Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak
|
|
- Márton Hegedűs
- 5 évvel ezelőtt
- Látták:
Átírás
1 Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó rezgőmozgása, Föld forgása, körhinta, óra mutatója, stb... Körmozgás Egy anyagi pontnak tekintett tárgy körpályán való mozgása a körmozgás. Egyenletes a körmozgás, ha a kört a tárgy, test mindig ugyanannyi idő alatt teszi meg, sebességének nagysága állandó.
2 Egyenletes körmozgásra jellemző adatok és összefüggések Periódusidő: Az az időtartam, amennyi idő alatt a tárgy, test 1 teljes kört megtesz. Jele: T, mértékegysége: s (secundum) Frekvencia: 1 s alatt megtett körök száma. Jele: f mért.e.: 1/s Kerületi sebesség: A tárgy sebessége (a körpálya kerületén), amely a kör érintőjének irányába mutat, és iránya folyamatosan változik. Jele: v mértékegysége: m/s Szögsebesség: 1 s alatti elfordulás szöge radiánban. Jele: ω (omega, görög betű) mértékegysége: 1/s Centripetális gyorsulás: a sebesség iránya változik, ezért van gyorsulása a körmozgásnak, ami a kör középpontja felé mutat. Jele: acp, mértékegysége: m/s2 Összefüggések: ω=2 π f acp = v ω = v2 / r
3 Centripetális erő Ahhoz, hogy egy test, tárgy körpályán mozogjon olyan erőnek kell rá hatnia, amelyik a kör középpontjába mutat. Ez az erő a körmozgás centripetális gyorsulásával egyenesen arányos. Ez az erő: centripetális erő jele: Fcp Newton II. törvénye értelmében: (v a körpályán mozgó tárgy sebessége, r a kör sugara) Ha egy bolygó körül kering egy műhold vagy űrhajó vagy hold, akkor a körpályához szükséges centripetális erőt a gravitációs erő biztosítja. Ez a bolygó felszínén, vagy a felszínéhez közel: Fg = m g (g a bolygón a gravitációs gyorsulás, a Földön 9,81 m/s2, kerekítve 10 m/s2) Tehát ez esetben: Fg = Fcp és g = acp (Más bolygókon más a gravitációs gyorsulás, a gravitációs erő, és így a bolygó körül körpályán mozgó műhold sebessége is más.) Jármű kanyarodásánál a centripetális erőt a súrlódási erő biztosítja. Ha ez kicsi (jégen), akkor nem tud kanyarodni.
4 Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást végez. Egy teljes periódust teljes rezgésnek nevezünk. Példák rezgőmozgásra: dugattyú a motorban, ugródeszka vége, lengéscsillapító, varrógép-tű, jojó, földrengés, trambulin, bungee jumping gumikötele, dobhártya, egyes hangszerek rezgő részei (pl. a gitárhúrnak vagy cintányérnak vagy dob tetejének minden pontja)
5 A rezgőmozgás jellemző adatai: - Az egyensúlyi helyzettől mért pillanatnyi (előjeles) távolságot kitérésnek nevezzük. Jele: x vagy y, mértékegysége: méter (m) - A legnagyobb kitérést amplitúdónak nevezzük. Jele: A, mértékegysége: méter (m) - Egy teljes rezgés idejét rezgésidőnek (periódusidőnek) nevezzük. Jele: T, mértékegysége: secundum (s) - Egy másodperc alatt megtett rezgések számát frekvenciának vagy rezgésszámnak nevezzük. Jele: f, mértékegysége: 1/s 1 f = -----T - körfrekvencia: ω=2 π f A harmonikus (egyenletes, nem csökkenő) rezgőmozgás kitérés idő függvénye szinuszgörbe.
