FI rendszerek periodikus állandósult állapota (JR1 ismétlés)
|
|
- Alíz Borbély
- 6 évvel ezelőtt
- Látták:
Átírás
1 FI rendszerek periodikus állandósult állapota (JR ismétlés) Dr. Horváth Péter, BME HV 6. szeptember.. feladat Az ábrán látható ún. Maxwell-Wienhídkapcsolás segítségével egy veszteséges tekercs L x induktivitása és R x soros veszteségi ellenállása mérhet meg. A hidat tápláló feszültségforrás feszültségének id függvénye = U cos(ωt). A híd kiegyenlítését, vagyis az árammér n folyó áram nullázását az R 3 változtatható ellenállás és a C 3 változtatható kondenzátor beállításával végezhetjük el. Adjuk meg az L x és R x meghatározására szolgáló formulákat a híd kiegyenlített állapotában! Használható-e a híd táplálására tetsz leges periodikus feszültség? R x L x R V R R 3 R s C 3 Φ Z x R V R Z 3 Φ R s U s Φ Z x = R x + jωl x Z 3 = R 3 + jωc 3 = + jωr 3C 3 R 3
2 A voltmér kapcsain a csomóponti potenciálok komplex csúcsértéke feszültségosztással Φ = Φ R Z x + R ill. Kiegyenlített állapotban Φ = Φ Z 3 R + Z 3. Φ = Φ. (Z x + R )Z 3 = (R + Z 3 )R Z x Z 3 = R R (Emlékezzünk, hogy a rezisztív Wheatstone-féle hídnál hasonló feltétel adódott a kiegyenlítésre.) Kiegyenlített esetben a Z x induktív impedanciáját éppen kompenzálja a Z 3 kapacitív impedanciája abban az értelemben, hogy a két impedancia szorzata tisztán rezisztív érték. Mivel Z x = R x + jωl x, a valósrészek összevetésével a képzetes részek összevetése alapján pedig Z x = R R Z 3 = R R R 3 ( + jωr 3 C 3 ) = R R R 3 + jωr R C 3. R x = R R R 3, L x = R R C 3 formában kapjuk a mérend értékeket. A kiegyenlítés feltétele független a frekvenciától, ezért a periodikus jel minden harmonikusára teljesül, vagyis periodikus feszültséggel táplálva a hidat is igazak a fenti formulák. Figyeljük meg, hogy az R x -re kapott összefüggés megegyezik a JR-ben látott rezisztív Wheatstone-hídra kapott összefüggéssel, mert egyenfeszültségen a tekercs rövidzár, a kondenzátor szakadás (jelenlétük gyelmen kívül hagyható). Feltéve, hogy Lx és R x is frekvenciafüggetlenek. A gyakorlatban ez ritkán teljesül.
3 . feladat Határozzuk meg az alábbi ábrán látható négyszögjel Fourier-sorát! A t Emlékszünk, hogy páros függvények Fourier-sorában csak koszinuszos tagok, páratlan függvények Fouriersorában csak szinuszos tagok vannak (vagy a komplex alakban az együtthatók tisztán valósak, illetve tisztán képzetesek). Hasznos lehet további szimmetriatulajdonságok kihasználása. Egy nagyon hasznos szimmetriatulajdonság az alábbi. Ha például az x(t) periodikus hullámforma egyik félperiódusa éppen a másik félperiódus mínusz egyszerese, vagyis formálisan igaz, hogy ( x t ) = x(t), akkor az alábbi egyszer sítések tehet k a Fourier-sor számításánál: X =, () / Xk A x(t) cos(kω = t) dt, ha k páratlan, ha k páros / Xk B x(t) sin(kω = t) dt, ha k páratlan, ha k páros. Vagyis a Fourier-sorban csak páratlan index harmonikusok lehetnek, az egyenösszetev pedig zérus. Ennek belátását lásd a Függelékben. A feladatbeli jel páratlan, és rendelkezik a fenti szimmetriával. Mivel páratlan, ezért csak az Xk B -ket kell meghatároznunk: () (3) X B k = / x(t) sin(kω t) dt = / A sin(kω t) dt = A [ cos(kω t) kω ] / = = A [ cos(k π t) k π Ezzel a Fourier-sor matematikai valós alakja ]/ = A A [ ( )] = πk πk, ha k páratlan. Az A = V mellett a numerikus értékek x(t) = A π sin ω t + A 3π sin 3ω t + A 5π sin 5ω t x(t) =,73 sin ω t +, sin 3ω t +,55 sin 5ω t +,8 sin 7ω t.... A jel ún. harmadfajú szimmetriával rendelkezik
