7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL
|
|
- Nándor Kerekes
- 10 évvel ezelőtt
- Látták:
Átírás
1 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív távolságmérés elvének bemutatása, az L=f(x) és C=f(x) karakterisztikák felrajzolása. 2. Elméleti bevezető 2.1. Kapacitív elmozulásmérés Az elmozulás-mérő kapacitív érzékelők alapja a sík vagy hengerkonenzátor. A síkkonenzátor kapacitásképlete a következő: S C = ε (1) A képletből kitűnik, hogy a kapacitást meghatározó három komponens a fegyverzetek közti távolság (), a fegyverzetek területe (S), a ielektrikum permittivitása bármelyikének változása befolyásolhatja az elmozulást. A fegyverzetek közti távolság változtatásával csak szűk, maximum 2 3mm hosszúságú elmozulás mérhető. A kapacitás-változás nem lineáris, értéke csökken a fegyverzetek közti távolság növekeésével, egy aott távolság elérése után a trauktor nem elég érzékeny a távolságváltozásra. 1. Ábra. A kapacitás változása a fegyverzetek közötti távolság változásával 46
2 ε S A kapacitás C = képletéből kifejezhető a trauktor érzékenysége: ± x C ε S s = = 2. Az érzékenység változása nem lineáris, értéke erősen csökken a távolság növekeésével, μm nagyságrenű változás esetén viszont magas. 2 Ábra. A kapacitás változása a távolság függvényében Differenciálerösítő beépítésével javíthatjuk a jelleggörbe linearitását (3. ábra). A távolság változásával a C 1 kapacitás növekszik, és C 2 csökken, vagy forítva. A két konenzátor egy hí párhuzamos sarkaira van kötve. 3. Ábra. Differenciális kapacitásmérés A fix fegyverzeteken a potenciál a következő: U 1 + x x U 2 (2)
3 A fegyverzetek közti feszültség: + x + x U 1 U 2 = x (3) 2 U tehát a karaktrisztika lineáris. A kapacitásváltozás feszültségváltozássá alakítása Sauty híal történhet. A két konenzátort a hí párhuzamos ágaiba kötjük, a másik két ágba azonos értékű ellenállások kerülnek. A hí akkor van kiegyenlítve, ha a mozgó fegyverzet a fix fegyverzetek közti távolság felénél van, a műszer által mutatott kitérés, feszültségkülönbség zérus. A mozgó fegyverzet elmozulásakor a hí kizökken az egyensúlyi helyzetből. 4. Ábra Diferenciális konenzátor mérése Sauty híal A túl nagy elmozulás, valamint a fix és mozgó fegyverzet közti rövizár elkerülése végett ielektrikum réteget helyeznek a fegyverzetek közé. Ezért a kapacitásképletben két új fixkapacitás jelenik meg a változókapacitásoknak megfelelően. Szigetelőként kvarcot (ε R =4 5), porcelánt (ε R =6 7) lehet használni. A hiat 5kHz frekvenciájú szinuszos feszültséggel lehet táplálják Inuktív elmozulásmérés A pozíció-változást kétféleképpen mérhetjük: saját- vagy mutuális inuktivitás változással, amely a tekercsben lévő vasmag elmozulása miatt változhat vagy a vasmag vastagságának megváltozásának tulajonítható inukcióváltozással. Pozíciómérés mozgó vasmaggal: a vasmag a mozgó renszerrel össze van kapcsolva, így a renszer mozgása maga utá vonja a vasmag mozgását, azaz a mágneses inukció nemlineáris megváltozását (lás 5. Ábra). A mágneses kör nyitott. 5-3 mm-es tartományban használható elmozulásmérésre. 48