6 - A rezgőmozgás sebessége a szélső helyzetekben 0, az egyensúlyi helyzeten való áthaladáskor a maximális, vmax. - A harmonikus (egyenletes és nem csökkenő) rezgőmozgás az egyenletes körmozgás vetülete. Ezért a képletei, jellemzői hasonlóak, vagy azonosak: körmozgásban: rezgőmozgásban: periódusidő (T) rezgésidő (T) fordulatszám (f) rezgésszám (f) sugár (r) amplitúdó (A) szögsebesség körfrekvencia (ω) sebesség (v) max. sebesség (vmax.) Összefüggések: ω=2 π f vmax.= A ω f=1/t
7 A rezgőmozgás kitérés idő függvénye: x = A sin(ω t) Maximális kitérés: A (a rezgés szélső helyzetében) A rezgőmozgás sebesség idő függvénye: v = A ω cos(ω t) Maximális sebesség: vmax=a ω A rezgés sebessége a szélső helyzetekben 0, az egyensúlyi helyzeten való áthaladáskor (középen) a maximális. A rezgőmozgás gyorsulás idő függvénye: a = A ω2 sin(ω t) Maximális gyorsulás: amax = A ω2 A harmonikus rezgőmozgást létrehozó erő nagysága egyenesen arányos a kitéréssel és iránya ellentétes azzal. Ez a harmonikus rezgőmozgás dinamikai feltétele. Képletben: F = m a = - m ω2 x
8 A rezgőmozgás mechanikai energiája Mozgási energia Mivel van sebessége, van mozgási energiája, ami ott a legnagyobb a mozgása során, ahol a sebessége, vagyis középen, és a szélső helyzetekben 0. Rugalmas energia Ha munkavégzéssel megfeszítünk egy rugót, energiája lesz, elengedve munkát képes végezni, ez a rugalmas energia. Ott a legnagyobb, ahol a rugó a legjobban kifeszül, vagy összenyomódik, tehát a szélső helyzetekben, az egyensúlyi helyzeten való áthaladáskor pedig 0. Helyzeti energia Ha a rezgő rendszer, rugó függőlegesen mozog, akkor változik a rendszer helyzeti energiája (ami a magasságtól függ (h)). A rezgőmozgást végző rendszer mechanikai energiája; a mozgási energia, a rugalmas energia és a helyzeti energia összege állandó. (Az energia megmaradás törvénye érvényes a rezgőmozgásra is.) Eösszes = Emozg. + Erug. + Ehely. = állandó
9 Saját rezgés, szabad rezgés Ha egy rezgésre képes rendszert egy lökésszerű erőhatással hozunk mozgásba és magára hagyjuk, akkor a rendszerre jellemző rezgésidővel szabad rezgést, más néven saját rezgést végez. Rezgésideje és frekvenciája nem függ a kitérésétől csak a rugó erősségétől, rugalmasságától (rugóállandótól, D) és a rezgő test tömegétől (m). Periódusideje: Képletben: T = 2 π m D Inga Az inga, ha kilendítjük szintén szabad lengést végez. Lengésideje nem függ a kitérésétől, és a lengő test tömegétől sem. Csak a kötél hosszától (l) és a gravitációs erőtől, gravitációs gyorsulástól (g) függ. Periódusideje: Képletben: T = 2 π l g
10 Ha a kötél hosszabb, a lengés lassabb, a lengésidő hosszabb lesz. Ha a lengő testre ható gravitációs erő, és gyorsulás kisebb (pl. a Holdon), akkor a lengés ideje hosszabb lesz. Mivel a lengőmozgás lengésideje a Föld gravitációs terében csak az inga hosszától függ, időmérésre lehet használni. (Ingaóra) Csillapított (csillapodó) rezgés, lengés A rezgésekre, lengésekre ható fékező erők (súrlódás, légellenállás) miatt a rezgő, lengő rendszerek csillapodó rezgést, lengést végeznek. Ekkor a rezgésidejük, lengésidejük nem változik csak a kitérésük. Csatolt rezgés Az olyan jelenséget, amelynél két rezgő (vagy lengő) rendszer kölcsönösen befolyásolja egymás rezgését, csatolt rezgésnek nevezzük. Csatolt rezgésnél a két rezgő rendszer amplitúdója és így energiája is periodikusan úgy változik, mintha kicserélődne.