4 3. feladat Az alábbi hálózat gerjesztése az el z feladatban is látott szimmetrikus négyszögjel. Határozzuk meg a válaszjel id függvényét négy nem nulla harmonikust tartalmazó Fourier-polinom közelítéssel, ha R =,7 kω és C = nf, ha a) = 5 ms ill. b) ha = ms! Határozzuk meg a forrásfeszültség és u eektív értékét is! R C u A t I. Az átviteli karakterisztika (JR-b l) H(jω) = U (jω) U s (jω) = jωc R + jωc = + jω/ω, az ω = RC törésponti frekvencia bevezetésével. A továbbiakban használjuk a [V, ma, kω, µf, ms, krad/s] koherens egységrendszert! Ezzel ω =,7, 3,7 krad/s. II. A forrásfeszültség Fourier-sorát az el z feladatban kiszámítottuk. A forrásfeszültség id függvénye páratlan, egyszer középértéke pedig nulla. A Fourier-sorban csak szinuszos tagok vannak, és csak p páratlan értékeire: Uk B = A πk, k páratlan. A Fourier-sor matematikai valós alakja: = A π sin ω t + A 3π sin 3ω t + A 5π sin 5ω t +... A feladat megoldásához a mérnöki valós alakot szokás használni: = A π cos(ω t π/) + A 3π cos(3ω t π/) + A 5π cos(5ω t π/) +... A t Látható, hogy ilyen kevés tag mellett a közelítés hibája jelent s. A jel szakadási helyein a Gibbs-oszcilláció is fellép. III. A válaszjel Fourier-polinomjának számításához az alábbi táblázatot készítjük (az A = V értéket behelyettesítve). Közelítsük a gerjesztést négy nem nulla harmonikust tartalmazó Fourier-polinomjával! Az a) esetben = 5 ms, az alapkörfrekvencia ω = π =,57 krad/s. A szuperpozíció elve alapján az egyes harmonikusokra külön-külön számítjuk szinuszos állandósult állapotban a gerjeszt jel fazora és az átviteli tényez alapján a válaszjel fazorát: Y p = H p U p, ahol a H p átviteli tényez H p = H(jω) ω=pω H(jpω ).
5 p pω U p H p H(jpω ) Y p = U p H p,57 π e jπ/ =,73e jπ/,97e j,37,6e j, ,77 3π e jπ/ =,e jπ/,7e j,79,97e j, ,8 5π e jπ/ =,55e jπ/,58e j,38,9e j,69 7 8,8 7π e jπ/ =,8e jπ/,388e j,7,7e j,73 Például az els sorban szerepl H érték számítása: H = H(jω) ω=,57 = + j,57 3,7 = + j,3 =,56e Ez alapján közvetlenül felírhatjuk a válaszjel Fourier-polinomját: j,37 =,97e j,37 u (t),6 cos(,57t,898) +,97 cos(3,77t,365) +,9 cos(6,8t,69) +,7 cos(8,8t,73)v A b) esetben = ms, az alapkörfrekvencia ω = π A válaszjel Fourier-polinomja pedig 3 = 6,83 krad/s. p pω U p H p H(jpω ) Y p = U p H p 6,83 π e jπ/ =,73e jπ/,58e j,39,67e j,68 3 8,85 3π e jπ/ =,e jπ/,93e j,377,8e j,97 5 3,6 5π e jπ/ =,55e jπ/,7e j,53,3e j3,3 7 3,98 7π e jπ/ =,8e jπ/,8e j,87,5e j3,57 u (t),67 cos(6,83t,68)+,8 cos(8,85t,97)+,3 cos(3,6t 3,3)+,5 cos(3,98t 3,57)V..5 u (t) = 5 ms = ms t.5 Az eredmények értékelését segíti az. és. ábra, ahol a rendszer átviteli karakterisztikája mellett láthatjuk a gerjesztés Foruier-sorának amplitúdóit a megfelel körfrekvencián feltüntetve. Látható, hogy a = 5 ms periódusú jel els néhány Fourier-együtthatójához tartozó frekvencián az RC-tag er sítése egységnyihez közeli, és fázistolás is kicsit, míg a gyorsabb jel esetén már az alapharmonikus is jelent s csillapítást és fázistolást szenved. IV. A forrásfeszültség eektív értéke U s,eff = u s(t) dt = A = A = V, udjuk, hogy Parseval tétele alapján az eektív érték a Fourier-együtthatókból is kiszámítható, a Fourieregyütthatók eektív értékének négyzetösszegeként. El ször a gerjeszt négyszögjel els négy nem nulla harmonikusa alapján a gerjesztést közelít jel eektív értéke: (,6 ) ( ) ( ) ( ),,55,8 Û s,eff = =,975V, 3 A válaszjelen is jól látszik a pontatlan közelítés hatása. ovábbi tagok gyelembe vételével a probléma csökkenthet, lásd az otthoni feladatok között. Ezt természetesen egy szimmetrikus négyszögjel esetén ránézésre is tudhatjuk.