4 A parazita hatások kiküszöbölésére valamint a karakterisztika linearizálására a ifferenciális változatot használhatjuk. Ez két egymás melletti tekercsből áll. Amikor a vasmag elmozul, akkor behatol az egyik tekercsbe, miközben kicsúszik a másikból. Ezek nagy érzékenységű trauktorok kétirányú elmozulást mérhetünk vele feltételezve, hogy a zéró pozíció a két tekercs találkozásánál van (lás 5. Ábra). Mérési tartomány: ± 1 - ±15 mm. 5 Ábra. Pozíciómérés mozgó vasmaggal 6 Ábra. Differenciális pozíciómérés mozgó vasmaggal Az inuktivitás mérésére váltóáramú hiat használhatunk. A két tekercset a hí két egymás melletti ágába helyezzük. A hiat nem kiegyensúlyozva használjuk így a mért feszültség arányos lesz az elmozulással. 49
5 7 Ábra. Inukciómérésre használatos váltóáramú hí E két tekercs impeanciája x elmozulásra: Z x) = jω ( L + L) + r Z ( x) = j ( L L) + r (4) 1( 2 ω A híon mért feszültség az alábbi lesz: U 2 jω L R ( jωl + r + R) 2 + ω 2 ( L) 2 (5) Az (5) összefüggésből látszik, hogy minél nagyobb a L inuktivitás változás, a hi kimenetén mért feszültség (U ) annál nagyobb. Az inuktivitás változás, illetve az ezt előiéző elmozulás változás és a kimeneti feszültség közötti összefüggés nem lineáris. A kiselmozulások mérésére használt sikkonenzátor passziv érzékelő, ezért műkötetésére konicionáló áramkört használunk. A kapacitiv szintérzékelőknél használt konicionáló áramkört itt is felhasználhatjuk. A kapacitiv elmozulás érzékelőt mint változtatható konenzátort az astabil multivibrátor megfelelő bemeneteire kapcsolva, a kimeneteken a négyszögjel frekvenciája arányos lesz az elmozulással. 3. A gyakorlat menete 3.1. Inuktív távolságmérés A vasmagra helyezett tekercset 5 mm ként végigvezetjük a vasmagon. A tekercs kivezetésein mérjük az inuktivitást és kitöltjük az 1. táblázatot. Ábrázoljuk a mért inuktivitást a távolság függvényében L=f(x) Kapacitív távolságmérés A használt konenzátor síkkonenzátor. A konenzátorlapok méretei: - szélesség: L =.115 mm - magasság: h =.95 mm A fegyverzetek közötti távolság (x) változtatható. Ismert a vákuum permittivitása: ε =8.8854E-12, a levegő relativ permitivitása ε r = 1. A mérések előtt kalibráljuk az inuktivitás mérőt (nullpont kompenzálás). A kapacitív távolságmérő kivezetéseit a konenzátormérőre, valamint a CD447 astabil multivibrátor 1-es és 3-as bemenetei közé csatlakoztatjuk. A fegyverzetek közötti távolságot.5 mm-ként változtatjuk -5 mm-ig és leolvassuk a konenzátor értékét és az astabil multivibrátor kimenetén a frekvenciát. Kitöltjük a 2 táblázat első három sorát. A távolságot tovább változtatjuk, mig a konicionáló áramkőr kimeneti frekvenciája nem 5
6 változik, vagy nagyon kis mértékben móosúl. Lejegyezzük cm-ként a távolságot és a megfelelő frekvencia értéket, meghosszabbitva a táblázatot. A konenzátor értéke az alábbi összefüggés alapján változik: C ε = S x (6) ahol S a konenzátorlap felülete. Kiszámítjuk a konenzátor értékét az (6) összefüggésből. Az ereményeket a 2. táblázat 4-ik sorába irjuk. Kiszámoljuk az abszolut mérési hibát az alábbi összefüggésből: ε abs = C számított - C mért (7) Az aatokat a 2 táblázat 5-ik sorába irjuk. Ábrázoljuk a konenzátor kapacitásának értékét, valamint az astabil multivibrátor kimeneti frekvenciáját az elmozulás függvényében. Megforítjuk a mozgó fegyverzetet és igy a konenzátor fémrétegei közé ε r relatív permittivitású és vastagságú szigetelőréteg kerül. Megismétejük a mérést és kitöltjük a 3. táblázatot. Ábrázoljuk a konenzátor értékének változását és a frekvencia változást az elmozulás függvényében. Inuktív távolságmérés X [mm] L mért [mh] 1. Táblázat. Kapacitiv távolságmérés szigetelőréteg nélkül X [mm] C mért [pf) F [khz] C 1 számított [pf] ε [pf] 2. Táblázat 51
7 Kapacitiv távolságmérés szigetelőréteggel X [mm] C mért [pf] F [khz] 3. Táblázat. 4. Kérések és felaatok: 1. Milyen mérőáramkört, konicionáló áramkört javasolna az inuktív távolságmérés esetében az inuktivitás mérésére? 2. Magyarázza el a konenzátormérésre használt Sauty hí műköését, vezesse le az egyensúly feltételeket! 3. Mi az előnye a szigetelőréteggel végzett kapacitív elmozulásmérésnek a szigetelőréteg nélkül végzett méréssel szemben? 4. Amennyiben az ábrázolt karakterisztikák nem lineárisak, keressenek megfelelő linearizáló áramkört! 52
6. Laboratóriumi gyakorlat KAPACITÍV SZINTÉRZÉKELŐK
6. Lbortóriumi gykorlt KAPAITÍV SZINTÉRZÉKELŐK. A gykorlt célj A kpcitív szintmérés elvének bemuttás. A (x) jelleggörbe ábrázolás szigetelő és vezető olyékok esetén. Egy stbil multivibrátor elhsználás
3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS
3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 1. A gyakorlat célja A Platina100 hőellenállás tanulmányozása kiegyensúlyozott és kiegyensúlyozatlan Wheatstone híd segítségével. Az érzékelő ellenállásának mérése
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti
Zárt mágneskörű induktív átalakítók
árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre
2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető
. Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék
Áramköri elemek mérése ipari módszerekkel
3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek
Feszültségérzékelők a méréstechnikában
5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika
Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele
Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek
Elmozdulás mérés BELEON KRISZTIÁN BELEON KRISTIÁN - MÉRÉSELMÉLET - ELMOZDULÁSMÉRÉS 1
Elmozdulás mérés BELEON KRISZTIÁN 2016.11.17. 2016.11.17. BELEON KRISTIÁN - MÉRÉSELMÉLET - ELMOZDULÁSMÉRÉS 1 Mérési eljárás szerint Rezisztív Induktív Kapacitív Optikai Mágneses 2016.11.17. BELEON KRISTIÁN
Számítási feladatok a 6. fejezethez
Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz
Elektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
Analóg-digitál átalakítók (A/D konverterek)
9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk
Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?