11 Kényszerrezgés és rezonancia Amikor a rezgő rendszer egy külső gerjesztő hatásnak megfelelően kénytelen rezegni, kényszerrezgést végez. Ekkor nem a saját rezgésének frekvenciájával rezeg. Ha a kényszerrezgés frekvenciája közel azonos a saját szabad rezgésének frekvenciájával (sajátfrekvencia), akkor rezgésének kitérése, amplitúdója nagyon megnő. Ez a rezonancia jelensége. Ilyenkor az amplitúdó olyan nagymértékben megnőhet, hogy a rezgő rendszer tönkremegy. Ez a jelenség a rezonancia-katasztrófa. Példák rezgőmozgásra, rugó felhasználására: - Járművek kerekeinek ütődéseit rugók csillapítják. (lengéscsillapító) - Hangszerek: gitárhúr, dob felülete, cintányér,...stb rezgőmozgást végeznek, a kiadott hang magassága függ a rezgés frekvenciájától. - felhúzós rugós órák Példa ingamozgásra: - Ingaórák, hinta, boxzsák, lengőteke, falbontó golyó Példák rezonanciára: - Széllökések hatására berezonálhatnak az ablaküvegek. - Ha az autóban kilazult egy csavar, bizonyos motorfordulatszámnál (frekvenciánál) berezonál a motor, vagy az autó egy alkatrésze. - Hidakon nem szabad katonáknak egyszerre lépve menni.
12 Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben nem terjed). Két fajta terjedési módot különböztetünk meg: 1. Az anyag részecskéinek rezgése merőleges a hullám terjedésének irányára (transzverzális hullám). Hullámhegyek és hullámvölgyek alakulnak ki. 2. Az anyag részecskéinek rezgése párhuzamos a hullám terjedési irányával (longitudinális hullám). Sűrűsödések és ritkulások alakulnak ki az anyagban.
13 A haladó hullámra jellemző mennyiségek: Amplitúdó: a legnagyobb, maximális kitérés nagysága jele: A, SI mértékegysége: m (egyéb mértékegységek: dm, cm, mm, ) Hullámhossz: két azonos rezgési fázisban levő pont távolsága jele: (lambda) SI mértékegysége: m Periódusidő: az az időtartam, amely alatt az anyagban terjedő hullám egy hullámhossznyi utat tesz meg. jele: T SI mértékegysége: s (sec) Frekvencia: Az anyag egy pontján 1 s alatt áthaladt hullámok száma, amely egyenlő az anyag részecskéinek az 1 s alatti rezgéseinek számával jele: f SI mértékegysége: 1/s (Hz, Hertz) Terjedési sebesség: a hullám által 1 s alatt megtett út jele: c vagy v SI mértékegysége: m/s A hullám terjedési sebessége különböző anyagokban különbözik.
14 Összefüggések a mennyiségek között A víz felületén kialakuló hullám egy speciális hullám felületi hullám, a víz felületén merőlegesen kialakuló hullámhegyek és hullámvölgyek követik egymást, de a víz belsejében nem.
15 A hullámok fajtái alakjuk szerint: Körhullám (térben gömbhullám): a hullámhegyek és a hullámvölgyek körök (térben gömbök) Egyenes hullám (térben síkhullám): a hullámhegyek és a hullámvölgyek egyenesek (térben síkok)
16 Hullámok visszaverődése, törése Ha a hullám két anyag határához ér, akkor ott egy része visszaverődik, egy másik része behatolhat az új anyagba. Visszaverődéskor a hullám sebessége, hullámhossza nem változik, a beesési szög megegyezik a visszaverődési szöggel. Ha a hullám behatol a másik anyagba, pl. hanghullám levegőből vízbe, akkor a két anyag felületén megtörik. Ekkor megváltozik a hullám iránya, sebessége és hullámhossza.
17 Hullámok találkozása, interferenciája, állóhullám, elhajlás Hullámok találkozásakor a kitérések összeadódnak, így a hullámhegyek erősítik egymást, a hullámhegyek hullámvölgyekkel találkozva gyengítik, kiolthatják egymást. Ez az interferencia jelensége. Szemben haladó azonos hullámhosszú hullámok találkozásakor, interferenciájakor állóhullámok jöhetnek létre, ahol kialakulnak olyan pontok, amelyek nem mozognak: csomópontok. Keskeny résen áthaladó hullám nemcsak a rés mögött, hanem a rés melletti fal mögött is kialakulva halad tovább. Ez az elhajlás jelensége.