6 K(ω) = H(jω) ϕ(ω) = arch(jω) π/ ábra. A rendszer átviteli karakterisztikája (piros) és a gerjesztés Fourier-sora (kék) a = 5 ms esetben K(ω) = H(jω) ϕ(ω) = arch(jω) π/ ábra. A rendszer átviteli karakterisztikája (piros) és a gerjesztés Fourier-sora (kék) a = ms esetben
7 vagyis ha csak az eektív értékeket vesszük gyelembe, a -tagú Fourier-polinom közelítés relatív hibája e =,975 =,5%. A válaszjel eektív értékét a válasz Fourier-sora alapján közelítjük. Az a) esetben ( = 5 ms) (,6 ) ( ) ( ) ( ),97,9,7 Û,eff = =,88V, a b) esetben ( = ms) pedig (,67 ) ( ) ( ) ( ),8,3,5 Û,eff =,6V.
8 . feladat Az ábrán látható hálózatban R = kω, C = nf, és L = mh. a) Határozzuk meg a hálózat által reprezentált rendszer átviteli karakterisztikáját normálalakban, ha a gerjesztés u s, a válasz pedig u! Vázoljuk az amplitúdó- és a fáziskarakterisztikát! b) Határozzuk meg az RLC kétpólus jósági tényez jét! c) A hálózat által reprezentált rendszer gerjesztése legyen az ábrán látható szimmetrikus négyszögjel, periódusa = 9 µs. Határozzuk meg a válaszjel (u ) domináns összetev jének id függvényét! R C L u A t a) A rendszer átviteli karakterisztikája pl. feszültségosztással Normálalakban: H(jω) = U (jω) U s (jω) = jωl /jωc R + (jωl /jωc) =... = H(jω) = RC jω (jω) + RC jω +. LC jωl (jω) RLC + jωl + R Használjuk a következ koherens egységrendszert: [V, ma, kω, H, ms, µf]. Ezzel H(jω) = 5jω (jω) + 5jω + 5. és ω n = 5 krad/s. Nagyon kicsi, ill. nagyon nagy frekvencián a párhuzamos rezg kör impedanciája kicsi (kis frekvencián az induktivitás, nagy frekvencián a kondenzátor kis impedanciát mutat), az ω n = LC természetes rezonanciafrekvencián az impedancia végtelenné válik. Ebb l következik, hogy a rezonanciafrekvencián az u s teljes mértékben a rezg körön esik, az átviteli tényez abszolútértéke egységnyi, és a fázisa zérus. Kis ill. nagy frekvencián a forrásfeszültség nagy része az ellenálláson esik, emiatt az átviteli tényez abszolútértéke kicsi. Fázisát kis frekvencián az induktív, nagy frekvencián a kapacitív összetev határozza meg.
9 ..8 K(ω) φ(ω)[fok] b) Ha a forrást és az ellenállást (tkp. egy hévenin-generátort) a Norton-ekvivalensével helyettesítjük, akkor egy tisztán párhuzamos rezg körhöz jutunk. JR alapján a párhuzamos rezg kör jósági tényez je a rezonanciafrekvencián C Q = R L =. R növelésével a jósági tényez, ezzel a rezonancia élessége is n. c) A gerjesztés alapkörfrekvenciája: ω = π = 6,98 krad/s.,9 Kiszámítottuk, hogy csak a páratlan harmonikusok vannak jelen a gerjesztésben. A rendszer rezonanciafrekvenciája 5 krad/s, a gerjesztés 7. felharmonikusa (7ω = 8,87 krad/s) ehhez nagyon közel esik, ezért ez az összetev dominálhatja a válaszjelet. Ellen rzésképpen a 5. harmonikus amplitúdóját is kiszámítjuk.