1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen
Minden mérésre vonatkozó minimumkérdések
Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a
MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata
MÉRÉSI JEGYZŐKÖNYV A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata A mérés helye: Irinyi János Szakközépiskola és Kollégium
Számítási feladatok megoldással a 6. fejezethez
Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5
VÁLTAKOZÓ ÁRAMÚ KÖRÖK
Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,
1. ERŐMÉRÉS NYÚLÁSMÉRŐ BÉLYEG ALKALMAZÁSÁVAL
1. ERŐMÉRÉS NYÚLÁSMÉRŐ BÉLYEG LKLMZÁSÁVL nyúlásmérő bélyegek mechanikai deformációt alakítanak át ellenállás-változássá. lkalmazásukkal úgy készítenek erőmérő cellát, hogy egy rugalmas alakváltozást szenvedő
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális
EGYENÁRAMÚ TÁPEGYSÉGEK
dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan
Elektronika Oszcillátorok
8. Az oszcillátorok periodikus jelet előállító jelforrások, generátorok. Olyan áramkörök, amelyeknek csak kimenete van, bemenete nincs. Leggyakoribb jelalakok: - négyszög - szinusz A jelgenerálás alapja
A/D és D/A konverterek vezérlése számítógéppel
11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,
8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ
8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 1. A gyakorlat célja: Az inkrementális adók működésének megismerése. Számítások és szoftverfejlesztés az inkrementális adók katalógusadatainak feldolgozására
Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:
DR. KOVÁCS ERNŐ MŰVELETI ERŐSÍTŐK MÉRÉSE
M I S K O L C I E G Y E T E M GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ÉS ELEKTRONIKAI INTÉZET DR. KOVÁCS ERNŐ MŰVELETI ERŐSÍTŐK MÉRÉSE MECHATRONIKAI MÉRNÖKI BSc alapszak hallgatóinak MÉRÉSI
Ellenállásmérés Ohm törvénye alapján
Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos
Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)
Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus
ELŐADÁS AUTOMATIZÁLÁS ÉS IPARI INFORMATIKA SZÁMÍTÁSTECHNIKA TÁVKÖZLÉS
ANALÓG ELEKTRONIKA ELŐADÁS 2011-2012 tanév, II. félév AUTOMATIZÁLÁS ÉS IPARI INFORMATIKA SZÁMÍTÁSTECHNIKA TÁVKÖZLÉS ÓRASZÁMOK AUTOMATIZÁLÁS Á ÉS IPARI INFORMATIKA hetente 2 óra előadás, 2 óra labor kéthetente
EHA kód:...2009-2010-1f. As,
MŰSZAKI FIZIKA I. RMINB135/22/v/4 1. ZH A csoport Név:... Mérnök Informatikus EHA kód:...29-21-1f ε 1 As = 9 4π 9 Vm µ = 4π1 7 Vs Am 1) Két ± Q = 3µC nagyságú töltés közti távolság d = 2 cm. Határozza
4. Laboratóriumi gyakorlat A HŐELEM
4. Laboratóriumi gyakorlat A HŐELEM 1. A gyakorlat célja: A hőelemek és mérőáramkörei működésének és használatának tanulmányozása. Az U=f(T) karakterisztika felrajzolása. 2. Elméleti bevezető 2.1. Hőelemek
Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27
Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007 március 27 Ellenállások R = U I Fajlagos ellenállás alapján hosszú vezeték Nagy az induktivitása Bifiláris Trükkös tekercselés Nagy mechanikai
1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két
Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?
Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció
Világítástechnikai mérés
1. gyakorlat Világítástechnikai mérés A gyakorlat során a hallgatók 3 mérési feladatot végeznek el: 1. Fotometriai távolságtörvény érvényességének vizsgálata Mérés célja: A fotometriai távolságtörvény
7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?
1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás
A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ. Pohár rezonanciája
Oktatási Hivatal A 017/018. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA JAVÍTÁSI ÚTMUTATÓ Pohár rezonanciája A mérőberendezés leírása: A mérőberendezés egy változtatható
1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE
5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
Az Ohm törvény. Ellenállás karakterisztikája. A feszültség és az áramerősség egymással egyenesen arányos, tehát hányadosuk állandó.
Ohm törvénye Az Ohm törvény Az áramkörben folyó áram erőssége függ az alkalmazott áramforrás feszültségétől. Könnyen elvégezhető kísérlettel mérhetjük az áramkörbe kapcsolt fogyasztón a feszültséget és
Mûveleti erõsítõk I.