18 Hanghullámok A hanghullám forrása is egy rezgő tárgy. Bizonyos frekvenciájú mechanikai hullámokat az ember hangérzetként észlel. Ez a frekvenciasáv: kb. 20 Hz Hz (egyénenként változó) Az alacsony frekvenciájú hangokat mélynek, a nagy frekvenciájú hangokat magas hangnak érzékeljük. Idős korban a magas hangok észlelési sávja lecsökken (16000-ről re.) 20 Hz alatti nem hallható hang: infrahang, Hz feletti nem hallható hang: ultrahang (Az ultrahangot néhány állat hallja.) Hang kiadására szolgáló elektronikus eszközök szokásos sávszélessége: 20 Hz Hz A hanghullám is visszaverődik (visszhang), megtörik (vízben gyorsabban halad), elhajlik (ajtó melletti fal mögött is hallható) és interferál (erősíthetik, gyengíthetik egymást). A hanghullám jellemzői: Hangsebesség: A levegőben 340 m/s, vízben 1500, vasban 5000 m/s Hangerősség: a hangrezgés amplitúdójától, energiájától függ Hangmagasság: a hanghullám frekvenciája adja meg Pl. a normál A hang frekvenciája 440 Hz. Oktáv: kétszeres vagy feles frekvencia (pl. alsó A hang 220 Hz) Hangszín: Egy hang megszólalásakor több felhang is megszólalhat, így több tiszta hang összessége adja a hang hangszínét.
19 Doppler jelenség Ha a hangforrás mozog a megfigyelőhöz képest, akkor a közeledő hangforrás előtt a hullámok hossza kisebb, mint mögötte. Így pl. közeledő szirénázó jármű hangját magasabbnak halljuk, mint amikor távolodik. A hatás megfigyelhető vízhullámnál is, pl. egy vízben mozgó állatnál.
20 Hangszerek, hangsáv A hallható hang sávszélessége: kb. 20 Hz Hz A 20 Hz-nél kisebb frekvenciájú hangok az infrahangok, a Hz-nél magasabb frekvenciájú hangok az ultrahangok. Néhány állat érzékeli az ultrahangot is. Az ultrahangot használják a gyógyászatban (a belső szervekről való visszaverődés alapján fényképezhető a belső szervezet), és használják más távolságmérésekre is (pl. tenger mélység mérés). A hangszerekben keltett rezgések (hangforrások) állóhullámokat alakítanak ki és így keletkeznek a levegőben továbbhaladó hanghullámok. Pl. hangforrás: gitár, zongora, hárfa, stb. rezgő húrjai, fúvós hangszerek belsejében, a levegőben kialakuló állóhullámok, dob tetejének rezgése, stb. A hangforrások alá, mögé helyezett hangdobozok felerősítik a hangforrás hangját. Pl. Hangfal, dob, zongora, hegedű,...
Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.
Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben
RészletesebbenPeriódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak
Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó rezgőmozgása, Föld forgása, körhinta, óra
RészletesebbenRezgőmozgás, lengőmozgás, hullámmozgás
Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus
RészletesebbenRezgőmozgás, lengőmozgás
Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást
RészletesebbenRezgőmozgás, lengőmozgás, hullámmozgás
Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus
RészletesebbenRezgőmozgás, lengőmozgás, hullámmozgás
Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus
RészletesebbenRezgőmozgás, lengőmozgás, hullámmozgás
Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgást általában rugalmas tárgyak képesek végezni. Ilyen tárgy pl. a rugó. Ha egy rugót valamekkora erővel húznak vagy összenyomnak, akkor megnyúlik, vagy
RészletesebbenHullámok, hanghullámok
Hullámok, hanghullámok Hullámokra jellemző mennyiségek: Amplitúdó: a legnagyobb, maximális kitérés nagysága jele: A, mértékegysége: m (egyéb mértékegységek: dm, cm, mm, ) Hullámhossz: két azonos rezgési
RészletesebbenRezgések és hullámok
Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő
RészletesebbenRezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
RészletesebbenHullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete
Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező
Részletesebben11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám
RészletesebbenMechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
RészletesebbenTömegvonzás, bolygómozgás
Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test
RészletesebbenKéplet levezetése :F=m a = m Δv/Δt = ΔI/Δt
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
RészletesebbenRezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?
Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye
RészletesebbenHullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám
RészletesebbenCsillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás
Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt
RészletesebbenRezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
RészletesebbenPeriódikus mozgás, körmozgás, bolygók mozgása, Newton törvények
Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periódikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó
RészletesebbenErők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő:
Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót erőmérőnek
Részletesebben1. A hang, mint akusztikus jel
1. A hang, mint akusztikus jel Mechanikai rezgés - csak anyagi közegben terjed. A levegő molekuláinak a hangforrástól kiinduló, egyre csillapodva tovaterjedő mechanikai rezgése. Nemcsak levegőben, hanem
RészletesebbenKÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
RészletesebbenMit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
RészletesebbenFIZIKA I. RÉSZLETES VIZSGAKÖVETELMÉNYEK
FIZIKA KOMPETENCIÁK A vizsgázónak a követelményrendszerben és a vizsgaleírásban meghatározott módon az alábbi kompetenciák meglétét kell bizonyítania: - ismeretei összekapcsolása a mindennapokban tapasztalt
RészletesebbenZaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
Részletesebbena) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása
Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30
RészletesebbenGépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
RészletesebbenMechanikai hullámok (Vázlat)
Mechanikai hullámok (Vázlat) 1. A hullám ogalma, csoportosítása és jellemzői a) A mechanikai hullám ogalma b) Hullámajták c) A hullámmozgás jellemzői d) A hullámok polarizációja 2. Egydimenziós hullámok
RészletesebbenSzent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István
Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)
RészletesebbenMechanika. Kinematika
Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat
RészletesebbenMunka, energia, teljesítmény
Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és
RészletesebbenMechanikai rezgések = 1 (1)
1. Jellemző fizikai mennyiségek Mechanikai rezgések Mivel a harmonikus rezgőmozgást végző test leírható egy egyenletes körmozgást végző test vetületével, a rezgőmozgást jellemző mennyiségek megegyeznek
RészletesebbenAz Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Részletesebben11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?
Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A
RészletesebbenA hullámok terjedése során a közegrészecskék egyensúlyi helyzetük körül rezegnek, azaz átlagos elmozdulásuk zérus.
HULLÁMOK MECHANIKAI HULLÁMOK Mechanikai hullám: ha egy rugalmas közeg egyensúlyi állapotát megbolygatva az előidézett zavar tovaterjed a közegben. A zavart a hullámforrás váltja ki. A hullámok terjedése
RészletesebbenErők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő:
Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót
RészletesebbenA mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
RészletesebbenHely, idő, haladó mozgások (sebesség, gyorsulás)
Hely, idő, haladó mozgások (sebesség, gyorsulás) Térben és időben élünk. A tér és idő végtelen, nincs kezdete és vége. Minden tárgy, esemény, vagy jelenség helyét és idejét a térben és időben valamihez
Részletesebben2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések
. REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós
RészletesebbenÖsszefoglaló kérdések fizikából 2009-2010. I. Mechanika
Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;
RészletesebbenMunka, energia, teljesítmény
Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és
RészletesebbenA hang mint mechanikai hullám
A hang mint mechanikai hullám I. Célkitűzés Hullámok alapvető jellemzőinek megismerése. A hanghullám fizikai tulajdonságai és a hangérzet közötti összefüggések bemutatása. Fourier-transzformáció alapjainak
RészletesebbenELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Komplex természettudományi tagozat. Fizika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Komplex természettudományi tagozat Fizika 11. osztály IV. rész: Mechanikai rezgések és hullámok Készítette: Balázs Ádám Budapest, 2019. 2. Tartalomjegyzék
RészletesebbenFIZIKA ZÁRÓVIZSGA 2015
FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni
RészletesebbenMechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
RészletesebbenPálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
RészletesebbenFizika összefoglaló kérdések (11. évfolyam)
I. Mechanika Fizika összefoglaló kérdések (11. évfolyam) 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;
RészletesebbenHaladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
RészletesebbenGYIK mechanikából. (sűrűségmérés: - tömeg+térfogatmérés (akár Arkhimédész-törvény segítségével 5)
GYIK mechanikából 1.1.1. kölcsönhatás: két test vagy mező egymásra való, kölcsönös hatása mozgásállapot: testek azon állapota, melynek során helyük megváltozik (itt fontos a mozgó test tömege is!) tömegmérések:
RészletesebbenA hullám frekvenciája egyenlő a hullámforrás frekvenciájával, azzal a kikötéssel, hogy a hullámforrás és megfigyelő nyugalomban van.