10 K(ω) p pω U p H p Y p = U p H p 5 3,9 5π e jπ/ =,8e jπ/,35e j,35,3e j,35 7 8,87 7π e jπ/ =,e jπ/,99e j,9,65e j, Vagyis valóban a 7. harmonikus dominál, amelynek id függvénye u,7 (t) =,65 cos(8,87t,) V. Függelék A () nyilvánvaló, hiszen a szimmetria miatt a jel egyszer középértéke (egyenösszetev je) zérus. ()-t a következ képpen láthatjuk be. Bontsuk az integrálást két tagra. Ha a szimmetriapont a t =, akkor Xk A (t) = / x(t) cos(kω t) dt = / x(t) cos(kω t) dt + x(t) cos(kω t) dt, / / Az els integrálban vezessük be t helyett az y = t + / változót. Ezzel dt = dy, az integrálás határai pedig t = / helyett y =, t = helyett y = /. Xk A (t) = / ( x y ) ( cos kω y ) / dy + x(t) cos(kω t) dt. Mivel cos kω ( y ) = cos(kω y kπ) = cos kπ cos kω y sin kπ sin kω y = cos kπ cos kω y = ( ) k cos kω y, a feltételezett szimmetria miatt pedig Xk A (t) = / [ x(y)]( ) k cos kω y dy + ( x y ) = x(y), / x(t) cos(kω t) dt = Hasonló meggondolással vezethet le az Xk B -kre vonatkozó (3) összefüggés is. / x(t) cos(kω t) dt, ha k páratlan., ha k páros
11 Kiegészít (otthoni) feladatok Írjunk programot (Matlab/Octave/...), ami a 3. feladatot magasabb rend Fourier-polinomokkal is meg tudja oldani. Ábrázoljuk a válaszjelek id függvényét nem nulla harmonikusból álló Fourier-polinom közelítéssel!.5.5 u (t) [V] t [ms] Ellen rizzük a 3. feladat megoldását áramkörszimulátorral (pl. LSpice)! Vizsgáljuk meg áramkörszimulációval, hogy mennyire tér el a. általunk kiszámított szinuszos jelalaktól! feladatban a válasz id függvénye az
Diszkrét idej rendszerek analízise szinuszos/periodikus állandósult állapotban
Diszkrét idej rendszerek analízise szinuszos/eriodikus állandósult állaotban Dr. Horváth Péter, BME HVT 6. november 4.. feladat Adjuk meg az alábbi jelfolyamhálózattal rerezentált rendszer átviteli karakterisztikáját
RészletesebbenALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
RészletesebbenHálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata
Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások
RészletesebbenSZINUSZOS ÁRAMÚ HÁLÓZATOK Számítási feladatok
DR. GYURCSEK ISTVÁN SZINUSZOS ÁRAMÚ HÁLÓZATOK Számítási feladatok Forrás és ajánlott irodalom q Iványi A. Hardverek villamosságtani alapjai, Pollack Press, Pécs 2015, ISBN 978-963-7298-59-2 q Gyurcsek
RészletesebbenSzámítási feladatok a 6. fejezethez
Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz
RészletesebbenGibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén
Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert
RészletesebbenFourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata
Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2. 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása
RészletesebbenSzámítási feladatok megoldással a 6. fejezethez
Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5
RészletesebbenFI rendszerjellemz függvények
FI rendszerjellemz függvények Dr. Horváth Péter, BME HVT 6. október 7.. feladat Határozzuk meg az ábrákon látható hálózatok által reprezentált rendszerek alábbi rendszerjellemz függvényeit, ha a rendszer
RészletesebbenMintavételezés és FI rendszerek DI szimulációja
Mintavételezés és FI rendszerek DI szimulációja Dr. Horváth Péter, BME HVT 5. december.. feladat Adott az alábbi FI jel: x f (t) = cos(3t) + cos(4t), ([ω] =krad/s). Legalább mekkorára kell választani a
Részletesebben1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
RészletesebbenRC tag mérési jegyz könyv
RC tag mérési jegyz könyv Mérést végezte: Csutak Balázs, Farkas Viktória Mérés helye és ideje: ITK 320. terem, 2016.03.09 A mérés célja: Az ELVIS próbapanel és az ELVIS m szerek használatának elsajátítása,
RészletesebbenVI pont(45) : Közös alapképzéses záróvizsga mesterképzés felvételi vizsga. Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar
Név, felvételi azonosító, Neptun-kód: VI pont(45) : Csak felvételi vizsga: csak záróvizsga: közös vizsga: Közös alapképzéses záróvizsga mesterképzés felvételi vizsga Villamosmérnöki szak BME Villamosmérnöki
RészletesebbenVÁLTAKOZÓ ÁRAMÚ KÖRÖK
Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,
RészletesebbenVillamosságtan szigorlati tételek
Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok
Részletesebben4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)
4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.