Mûveleti erõsítõk I. 0. Bevezetés - a mûveleti erõsítõk mûködése A következõ mérésben az univerzális analóg erõsítõelem, az un. "mûveleti erõsítõ" mûködésének alapvetõ ismereteit sajátíthatjuk el. A nyílthurkú
11. Laboratóriumi gyakorlat GYORSULÁS MÉRŐK
11. Laboratóriumi gyakorlat GYORSULÁS MÉRŐK 1. A gyakorlat célja Az ADXL10 integrált gyorsulás mérő felépitése, működése és használatának bemutatása. Centrifugális gyorsulás kimutatása, mérése és számitása
Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2
Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Mágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az
Elektronika 2. TFBE5302
Elektronika 2. TFBE5302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)
Hangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
2000 Szentendre, Bükköspart 74 WWW.MEVISOR.HU. MeviMR 3XC magnetorezisztív járműérzékelő szenzor
MeviMR 3XC Magnetorezisztív járműérzékelő szenzor MeviMR3XC járműérzékelő szenzor - 3 dimenzióban érzékeli a közelében megjelenő vastömeget. - Könnyű telepíthetőség. Nincs szükség az aszfalt felvágására,
a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása
Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Villamosságtan szigorlati tételek
Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ
Oktatási Hivatal A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ 1./ Bevezetés Ha egy rezgésre képes rugalmas testet például ütéssel rezgésbe
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
Szupravezető alapjelenségek
Szupravezető alapjelenségek A méréseket összeállította és az útmutatót írta: Balázs Zoltán 1. Meissner effektus bemutatása: Mérési összeállítás: 1. A csipesszel helyezze a polisztirol hab csészébe a szupravezető
1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
RC tag mérési jegyz könyv
RC tag mérési jegyz könyv Mérést végezte: Csutak Balázs, Farkas Viktória Mérés helye és ideje: ITK 320. terem, 2016.03.09 A mérés célja: Az ELVIS próbapanel és az ELVIS m szerek használatának elsajátítása,
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.
III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.
M ű veleti erő sítő k I.
dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését
KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:
GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT
Mérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása
Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő
Műveleti erősítők A műveleti erősítők egyenáramú erősítőfokozatokból felépített, sokoldalúan felhasználható áramkörök, amelyek jellemzőit A u ', R be ', stb. külső elemek csatlakoztatásával széles határok
Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris.
Alapkapcsolások (Attól függően, hogy a tranzisztor három csatlakozási pontja közül melyiket csatlakoztatjuk állandó potenciálú pólusra, megkülönböztetünk): földelt emitteres földelt bázisú földelt kollektoros
A KALIBRÁLÓ LABORATÓRIUM LEGJOBB MÉRÉSI KÉPESSÉGE
MTA-MMSZ Kft. Kalibráló Laboratóriuma A KALIBRÁLÓ LABORATÓRIUM LEGJOBB MÉRÉSI KÉPESSÉGE 1. Egyenfeszültség-mérés 1.1 Egyenfeszültség-mérők 0...3 mv 1,5 µv 1.2 Egyenfeszültségű jelforrások - kalibrátorok,
Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?
Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind
Pótlap nem használható!
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3
Hiszterézis: Egy rendszer kimenete nem csak az aktuális állapottól függ, hanem az állapotváltozás aktuális irányától is.
1. Mi az érzékelő? Definiálja a típusait (belső/külső). Mit jelent a hiszterézis? Miért nem tudunk közvetlenül mérni, miért származtatunk? Hogyan kapcsolódik össze az érzékelés és a becslés a mérések során?
Elektrotechnika Feladattár
Impresszum Szerző: Rauscher István Szakmai lektor: Érdi Péter Módszertani szerkesztő: Gáspár Katalin Technikai szerkesztő: Bánszki András Készült a TÁMOP-2.2.3-07/1-2F-2008-0004 azonosítószámú projekt
DTMF Frekvenciák Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet DTMF Frekvenciák Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: Bevezető A Proto Board 2. mérőkártya olyan
Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz
Nemzeti kkreditáló Testület RÉSZLETEZŐ OKIRT a NT--016/ nyilvántartási sú akkreditált státuszhoz z EROPLEX Közép-Európai Légijármű Műszaki Központ Kft. Kalibráló Labor (1185 Budapest, Liszt Ferenc Nemzetközi
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata
Oktatási Hivatal A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK Különösen viselkedő oszcillátor vizsgálata Elméleti bevezető: A mérési feladat
Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II.