Mechanikai hullámok 1) Alapfogalmak A rugalmas közegekben a külső behatás térben tovaterjed. Ezt nevezzük mechanikai hullámnak. A hullám lehet egy-, két- vagy háromdimenziós, mint például kifeszített húr
RészletesebbenHangintenzitás, hangnyomás
Hangintenzitás, hangnyomás Rezgés mozgás energia A hanghullámoknak van energiája (E) [J] A detektor (fül, mikrofon, stb.) kisiny felületű. A felületegységen áthaladó teljesítmény=intenzitás (I) [W/m ]
RészletesebbenPálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Részletesebbenrnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika
Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó
RészletesebbenBevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 1. (b) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 Síkhullámok végtelen kiterjedésű, szilárd izotróp közegekben (1) longitudinális hullám transzverzális
RészletesebbenMechanika I-II. Példatár
Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását
RészletesebbenPálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
RészletesebbenOptika fejezet felosztása
Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:
RészletesebbenOsztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ
Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?
RészletesebbenPÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
RészletesebbenMunka, energia Munkatétel, a mechanikai energia megmaradása
Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő
RészletesebbenMéréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
RészletesebbenTartalom. Fizika 1,
Fizika 1, 2011-09-25 Tartalom Fizikai mennyiségek... 3 Skalármennyiségek... 3 Mérőszám, mértékegység... 3 mértékegység... 3 mérőszám... 4 hiba:... 4 Mértékegység rendszerek... 4 Történelmi mértékegység
RészletesebbenÉrtékelési útmutató az emelt szint írásbeli feladatsorhoz
Értékelési útmutató az emelt szint írásbeli feladatsorhoz 1. C 1 pont 2. B 1 pont 3. D 1 pont 4. B 1 pont 5. C 1 pont 6. A 1 pont 7. B 1 pont 8. D 1 pont 9. A 1 pont 10. B 1 pont 11. B 1 pont 12. B 1 pont
RészletesebbenW = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
Részletesebben1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
RészletesebbenGyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
RészletesebbenFizika 11. osztály. ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat. I. rész: Mechanikai rezgések és hullámok
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Fizika 11. osztály I. rész: Mechanikai rezgések és hullámok Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék
RészletesebbenFizika alapok. Az előadás témája
Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális
RészletesebbenNewton törvények és a gravitációs kölcsönhatás (Vázlat)
Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások
RészletesebbenFizika III. Irányított tanulás munkafüzet Kísérleti távoktatási anyag Móra Ferenc Gimnázium Kiskunfélegyháza
Fizika III. Irányított tanulás munkafüzet Kísérleti távoktatási anyag Móra Ferenc Gimnázium Kiskunfélegyháza Fontos tudnivalók 3 Mi szükségeltetik a fizika tanulásához? 3 Irányított tanulás a fizika tantárgyhoz
RészletesebbenHullámtan. A hullám fogalma. A hullámok osztályozása.
Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen
RészletesebbenFizika alapok vegyészeknek Mechanika II.: periodikus mozgások november 10.
Fizika alapok vegyészeknek Mechanika II.: periodikus mozgások Surján Péter 2018. november 10. 2 Tartalomjegyzék 1. Körmozgás 5 1.1. Az egyenletes körmozgás leírása.................. 5 1.2. A centripetális
RészletesebbenZaj,- rezgés és sugárzásvédelem NGB_KM015_ tanév tavasz 1. előadás. Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék
Zaj,- rezgés és sugárzásvédelem NGB_KM015_1 2017 2018. tanév tavasz 1. előadás Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék ELÉRHETŐSÉG Szoba: D 512 Telefonszám: 96/503-400/3103 E-mail:
RészletesebbenDiagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2
Rezgéstani alapok Diagnosztika 03 --- 1 A szinusz függvény π 3,14 3π 4,71 π 1,57 π 6,8 periódus : π 6,8 A szinusz függvény periódusának változása Diagnosztika 03 --- π sin t sin t π π sin 3t sin t π 3
RészletesebbenHely, idő, haladó mozgások (sebesség, gyorsulás)
Hely, idő, haladó mozgások (sebesség, gyorsulás) Térben és időben élünk. A tér és idő végtelen, nincs kezdete és vége. Minden tárgy, esemény, vagy jelenség helyét és idejét a térben és időben valamihez
RészletesebbenNewton törvények, lendület, sűrűség
Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja
Részletesebben1. Az ultrahangos diagnosztika fizikai alapjai
1. Az ultrahangos diagnosztika fizikai alapjai 1.1. Harmonikus hullámmozgás A hullám egy rendszer olyan állapotváltozása, amely időbeli és térbeli periodicitást mutat, más megfogalmazásban a hullám valamely
RészletesebbenFIZIKA MUNKAFÜZET 11. ÉVFOLYAM I. KÖTET
FIZIKA MUNKAFÜZET 11. ÉVFOLYAM I. KÖTET Készült a TÁMOP-3.1.3-11/2-2012-0008 azonosító számú "A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Vajda Péter Evangélikus Gimnáziumban"
RészletesebbenTömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
RészletesebbenOsztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
RészletesebbenRezgőmozgások. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.
Rezgőmozgások Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. , Egyirányú 2 / 66 Rezgőmozgásnak nevezünk egy mozgást, ha van a térnek egy olyan pontja, amihez a mozgást végző test többször
RészletesebbenFizika tantárgy 12. évfolyam
KISKUNHALASI REFORMÁTUS KOLLÉGIUM SZILÁDY ÁRON GIMNÁZIUMA FELNŐTTOKTATÁSI TAGOZAT Fizika tantárgy 12. évfolyam 1.1 Fontos tudnivalók A tankönyv anyagát önálló tanulással kell feldolgozni, melyhez segítséget
RészletesebbenMunka, energia, teljesítmény
Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és
RészletesebbenGépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika ZH NÉV:.. 2018. október 18. Neptun kód:... g=10 m/s 2 Előadó: Márkus/Varga Az eredményeket a bekeretezett részbe be kell írni! 1. Egy m=3
RészletesebbenA nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p
Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,
RészletesebbenHarmonikus rezgőmozgás
Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei
Részletesebben1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
Részletesebben2. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések
2. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglalkoztunk velük.
RészletesebbenNewton törvények, erők
Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső
Részletesebben1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora
RészletesebbenA test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.
Mozgások dinamikai leírása A dinamika azzal foglalkozik, hogy mi a testek mozgásának oka, mitől mozognak úgy, ahogy mozognak? Ennek a kérdésnek a megválaszolása Isaac NEWTON (1642 1727) nevéhez fűződik.
RészletesebbenKomplex természettudomány 3.
Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott
Részletesebben1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa
1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)
RészletesebbenDinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.
Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test
RészletesebbenDefiníció (hullám, hullámmozgás):
Hullámmozgás Példák: Követ dobva a vízbe a víz felszíne hullámzani kezd. Hajó úszik a vízen, akkor hullámokat kelt. Hullámokat egy kifeszített kötélen is kelthetünk. Ha a kötés egyik végét egy falhoz kötjük,
RészletesebbenBiofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
RészletesebbenMECHANIKA. Mechanika összefoglaló BalaTom 1
MECHANIKA 1. Egyenes vonalú mozgások 1.1. Fizikai mennyiségek, mérés, mértékegységek 1.2. Helymeghatározás 1.3. Egyenes vonalú mozgás 1.4. Átlagsebesség, sebesség-idő grafikon, megtett út kiszámítása 1.5.
RészletesebbenNehézségi gyorsulás mérése megfordítható ingával
Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja
RészletesebbenHangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Részletesebben