RészletesebbenÁtmeneti jelenségek egyenergiatárolós áramkörökben
TARTALOM JEGYZÉK 1. Egyenergiatárolós áramkörök átmeneti függvényeinek meghatározása Példák az egyenergiatárolós áramkörök átmeneti függvényeinek meghatározására 1.1 feladat 1.2 feladat 1.3 feladat 1.4
RészletesebbenGyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:
3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója
Részletesebben2.11. Feladatok megoldásai
Elektrotechnikai alaismeretek.. Feladatok megoldásai. feladat: Egy szinuszosan változó áram a olaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T 4 t 4 4µ s f,5 Hz 5 khz
RészletesebbenBevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv
Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv Lódi Péter(D1WBA1) 2015 Március 18. Bevezetés: Mérés helye: PPKE-ITK 3. emeleti 321-es Mérőlabor Mérés ideje: 2015.03.25. 13:15-16:00 Mérés
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
RészletesebbenEGYENÁRAMÚ TÁPEGYSÉGEK
dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan
RészletesebbenA soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen
A soros L-kör Mint ismeretes, a tekercsen az áram 90 fokot késik a hez képest, ahogyan az az 1. ábrán látható. A valós terhelésen a és az áramerősség azonos fázisú. Lényegében viszonyítás kérdése, de lássuk
RészletesebbenÁRAMKÖRÖK SZIMULÁCIÓJA
ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg
RészletesebbenEGYFÁZISÚ VÁLTAKOZÓ ÁRAM
VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású
RészletesebbenA soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra
A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
RészletesebbenNégypólusok tárgyalása Laplace transzformációval
Négypólusok tárgyalása Laplace transzformációval Segédlet az Elektrotechnika II. c. tantárgyhoz Összeállította: Dr. Kurutz Károly egyetemi tanár Szászi István egyetemi tanársegéd . Laplace transzformáció
RészletesebbenDr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN
Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe
RészletesebbenA soros RC-kör. t, szög [rad]
A soros C-kör Az átmeneti jelenségek vizsgálatakor soros C-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
RészletesebbenFelvételi vizsga. BME Villamosmérnöki és Informatikai Kar
V Név, azonosító: pont(90): Felvételi vizsga Mesterképzés, villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar 2009. június 8. MEGOLDÁSOK A dolgozat minden lapjára, a kerettel jelölt részre írja
RészletesebbenRC tag Amplitúdó és Fáziskarakterisztikájának felvétele
RC tag Amplitúdó és Fáziskarakterisztikájának felvétele Mérésadatgyűjtés és Jelfeldolgozás 12. ELŐADÁS Schiffer Ádám Egyetemi adjunktus Közérdekű 2008.05.09. PTE PMMK MIT 2 Közérdekű PÓTMÉRÉS: Akinek elmaradása
RészletesebbenRENDSZERTECHNIKA 8. GYAKORLAT
RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc
RészletesebbenElektrotechnika- Villamosságtan
Elektrotechnika- Villamosságtan 1.Előadás Egyenáramú hálózatok 1 Magyar Attila Tömördi Katalin Villamos hálózat: villamos áramköri elemek tetszőleges kapcsolása. Reguláris hálózat: ha helyesen felírt hálózati
Részletesebben1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
RészletesebbenHatványsorok, Fourier sorok
a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés
RészletesebbenElektromosságtan. III. Szinuszos áramú hálózatok. Magyar Attila
Eletromosságtan III. Szinuszos áramú hálózato Magyar Attila Pannon Egyetem Műszai Informatia Kar Villamosmérnöi és Információs Rendszere Tanszé amagyar@almos.vein.hu 2010. április 26. Átteintés Szinuszosan
RészletesebbenA 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus
RészletesebbenElektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata 2017.09.18. A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenFelvételi vizsga. BME Villamosmérnöki és Informatikai Kar június 8.
