Transzformátor - példák 1. feladat : Egyfázisú transzformátor névleges teljesítménye 125kVA, a feszültsége U 1 /U 2 = 5000/400V. A névleges terheléshez tartozó tekercsveszteség 0,06S n, a

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

NEMZETGAZDASÁGI MINISZTÉRIUM

NEMZETGAZDASÁGI MINISZTÉRIUM NEMZETGAZDASÁGI MINISZTÉRIUM Minősítés szintje: Érvényességi idő: 2016. 10. 05. 10 óra 00 perc a vizsgakezdés szerint. Minősítő neve, beosztása: Palotás József s.k. Nemzeti Szakképzési és Felnőttképzési

Részletesebben

17/1. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram.

17/1. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram. 7/. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram. A szinuszos áramú hálózatok vizsgálatánál gyakran alkalmazunk különbözı komplex átviteli függvényeket. Végezzük ezt a hálózat valamilyen

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ I. feladatlap Egyszerű, rövid feladatok megoldása Maximális pontszám: 40. feladat 4 pont

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01

Részletesebben

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2016. október 17. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. október 17. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. október 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) 1. - Mérőtermi szabályzat, a mérések rendje - Balesetvédelem - Tűzvédelem - A villamos áram élettani hatásai - Áramütés elleni védelem - Szigetelési

Részletesebben

VILLAMOS ENERGETIKA PÓTPÓTZÁRTHELYI DOLGOZAT - A csoport

VILLAMOS ENERGETIKA PÓTPÓTZÁRTHELYI DOLGOZAT - A csoport VLLAMOS ENERGETKA PÓTPÓTZÁRTHELY DOLGOZAT - A csoport 2013. május 22. NÉV:... NEPTN-KÓD:... Terem és ülőhely:... A dolgozat érdemjegye az összpontszámtól függően: 40%-tól 2, 55%-tól 3, 70%-tól 4, 85%-tól

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Villamosipar és elektronika ismeretek középszint 7 ÉRETTSÉGI VIZSG 07. október 0. VILLMOSIPR ÉS ELEKTRONIK ISMERETEK KÖZÉPSZINTŰ ÍRÁSELI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMUTTÓ EMERI ERŐFORRÁSOK MINISZTÉRIUM

Részletesebben

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport

VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 10. 1.1. Egy öntözőrendszer átlagosan 14,13 A áramot vesz fel 0,8 teljesítménytényező mellett a 230 V fázisfeszültségű hálózatból.

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta) 4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 200. május 4. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 200. május 4. 8:00 Az írásbeli vizsga időtartama: 80 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben