Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?
|
|
- Benjámin Kiss
- 8 évvel ezelőtt
- Látták:
Átírás
1 Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám polarizálható. c) Csak a transzverzális hullám képes interferenciára. d) Transzverzális hullám csak a szilárd anyagban jön létre. 2. Melyik állítás nem igaz a mechanikai hullámok körében? a) Longitudinális hullám esetén a részecskék rezgésének iránya párhuzamos a hullámterjedés irányával. b) Longitudinális hullámok nem képesek interferenciára c) Longitudinális hullám mindhárom halmazállapotú anyagban terjedhet. d). A longitudinális hullám nem polarizálható. 3. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám polarizálható. c) Transzverzális hullám terjedésekor a részecskék között nyíróerık lépnek fel. d) Adott közegben a transzverzális hullám általában gyorsabban terjed, mint a longitudinális hullám. 4. Melyik állítás nem igaz a mechanikai hullámok körében? a) A longitudinális hullám a gázokban gyorsabban terjed, mint a szilárd anyagokban. b) A longitudinális hullám nem polarizálható. c) A longitudinális hullám terjedését a nyomásviszonyok változása okozza. d) Longitudinális hullám esetén a részecskék rezgésének iránya párhuzamos a hullámterjedés irányával.
2 5. Melyik állítás nem igaz? A hullámhossz a) rugalmas pontsoron a legközelebbi hullámhegy és hullámvölgy távolsága. b) kétdimenziós hullámban a két legközelebbi azonos fázisú hullámfront távolsága. c) rugalmas pontsoron a két legközelebbi azonos fázisú pont távolsága. d) rugalmas pontsoron a két legközelebbi hullámhegy távolsága. 6. Melyik állítás nem igaz? a) A hullámhossz kiszámítható a terjedési sebesség és frekvencia segítségével. b) A hullámhossz kiszámítható a terjedési sebesség és a rezgés amplitúdójának segítségével. c) A hullámhossz kiszámítható a terjedési sebesség és a rezgés periódusidejének segítségével. d) A hullámhossz a hullám térbeli periodicitására jellemzı. 7. Egy rugalmas kötél végét 3 Hz frekvenciával mozgatjuk. A hullám terjedési sebessége a kötélen 15 m/s. Mekkora fáziskülönbséggel mozognak a kötél egymástól 7,5 m-re lévı részecskéi? a) λ/2 b) λ c) 3 λ/2 d) 4 λ/5 8. Rugalmas kötélen a hullám terjedési sebessége 18 m/s, a hullámhossz 6 m. Mekkora a rezgımozgást végzı pontok rezgésének periódusideje? a) 1/3 s b) 3 s c) 2/3 s d) 6 s
3 9. Egy hullám terjedési sebessége 480 m/s, a frekvenciája 40 Hz. Mekkora a közegben egymástól 9 m-re lévı pontok fáziskülönbsége? a) λ/2 b) 3 λ/4 c) λ d) 3 λ/2 10. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 45 cm. A két ág végeit azonos, f = 4 Hz frekvenciával, azonos amplitúdóval és azonos fázisban mozgatjuk. A hullám terjedési sebessége a gumikötélen 1,2 m/s. Milyen hullám alakul ki a harmadik ágban? a) Nem alakul ki hullám. b) A kialakuló hullám amplitúdója A/2. c) A kialakuló hullám amplitúdója A. d) A kialakuló hullám amplitúdója 2A. 11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz frekvenciával, azonos amplitúdóval és azonos fázisban mozgatjuk. A hullám terjedési sebessége a gumikötélen 1,2 m/s. Milyen hullám alakul ki a harmadik ágban? a) Nem alakul ki hullám. b) A kialakuló hullám amplitúdója A/2. c) A kialakuló hullám amplitúdója A. d) A kialakuló hullám amplitúdója 2A. 12. Melyik állítás igaz? a) Két hullámot koherensnek nevezünk, ha amplitúdójuk megegyezik. b) Két hullámot koherensnek nevezünk, ha terjedési sebességük megegyezik. c) Két hullámot koherensnek nevezünk, ha fáziskülönbségük állandó. d) Két hullámot koherensnek nevezünk, ha frekvenciájuk megegyezik.
4 13. Melyik állítás igaz? a) Az interferencia koherens hullámok szuperpozíciójakor létrejövı jelenség. b) Az interferencia bármilyen hullámok találkozásakor létrejövı jelenség. c) Az interferencia bármilyen hullámok egymáson való áthaladásakor létrejövı jelenség. d) Az interferencia bármilyen hullámok összeadódásakor létrejövı jelenség. 14. Melyik állítás nem igaz? a) Rugalmas húron állóhullámok akkor keletkezhetnek, ha egymással szemben haladó, azonos frekvenciájú és amplitúdójú hullámok találkoznak. b) Rugalmas húron állóhullámok mindig keletkeznek, ha egymással szemben haladó, azonos frekvenciájú és amplitúdójú hullámok találkoznak. c) Rugalmas húron állóhullámban duzzadóhely és csomópont figyelhetık meg. d) Rugalmas húron lehet olyan állóhullám, mikor csomópont csak a húr két végén van. 15. Melyik állítás igaz? Két végén rögzített húron olyan állóhullámok tudnak kialakulni, ahol a húr hossza a) a félhullámhossz egész számú többszöröse. b) a félhullámhossz páros számú többszöröse. c) a félhullámhossz páratlan számú többszöröse. d) a hullámhossz egész számú többszöröse. 16. Melyik állítás igaz? Csak egyik végén rögzített húron olyan állóhullámok tudnak kialakulni, ahol a húr hossza a) a negyed hullámhossz egész számú többszöröse. b) a negyed hullámhossz páros számú többszöröse. c) a negyed hullámhossz páratlan számú többszöröse. d) a félhullámhossz egész számú többszöröse.
5 17. Két végén rögzített gumikötélen a hullám terjedési sebessége 12 m/s, a kötél hossza 3 m. Mekkora a rajta létrejövı állóhullámok közül az elsı felharmonikus frekvenciája? a) 6 Hz b) 4 Hz c) 2 Hz d) 1 Hz 18. Két végén rögzített gumikötélen a hullám terjedési sebessége 12 m/s, a kötél hossza 3 m. Mekkora a rajta létrejövı állóhullámok közül a második felharmonikus frekvenciája? a) 8 Hz b) 6 Hz c) 4 Hz d) 2 Hz 19. Egy egyik végén felfüggesztett, rugalmas kötélen a hullám terjedési sebessége 2 m/s, a kötél hossza 6 m. Mekkora a kötélen létrejövı állóhullámok közül az elsı felharmonikus frekvenciája? a) 1/6 Hz b) 1/4 Hz c) 1/3 Hz d) 1/2 Hz 20. Két hullámforrás felületi hullámok interferenciáját hozza létre. Melyik állítás igaz? Azokban a pontokban van maximális erısítés, melyeknek a két hullámforrástól mért távolságuk különbsége a) a félhullámhossz páros számú többszöröse. b) a félhullámhossz páratlan számú többszöröse. c) a hullámhossz páros számú többszöröse. d) éppen a hullámhossz.
6 21. Két hullámforrás felületi hullámok interferenciáját hozza létre. Melyik állítás igaz? Azokban a pontokban van maximális gyengítés, melyeknek a két hullámforrástól mért távolságuk különbsége a) a félhullámhossz páros számú többszöröse. b) a félhullámhossz páratlan számú többszöröse. c) a hullámhossz páratlan számú többszöröse. d) éppen a hullámhossz. 22. Melyik állítás nem igaz a visszaverıdés törvényével kapcsolatban? a) A beesı hullám és a visszaverıdı hullám terjedési iránya, valamint a beesési merıleges egy síkban van. b) A beesı és a visszavert hullámok terjedési irányai által bezárt szög a beesési szög kétszerese. c) A beesı és a visszavert hullámok terjedési irányai által bezárt szög egyenlı a beesı hullám terjedési iránya és a felület által bezárt szöggel. d) Visszaverıdés mindig létrejön, akár behatol a hullám az új közegbe, akár nem. 23. Melyik állítás nem igaz a törés törvényével kapcsolatban? a) A törési szög mindig kisebb a beesési szögnél. b) A beesı hullám és a megtört hullám terjedési iránya, valamint a beesési merıleges egy síkban van. c) A beesı hullám és a megtört hullám különbözı sebességgel halad. d) A beesı hullám és a megtört hullám hullámhossza különbözı. 24. Melyik állítás igaz? A teljes visszaverıdés jelensége azért jön létre, mert a) a második közeg az adott hullámtípusra nem átjárható. b) a beesési szöghöz 90 o -nál nagyobb törési szög tartozna. c) a beesési szög túl kicsi. d) a beesési szöghöz túl kicsi törési szög tartozna.
7 25. Melyik állítás nem igaz? a) A törésmutató a beesési szög és a törési szög sinusainak hányadosa. b) A törésmutató a hullám két közegbeli sebességének hányadosa. c) A törésmutató a hullám két közegbeli hullámhosszának hányadosa. d) A törésmutató a hullám két közegbeli frekvenciájának hányadosa. 26. Az ember mely frekvenciatartományban keletkezett hangokat hallja? a) 20 Hz 200 Hz b) 20 Hz 2000 Hz c) 20 Hz Hz d) 20 Hz Hz 27. Melyik állítás nem igaz? a) Ha a rezgés sinusfüggvény alakú, akkor tiszta zenei hangról beszélünk. b) Ha az alaphang mellett a felharmonikusok is megszólalnak, zenei hangról beszélünk. c) A húros hangszerek tiszta zenei hangot adnak. d) Ha a rezgés nem sinusfüggvény, zörejrıl beszélünk. 28. Melyik állítás igaz? A hang erıssége a) a keltett rezgés amplitúdójától függ. b) a keltett rezgés frekvenciájától függ. c) a keltett rezgés sebességétıl függ. d) a felerısített felharmonikusok összetételétıl függ. 29. Melyik állítás igaz? A hangmagasság a) a keltett rezgés amplitúdójától függ. b) a keltett rezgés frekvenciájától függ. c) a keltett rezgés sebességétıl függ. d) a felerısített felharmonikusok összetételétıl függ.
8 30. Melyik állítás igaz? A hangszín a) a keltett rezgés amplitúdójától függ. b) a keltett rezgés frekvenciájától függ. c) a keltett rezgés sebességétıl függ. d) a felerısített felharmonikusok összetételétıl függ. 31. A nagybıgı és a hegedő hangját mindig meg tudjuk különböztetni egymástól. Miért? a) Mert a nagybıgı mindig mélyebb hangokat ad, mint a hegedő. b) Mert más-más felharmonikusokat erısítenek fel. c) Mert a nagybıgı nem játszik dallamot, csak kísérı akkordokat. d) Mert a hegedő mindig hangosabb, mint a nagybıgı. 32. Zárt térben ugyanazt a hangot erısebbnek érezzük. Miért? a) Mert a falakról visszaverıdve is halljuk a hangot. b) Mert zárt térben közelebb van a hangforrás. c) Mert zárt térben gyorsabban terjed a hang. d) Mert zárt térben mindkét füllel hallunk, nyílt térben csak az egyikkel. 33. Mikor nem jelentkezik a Doppler-effektus? a) Ha az álló hangforrás felé mozog a megfigyelı. b) Ha a hangforrás mozog az álló megfigyelı felé. c) Ha a hangforrás és a megfigyelı egymás felé, azonos sebességgel mozog. d) Ha a hangforrás és megfigyelı azonos irányban, azonos sebességgel mozog. 34. Mekkora a hullám terjedési sebessége a 80 cm hosszú gitárhúron, ha a 660 Hz frekvenciájú hang szólal meg? a) 1056 m/s b) 528 m/s c) 340 m/s d) 254 m/s
9 Megoldások 1.c 2.b 3.d 4.a 5.a 6.b 7.b 8.a 9.d 10.a 11.d 12.c 13.a 14.b 15.a 16.c 17.b 18.b 19.b 20.a 21.b 22.c 23.a 24.b 25.d 26.c 27.c 28.a 29.b 30.d 31.b 32.a 33.d 34.a
11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám
Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete
Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező
Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.
Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben
Hullámok, hanghullámok
Hullámok, hanghullámok Hullámokra jellemző mennyiségek: Amplitúdó: a legnagyobb, maximális kitérés nagysága jele: A, mértékegysége: m (egyéb mértékegységek: dm, cm, mm, ) Hullámhossz: két azonos rezgési
Optika fejezet felosztása
Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:
Rezgések és hullámok
Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő
Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
A hullámok terjedése során a közegrészecskék egyensúlyi helyzetük körül rezegnek, azaz átlagos elmozdulásuk zérus.
HULLÁMOK MECHANIKAI HULLÁMOK Mechanikai hullám: ha egy rugalmas közeg egyensúlyi állapotát megbolygatva az előidézett zavar tovaterjed a közegben. A zavart a hullámforrás váltja ki. A hullámok terjedése
Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 1. (b) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 Síkhullámok végtelen kiterjedésű, szilárd izotróp közegekben (1) longitudinális hullám transzverzális
Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás
Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt
1. A hang, mint akusztikus jel
1. A hang, mint akusztikus jel Mechanikai rezgés - csak anyagi közegben terjed. A levegő molekuláinak a hangforrástól kiinduló, egyre csillapodva tovaterjedő mechanikai rezgése. Nemcsak levegőben, hanem
Zaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
Rezgőmozgás, lengőmozgás, hullámmozgás
Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus
Mechanikai hullámok (Vázlat)
Mechanikai hullámok (Vázlat) 1. A hullám ogalma, csoportosítása és jellemzői a) A mechanikai hullám ogalma b) Hullámajták c) A hullámmozgás jellemzői d) A hullámok polarizációja 2. Egydimenziós hullámok
Rezgőmozgás, lengőmozgás, hullámmozgás
Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus
Hullámtan. A hullám fogalma. A hullámok osztályozása.
Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben
Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben Akusztikai állóhullámok levegőben vagy egyéb gázban történő vizsgálatához és azok hullámhosszának meghatározására alkalmas
Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
Hangintenzitás, hangnyomás
Hangintenzitás, hangnyomás Rezgés mozgás energia A hanghullámoknak van energiája (E) [J] A detektor (fül, mikrofon, stb.) kisiny felületű. A felületegységen áthaladó teljesítmény=intenzitás (I) [W/m ]
Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak
Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó rezgőmozgása, Föld forgása, körhinta, óra
Rezgőmozgás, lengőmozgás, hullámmozgás
Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus
A hang mint mechanikai hullám
A hang mint mechanikai hullám I. Célkitűzés Hullámok alapvető jellemzőinek megismerése. A hanghullám fizikai tulajdonságai és a hangérzet közötti összefüggések bemutatása. Fourier-transzformáció alapjainak
a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása
Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30
Rezgőmozgás, lengőmozgás, hullámmozgás
Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgást általában rugalmas tárgyak képesek végezni. Ilyen tárgy pl. a rugó. Ha egy rugót valamekkora erővel húznak vagy összenyomnak, akkor megnyúlik, vagy
Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István
Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)
Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak
Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó rezgőmozgása, Föld forgása, körhinta, óra
A hullám frekvenciája egyenlő a hullámforrás frekvenciájával, azzal a kikötéssel, hogy a hullámforrás és megfigyelő nyugalomban van.
Mechanikai hullámok 1) Alapfogalmak A rugalmas közegekben a külső behatás térben tovaterjed. Ezt nevezzük mechanikai hullámnak. A hullám lehet egy-, két- vagy háromdimenziós, mint például kifeszített húr
f A hullámforrás frekvenciája c a közegbeli terjedési sebesség
MECHANIKAI HULLÁMOK Deormáió terjedése rugalmas közegben A tér egy adott helyén történt zavarkeltés eredménye a tőle r távolságra lévő pontban idő múlva jelenik meg: a zavar terjedéséhez időre van szükség:
f A hullámforrás frekvenciája c a közegbeli terjedési sebesség
MECHANIKAI HULLÁMOK Deormáió terjedése rugalmas közegben A tér egy adott helyén történt zavarkeltés eredménye a tőle r távolságra lévő pontban idő múlva jelenik meg: a zavar terjedéséhez időre van szükség:
1. Az ultrahangos diagnosztika fizikai alapjai
1. Az ultrahangos diagnosztika fizikai alapjai 1.1. Harmonikus hullámmozgás A hullám egy rendszer olyan állapotváltozása, amely időbeli és térbeli periodicitást mutat, más megfogalmazásban a hullám valamely
Hullámok visszaverődése és törése
TÓTH : Hullámok/ (kibővítet óravázlat) Hullámok visszaverődése és törése hullámterjedés vizsgálatánál eddig azt tételeztük fel, hogy a hullám homogén közegben, állandó sebességgel terjed Ha a hullám egy
OPT TIKA. Hullámoptika. Dr. Seres István
OPT TIKA Dr. Seres István : A fény elektromágneses hullám r S S = r E r H Seres István 2 http://fft.szie.hu Elektromágneses spektrum c = λf Elnevezés Hullámhossz Frekvencia Váltóáram > 3000 km < 100 Hz
Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?
Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye
Optika. sin. A beeső fénysugár, a beesési merőleges és a visszavert, illetve a megtört fénysugár egy síkban van.
Optika Mi a féy? Látható elektromágeses sugárzás. Geometriai optika (modell) Féysugár: ige vékoy párhuzamos féyyaláb Ezt a modellt haszálva az optikai jeleségek széles köréek magyarázata egyszerű geometriai
Elektromágneses hullámok - Interferencia
Bevezetés a modern fizika fejezeteibe 2. (d) Elektromágneses hullámok - Interferencia Utolsó módosítás: 2012 október 18. 1 Interferencia (1) Mi történik két elektromágneses hullám találkozásakor? Az elektromágneses
Értékelési útmutató az emelt szint írásbeli feladatsorhoz
Értékelési útmutató az emelt szint írásbeli feladatsorhoz 1. C 1 pont 2. B 1 pont 3. D 1 pont 4. B 1 pont 5. C 1 pont 6. A 1 pont 7. B 1 pont 8. D 1 pont 9. A 1 pont 10. B 1 pont 11. B 1 pont 12. B 1 pont
A fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
FIZIKA ZÁRÓVIZSGA 2015
FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni
FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika emelt szint 4 ÉRETTSÉGI VIZSGA 04. október 7. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,
Bevezetés a modern fizika fejezeteibe. Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 1. Rugalmas hullámok Utolsó módosítás: 2015. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően
P vízhullámok) interferenciáját. A két hullám hullámfüggvénye:
Hullámok találkozása, interferencia Ha a tér egy pontjában két hullám van jelen, akkor hatásuk ott valamilyen módon összegződik. A hullámok összeadódását interferenciának nevezzük. Mi az interferencia
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
Összefoglaló kérdések fizikából 2009-2010. I. Mechanika
Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;
Fizika III. Irányított tanulás munkafüzet Kísérleti távoktatási anyag Móra Ferenc Gimnázium Kiskunfélegyháza
Fizika III. Irányított tanulás munkafüzet Kísérleti távoktatási anyag Móra Ferenc Gimnázium Kiskunfélegyháza Fontos tudnivalók 3 Mi szükségeltetik a fizika tanulásához? 3 Irányított tanulás a fizika tantárgyhoz
Zaj,- rezgés és sugárzásvédelem NGB_KM015_ tanév tavasz 1. előadás. Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék
Zaj,- rezgés és sugárzásvédelem NGB_KM015_1 2017 2018. tanév tavasz 1. előadás Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék ELÉRHETŐSÉG Szoba: D 512 Telefonszám: 96/503-400/3103 E-mail:
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
Audiofrekvenciás jel továbbítása optikai úton
Audiofrekvenciás jel továbbítása optikai úton Mechanikai rezgések. Hanghullámok. Elektromágneses rezgések. Rezgésnek nevezünk minden olyan állapotváltozást, amely időben valamilyen ismétlődést mutat. A
FIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK
FIZIKA KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban meghatározott módon az alábbi kompetenciák meglétét kell bizonyítania: - ismeretei összekapcsolása a mindennapokban tapasztalt
Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november
Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció
GPGPU. Hangfeldolgozás és hangszintézis
GPGPU Hangfeldolgozás és hangszintézis Tartalom A mostani órán hangszintézis és hangfeldolgozási alapokat tekintünk át Ahhoz, hogy értelme legyen a problémák többségénél GPU-t használni, egy bizonyos (méret/számítási
2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő
1. Milyen képet látunk a karácsonyfán lévı üveggömbökben? a. Egyenes állású, kicsinyített képet. mert c. Egyenes állású, nagyított képet. domborótükör d. Fordított állású, nagyított képet. b. Fordított
egyetemi tanár, SZTE Optikai Tanszék
Hullámtan, hullámoptika Szabó Gábor egyetemi tanár, SZTE Optikai Tanszék Hullámok Transzverzális hullám Longitudinális hullám Síkhullám m matematikai alakja Tekintsünk nk egy, az x tengely mentén n haladó
Rezgőmozgás, lengőmozgás
Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Komplex természettudományi tagozat. Fizika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Komplex természettudományi tagozat Fizika 11. osztály IV. rész: Mechanikai rezgések és hullámok Készítette: Balázs Ádám Budapest, 2019. 2. Tartalomjegyzék
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS
OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.
Látás. Látás. A környezet érzékelése a látható fény segítségével. A szem a fényérzékelés speciális, páros szerve (érzékszerv).
Látás A szem felépítése és működése. Optikai leképezés a szemben, akkomodáció. Képalkotási hibák. A fotoreceptorok tulajdonságai és működése. A szem felbontóképessége. A színlátás folyamata. 2014/11/18
Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai
Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben
Anyagvizsgálati módszerek
Anyagvizsgáló és Állapotellenőrző Laboratórium Atomerőművi anyagvizsgálatok Az akusztikus emisszió vizsgálata a műszaki diagnosztikában Anyagvizsgálati módszerek Roncsolásos metallográfia, kémia, szakító,
a terjedés és a zavar irányának viszonya szerint:
TÓTH A.: Hullámok (összefoglaló) Hullámtani összefoglaló A hullám fogalma és leírása A hullám valamilyen (mehanikai, elektromágneses, termikus, stb.) zavar térbeli tovaterjedése. Terjedésének mehanizmusa
TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT. Szakirodalomból szerkesztette: Varga József
TÁVKÖZLÉSI ISMERETEK FÉNYVEZETŐS GYAKORLAT Szakirodalomból szerkesztette: Varga József 1 2. A FÉNY A külvilágról elsősorban úgy veszünk tudomást, hogy látjuk a környező tárgyakat, azok mozgását, a természet
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?
Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A
NE HABOZZ! KÍSÉRLETEZZ!
NE HABOZZ! KÍSÉRLETEZZ! FOLYADÉKOK FELSZÍNI TULAJDONSÁGAINAK VIZSGÁLATA KICSIKNEK ÉS NAGYOKNAK Országos Fizikatanári Ankét és Eszközbemutató Gödöllő 2017. Ötletbörze Kicsiknek 1. feladat: Rakj három 10
Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika
Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!
OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző.
OPTIKA-FÉNYTAN A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. A fény sebessége: vákuumban közelítőleg: c km 300000
2. Az emberi hallásról
2. Az emberi hallásról Élettani folyamat. Valamilyen vivőközegben terjedő hanghullámok hatására, az élőlényben szubjektív hangérzet jön létre. A hangérzékelés részben fizikai, részben fiziológiai folyamat.
A fény visszaverődése
I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak
A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória
Oktatási Hivatal A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó
MECHANIKAI HULLÁMOK. A tér egy adott helyén történt zavarkeltés eredménye a tőle r távolságra lévő pontban idő múlva jelenik meg: x c
MECHANIKAI HULLÁMOK Deormáió terjedése rugalmas közegben A tér egy adott helyén történt zavarkeltés eredménye a tőle r távolságra lévő pontban idő múlva jelenik meg: a zavar terjedéséhez időre van szükség:
FIZIKA MUNKAFÜZET 11. ÉVFOLYAM I. KÖTET
FIZIKA MUNKAFÜZET 11. ÉVFOLYAM I. KÖTET Készült a TÁMOP-3.1.3-11/2-2012-0008 azonosító számú "A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Vajda Péter Evangélikus Gimnáziumban"
A lézer alapjairól (az iskolában)
A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o
GYIK mechanikából. (sűrűségmérés: - tömeg+térfogatmérés (akár Arkhimédész-törvény segítségével 5)
GYIK mechanikából 1.1.1. kölcsönhatás: két test vagy mező egymásra való, kölcsönös hatása mozgásállapot: testek azon állapota, melynek során helyük megváltozik (itt fontos a mozgó test tömege is!) tömegmérések:
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed
Sugárzások mechanikai Nem ionizáló sugárzások Ionizálo sugárzások elektromágneses elektromágneses részecske Hang és ultrahang IH hallható hang UH alfa sugárzás béta sugárzás rádió hullámok infravörös fény
OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző.