Oktatási Hivatal A 8/9. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja FIZIKÁBÓL II. kategóriában Feladat a Fizika Országos Középiskolai Tanulmányi Verseny harmadik fordulójára.
Logaritmikus erősítő tanulmányozása
13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti
LI 2 W = Induktív tekercsek és transzformátorok
Induktív tekercsek és transzformátorok A tekercsek olyan elektronikai alkatrészek, amelyek mágneses terükben jelentős elektromos energiát képesek felhalmozni. A mágneses tér a tekercset alkotó vezetéken
Integrált áramkörök/2 Digitális áramkörök/1 MOS alapáramkörök. Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék
Integrált áramkörök/2 Digitális áramkörök/1 MOS alapáramkörök Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék Mai témák Az inverter, alapfogalmak Kiürítéses típusú MOS inverter Kapuáramkörök kialakítása
MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH /2014 nyilvántartási számú (4) akkreditált státuszhoz
MÓDOSÍTOTT RÉSZLETEZŐ OKIRT (1) a NH016/ nyilvántartási számú (4) akkreditált státuszhoz EROPLEX KözépEurópai Légijármű Műszaki Központ Kft. Kalibráló Labor (1185 Budapest, Liszt Ferenc Nemzetközi repülőtér)
Passzív és aktív aluláteresztő szűrők
7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.
Nyomáskülönbség-jeladók, térfogatáram mérő egysé gekhez
Statikus nyomáskülönbség jeladók,2 X XStatikus nyomáskülönbség jeladók testregistrierung Nyomáskülönbség-jeladók, térfogatáram mérő egysé gekhez Típus: Statikus nyomáskülönbség jeladók Hatásos nyomás és
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR. Mikroelektronikai és Technológiai Intézet. Aktív Szűrők. Analóg és Hírközlési Áramkörök
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR Mikroelektronikai és Technológiai Intézet Analóg és Hírközlési Áramkörök Laboratóriumi Gyakorlatok Készítette: Joó Gábor és Pintér Tamás OE-MTI 2011 1.Szűrők
Rogowski-tekercses árammérő rendszer tervezése és fejlesztése
Rogowski-tekercses árammérő rendszer tervezése és fejlesztése Fekete Ádám, Schmidt László, Szabó László, Dr. Varga László Fekete Ádám és Varga Balázs Budapest, 2013.04.24 Transzformátorok és mérőváltók
Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat
Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos
Digitális multiméterek
PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR FIZIKAI INTÉZET Fizikai mérési gyakorlatok Digitális multiméterek Segédlet környezettudományi és kémia szakos hallgatók fizika laboratóriumi mérési gyakorlataihoz)
1. Visszacsatolás nélküli kapcsolások
1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ
Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1
Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn
ROG4K. EM210 fogyasztásmérő áramérzékelő ( A) Előnyök. Leírás
ROG4K EM210 fogyasztásmérő áramérzékelő (20-4000 A) Leírás Az áramérzékelő működése Rogowski elven alapul, EM210 fogyasztásmérővel együtt kell használni ( EM210 72D MV5 és EM210 72D MV6 verzió) egy-két
10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
MŰVELETI ERŐSÍTŐS KAPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján)
MŰVELETI ERŐSÍTŐS KPCSOLÁSOK MÉRÉSE (DR. Kovács Ernő jegyzete alapján) mérések célja: megismerni a leggyakoribb alap- és alkalmazott műveleti erősítős kapcsolások jellemző tulajdonságait. mérések elméleti
MÁGNESES TÉR, INDUKCIÓ
Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses
Zener dióda karakterisztikáinak hőmérsékletfüggése
A mérés célja 18. mérés Zener dióda karakterisztikáinak hőmérsékletfüggése A Zener dióda nyitóirányú és záróirányú karakterisztikájának, a karakterisztika hőmérsékletfüggésének vizsgálata, a Zener dióda
Elektronika 2. TFBE1302
Elektronika 2. TFBE1302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3