Név, azonosító: V pont(90) : Felvételi vizsga Mesterképzés, villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar 2009. június 8. A dolgozat minden lapjára, a kerettel jelölt részre írja fel nevét,
RészletesebbenZárt mágneskörű induktív átalakítók
árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre
RészletesebbenDiszkrét idej rendszerek analízise az id tartományban
Diszkrét idej rendszerek analízise az id tartományban Dr. Horváth Péter, BME HVT 06. október 4.. feladat Számítuk ki a DI rendszer válaszát, ha adott a gerjesztés és az impulzusválasz! u[k = 0,6 k ε[k;
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS
RészletesebbenVillamosmérnöki szak BME Villamosmérnöki és Informatikai Kar
VI Név, felvételi azonosító, Neptun-kód: pont(90): Csak felvételi vizsga: csak záróvizsga: közös vizsga: Közös alapképzéses záróvizsga mesterképzés felvételi vizsga Villamosmérnöki szak BME Villamosmérnöki
RészletesebbenEgyfázisú hálózatok. Egyfázisú hálózatok. Egyfázisú hálózatok. komponensei:
Egyfázisú hálózatok Elektrotechnika Dr Vajda István Egyfázisú hálózatok komponensei: Egyfázisú hálózatok Feszültség- és áramforrások Impedanciák (ellenállás, induktivitás, and kapacitás) A komponensek
RészletesebbenFizika A2E, 8. feladatsor
Fizika AE, 8. feladatsor ida György József vidagyorgy@gmail.com. feladat: Az ábrán látható áramkörben határozzuk meg az áramer sséget! 4 5 Utolsó módosítás: 05. április 4., 0:9 El ször ki kell számolnunk
RészletesebbenFourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.
ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenElektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata 2017.03.02. A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. október 15. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Részletesebben7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?
1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐORRÁS
RészletesebbenELLENŐRZŐ KÉRDÉSEK. Váltakozóáramú hálózatok
ELLENŐRZŐ KÉRDÉSEK Váltakozóáramú hálózatok Háromfázisú hálózatok Miért használunk többfázisú hálózatot? Mutassa meg a háromfázisú rendszer fontosabb jellemzőit és előnyeit az egyfázisú rendszerrel szemben!
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 08 ÉRETTSÉGI VIZSGA 008. október 0. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMTATÓ OKTATÁSI ÉS KLTRÁLIS MINISZTÉRIM Az
Részletesebben25/1. Stacionárius és tranziens megoldás. Kezdeti és végérték tétel.
25/1. Stacionárius és tranziens megoldás. Kezdeti és végérték tétel. A gerjesztı jelek hálózatba történı be- vagy kikapcsolása után átmeneti (tranziens) jelenség játszódik le. Az állandósult (stacionárius)
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenJelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
RészletesebbenJelgenerátorok ELEKTRONIKA_2
Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.
Részletesebben1. Feladat. Megoldás. Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω.
1. Feladat Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω. A 1 2 B 3 4 5 6 7 A B pontok között C 13 = 1 + 3 = 2 = 200 Ω 76
Részletesebben1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban
1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz
RészletesebbenÁramköri elemek mérése ipari módszerekkel
3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2009. május 22. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KLTRÁLIS
RészletesebbenFI rendszerek analízise a komplex frekvenciatartományban
FI rendszerek analízise a komplex frekvenciatartományban Dr. Horváth Péter, BME HVT 07. január 9.. feladat Vázoljuk fel az alábbi függvényeket, és határozzuk meg aplace-transzformáltjukat!.. +f t = Ae
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenElektrotechnika. 7. előadás. Összeállította: Dr. Hodossy László
7. előadás Összeállította: Dr. Hodossy László . Ellenállás 7.. Impedancia.. Csillag kapcsolás Váltakozóáramú Teljesítményszámítás Váltakozóáramú teljesítmény általában: Váltakozóáramú teljesítmény ellenálláson
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
RészletesebbenRC tag Amplitúdó és Fáziskarakterisztikájának felvétele
RC tag Amplitúdó és Fáziskarakterisztikájának felvétele Mérésadatgyűjtés és Jelfeldolgozás 11. ELŐADÁS Schiffer Ádám Egyetemi adjunktus Közérdekű PÓTMÉRÉS: Akinek elmaradása van, egy mérést pótolhat a
RészletesebbenCsak felvételi vizsga: csak záróvizsga: közös vizsga: Villamosmérnöki szak BME Villamosmérnöki és Informatikai Kar május 31.