OPTIKA-FÉNYTAN A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. A fény sebessége: vákuumban közelítőleg: c km 300000
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Tradicionálisan téves számítások a Michelson Morley-kísérlet éterhipotézis szerinti értelmezésében
Tradicionálisan téves számítások a Michelson Morley-kísérlet éterhipotézis szerinti Dr. Korom Gyula E-mail: korom.mem@axelero.hu Kulcsszavak: fazor-elmélet, útkülönbség, optikai útkülönbség, fáziskülönbség,
Fizika 11. osztály. ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat. I. rész: Mechanikai rezgések és hullámok
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Fizika 11. osztály I. rész: Mechanikai rezgések és hullámok Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék
Fizika összefoglaló kérdések (11. évfolyam)
I. Mechanika Fizika összefoglaló kérdések (11. évfolyam) 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;
Hullámtani összefoglaló
Hullámtani összefoglaló A hullám fogalma és leírása A hullám valamilyen (mehanikai, elektromágneses, termikus, stb.) zavar térbeli tovaterjedése. Terjedésének mehanizmusa függ a zavar jellegétől, így például
Mechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
Látható hangok. Szerzık: Bodoni Eszter Albert Karola. Irányító tanár: Szász Ágota Judit. Tartalomjegyzék
Látható hangok Szerzık: Bodoni Eszter Albert Karola Irányító tanár: Szász Ágota Judit Tartalomjegyzék 1 A hangok... 2 1.1 Hangokról általánosan... 2 1.2 Hangforrások... 2 1.3 A hangok jellemzıi... 2 2
d) Az a pont, ahova a homorú tükör az optikai tengely adott pontjából kiinduló sugarakat összegyőjti.
Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsıdleges fényforrás. d) A szentjánosbogár megfelelı potrohszelvénye
1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István
Ma sok mindenre fény derül! / alapjai/ Dr. Seres István Legkisebb idő Fermat elve A fény a legrövidebb idejű pályán mozog. I. következmény: A fény a homogén közegben egyenes vonalban terjed t s c minimális,
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
ELMÉLET REZGÉSEK, HULLÁMOK. Készítette: Porkoláb Tamás
REZGÉSEK, HULLÁMOK Kézítette: Porkoláb Taá ELMÉLET 1. Mi a perióduidı? 2. Mi a frekvencia? 3. Rajzold fel, hogy a haroniku rezgıozgát végzı tet pályáján hol iniáli illetve axiáli a kitérée, a ebeége é
Az elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses
Rezgések, hullámok Fizika 11. Szaktanári segédlet
Rezgések, hullámok Fizika 11. Szaktanári segédlet Készítette: Rapavi Róbert Lektorálta: Gavlikné Kis Anita Kiskunhalas, 2014. december 31. 2 Tartalomjegyzék 1. óra 3. oldal Rugó és matematikai inga vizsgálata
Hallás időállandói. Következmények: 20Hz alatti hang nem hallható 12Hz kattanás felismerhető
Hallás időállandói Fizikai terjedési idők Dobhártya: végtelenül gyors Hallócsontok: 0.08ms késés Csiga: 20Hz: 3ms késés 100Hz: 1.5 ms késés 1000Hz: 0.3ms késés >3000Hz: késés nélkül Ideg-impulzus időtartam:
Távolságmérés hullámokkal. Sarkadi Tamás
Távolságmérés hullámokkal Sarkadi Tamás Mechanikai hullám Mechanikai rezgés tovaterjedése: rugalmas közegben terjed Hang: Legtöbbször longitudinális (sűrűsődés-ritkulás) Sebesség, frekvencia=>hullámhossz
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
24. Fénytörés. Alapfeladatok
24. Fénytörés Snellius - Descartes-törvény 1. Alapfeladatok Üvegbe érkezo 760 nm hullámhosszú fénysugár beesési szöge 60 o, törési szöge 30 o. Mekkora a hullámhossza az üvegben? 2. Valamely fény hullámhossza
Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek
Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati
- abszolút törésmutató - relatív törésmutató (más közegre vonatkoztatott törésmutató)
OPTIKAI MÉRÉSEK A TÖRÉSMUTATÓ Törésmutató fenomenologikus definíció geometriai optika eszköztára (pl. fénysugár) sini c0 n 1 = = = ( n1,0 ) c sin r c 0, c 1 = fény terjedési sebessége vákuumban, illetve
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. február 23. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2009. március 2. A mérést végezte: Zsigmond Anna Márton Krisztina