Név, felvételi azonosító, Neptun-kód: VI pont(45) : Csak felvételi vizsga: csak záróvizsga: közös vizsga: Közös alapképzéses záróvizsga mesterképzés felvételi vizsga Villamosmérnöki szak BME Villamosmérnöki
RészletesebbenOszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?
Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind
RészletesebbenFeszültségérzékelők a méréstechnikában
5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika
RészletesebbenFIZIKA. Váltóáramú hálózatok, elektromágneses hullámok
Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35
RészletesebbenMéréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
RészletesebbenElektrotechnika- Villamosságtan
Elektrotechnika- Villamosságtan Általános áramú hálózatok 1 Magyar Attila Tömördi Katalin Alaptörvények-áttekintés Alaptörvények Áram, feszültség, teljesítmény, potenciál Források Ellenállás Kondenzátor
RészletesebbenElektronika Oszcillátorok
8. Az oszcillátorok periodikus jelet előállító jelforrások, generátorok. Olyan áramkörök, amelyeknek csak kimenete van, bemenete nincs. Leggyakoribb jelalakok: - négyszög - szinusz A jelgenerálás alapja
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenBevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két
RészletesebbenElektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata
Elektronika II laboratórium 1. mérés: R L C négypólusok vizsgálata A legalapvetőbb áramkörök ellenállásokat, kondenzátorokat és indukciós tekercseket tartalmazó áramkörök. A fenti elemekből álló hálózatok
Részletesebben3.3. A feszültség-munkadiagram
3.3. A feszültség-munkadiagram Eddig csak olyan eseteket vizsgáltunk, amelyeknél az áramkörre ideális feszültségforrást kapcsoltunk (kapocsfeszültsége a terhelés hatására nem változik), és a kör eredő
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2013. május 23. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 23. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenFizika A2E, 9. feladatsor
Fizika 2E, 9. feladatsor Vida György József vidagyorgy@gmail.com 1. feladat: hurokáramok módszerével határozzuk meg az ábrán látható kapcsolás ágaiban folyó áramokat! z áramkör két ablakból áll, így két
RészletesebbenBevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27
Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007 március 27 Ellenállások R = U I Fajlagos ellenállás alapján hosszú vezeték Nagy az induktivitása Bifiláris Trükkös tekercselés Nagy mechanikai
RészletesebbenFourier sorok február 19.
Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható
Részletesebben17/1. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram.
7/. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram. A szinuszos áramú hálózatok vizsgálatánál gyakran alkalmazunk különbözı komplex átviteli függvényeket. Végezzük ezt a hálózat valamilyen
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2009. október 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. október 19. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
Részletesebben19.B 19.B. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges:
9.B Alapáramkörök alkalmazásai Oszcillátorok Ismertesse a szinuszos rezgések elıállítására szolgáló módszereket! Értelmezze az oszcillátoroknál alkalmazott pozitív visszacsatolást! Ismertesse a berezgés
Részletesebben25 i, = i, z 1. (x y) + 2i xy 6.1
6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =
RészletesebbenAUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
ATOMATKA ÉS ELEKTONKA SMEETEK KÖZÉPSZNTŰ ÍÁSBEL VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Egy A=,5 mm keresztmetszetű alumínium (ρ= 0,08 Ω mm /m)
RészletesebbenM pont(30) : (ii) Adja meg az e egyenes egy olyan pontját, melynek első koordinátája 7.
Név, azonosító: M pont(30) :. Az S sík egyenlete: 2x +4y +8z =4,azS 2 sík egyenlete: 2x +8y +4z =2. Legyene az az egyenes, mely párhuzamos mindkét síkkal és átmegy az (,2,3) ponton. (i) Adja meg az e egyenes
RészletesebbenFizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
RészletesebbenFüggvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.
Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2
RészletesebbenEgyszerű áramkörök árama, feszültsége, teljesítménye
Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez
Részletesebben2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!
1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)
RészletesebbenA 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata
Oktatási Hivatal A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK Különösen viselkedő oszcillátor vizsgálata Elméleti bevezető: A mérési feladat
RészletesebbenMegoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 4 ÉETTSÉGI VIZSG 06. május 8. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ EMBEI EŐFOÁSOK MINISZTÉIM Egyszerű, rövid feladatok
RészletesebbenTételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS
Részletesebben