19.B 19.B. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges:
|
|
- Bence Szabó
- 10 évvel ezelőtt
- Látták:
Átírás
1 9.B Alapáramkörök alkalmazásai Oszcillátorok Ismertesse a szinuszos rezgések elıállítására szolgáló módszereket! Értelmezze az oszcillátoroknál alkalmazott pozitív visszacsatolást! Ismertesse a berezgés fázis- és amplitúdó-feltételeit! Csoportosítsa felépítés és frekvenciatartomány alapján az oszcillátorokat! Ismertesse egy-egy tipikus kis- és nagyfrekvenciás oszcillátor mőködését! Mutassa be az oszcillátorok gyakorlati alkalmazási lehetıségeit! Hasonlítsa össze elınyei és hátrányai alapján az LC-, az RC- és a kvarcoszcillátorokat! Az oszcillátor Az oszcillátorok olyan elektronikus áramkörök, amelyek egyenáramú tápenergiát felhasználva, vezérlı jel nélkül csillapítatlan periodikus jelek elıállítására alkalmasak. A létrehozott periodikus jel lehet: nem szinuszos, szinuszos idıbeli lefolyású jel. Az oszcillátorok osztályozása A szinuszos jeleket elıállító áramköröket harmonikus, vagy szinuszos oszcillátoroknak nevezzük. A nem szinuszos jeleket elıállító áramköröket szokás relaxációs oszcillátoroknak nevezni. A csillapított rezgés Az oszcillátorok létrehozásánál szükség van egy frekvencia- meghatározó elemre, amely meghatározza a rezgés frekvenciáját. Ha egy feltöltött kondenzátor energiája egy induktív tagon keresztül kisül, akkor csillapított rezgések keletkeznek. Rezonancia frekvencia számítása A csillapított rezgések frekvenciáját a következı jól ismert összefüggés határozza meg: f = 2π L C 0. A csillapítatlan rezgés létrejötte A rezgıkör veszteséges, így energiatartalma csökken. A rezgések fenntartása úgy lehetséges, ha a veszteségeket pótoljuk. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges: negatív ellenállású karakterisztika- szakasszal rendelkezı áramköri elem használata, pozitív visszacsatolással rendelkezı erısítı alkalmazása. A negatív dinamikus ellenállás A negatív dinamikus ellenállás hatása Egyes félvezetı áramköri elemeknél, mint például az alagútdióda vagy az egyátmenető tranzisztor, a negatív ellenállás jelenlétét a karakterisztika mutatja. Alagútdiódás oszcillátor jelleggörbéje Egyátmenető tranzisztoros oszcillátor jelleggörbéje
2 Az egyátmenető tranzisztor jelleggörbéje A negatív ellenállású szakasz felhasználható a rezgıkör veszteségeinek a kiegyenlítésére. A rezgıkör veszteségei kompenzálhatók, ha a vele párhuzamosan vagy sorosan kapcsolunk egy a veszteségi ellenállással megegyezı értékő negatív ellenállást. Az így kiegészített hálózat csillapítatlan rezgéseket képes elıállítani. A párhuzamos rezgıkör elvi felépítése negatív ellenállással A soros rezgıkör elvi felépítése negatív ellenállással A kapcsolási rajz összeállítása és az áramköri elemek szerepe Az egyátmenető tranzisztor esetében a negatív dinamikus ellenállás kis értékő áramváltozás esetén jön létre, amely a jelleggörbébıl is kiolvasható. A keletkezı rezgések amplitudójának a határolása a tranzisztor bemeneti körével sorosan kapcsolt, soros rezgıkörrel valósítható meg. Egyátmenető tranzisztoros oszcillátor Alagútdiódás oszcillátor Alagútdióda alkalmazása Az alagútdióda esetén a negatív dinamikus ellenállást U I kis értékő feszültségváltozás hozza létre. Az alagútdióda csak nagy frekvencián mőködik megfelelıen, ezért a felhasználása a magas frekvenciatartományra esik. A visszacsatolt oszcillátor A visszacsatolt oszcillátor létrehozása Ha egy erısítıt amely egy széles sávban erısít, visszacsatoló négypólussal pozitívan visszacsatolunk, akkor oszcillátort kapunk. A visszacsatolt erısítés A uv Au = β A u A hurokerısítés Ha a hurokerısítés ( ) növekszik., ahol A u az eredeti erısítı erısítése, A uv a visszacsatolt erısítı erısítése. β A u egy értékő, akkor az összefüggés értelmében a visszacsatolt erısítı erısítése végtelenre A visszacsatolt oszcillátor felépítése 2
3 A hurokerısítés értékének következménye Ez azt jelenti, hogy a visszacsatolt erısítı ilyen esetben vezérlı jel nélkül is szolgáltat kimenı jelet, mivel az Auv=. Ekkor a visszacsatolt erısítı begerjed és saját maga hozza létre a kimenı jelet. Ha a hurokerısítés értéke nem megfelelı, akkor az oszcillátor nem képes begerjedni. A fázisfeltétel és az amplitúdó feltétel A gyakorlatban a hurokerısítést nem lehet pontosan beállítani. Az oszcillátor mőködésének két feltétele van: fázisfeltétel, a visszacsatolt jel a bemenıjellel azonos fázisú legyen, vagyis a fáziseltérés 0 0, vagy legyen, amplitúdó feltétel, a hurokerısítés β Au = értékő legyen. A hurokerısítés Megfelelı hurokerısítés és fázisfeltétel esetén, a keletkezı rezgések frekvenciáját egy frekvencia- meghatározó elem határozza meg, amint azt a fenti ábrán is láthatjuk (LC rezgıkör). A frekvencia- meghatározó elem szerint a szinuszos oszcillátorok lehetnek: LC, RC, és kvarc oszcillátorok. LC oszcillátorok Az LC oszcillátorok rezgıköre Ezen oszcillátorok frekvencia- meghatározó eleme egy rezgıkör. A rezgıkör csillapításának kompenzálását egy erısítı biztosítja. Az LC oszcillátorokat fıleg nagyfrekvenciás tartományban alkalmazzák, mivel kisfrekvenciákon a rezgıkör elemei nagy értékőek lennének, ezért veszteségük is megnıne. A nagy jósági tényezıjő rezgıkörök nagyfrekvencián könnyen megvalósíthatóak. Az LC oszcillátorok többféle kapcsolása ismert. A kapcsolások amelyeket ismertetünk, nevük a feltalálójukra utal. Az LC oszcillátorok típusai: hangolt kollektorkörő Meissner-oszcillátor hangolt báziskörő Meissner-oszcillátor kapacitív hárompont-csatolású Collpits-oszcillátor induktív hárompont-csatolású Hartley-oszcillátor A Meissner-oszcillátor A Meissner- oszcillátor jellemzıje, hogy transzformátoros visszacsatolással mőködik, és a frekvencia- meghatározó elem a transzformátor primer tekercsével párhuzamosan kapcsolt kondenzátor által meghatározott rezgıkör. A rezgıkör viselkedése A következı ábra az oszcillátor kapcsolását mutatja, melyben hangolt kollektorkörös emitterkapcsolású erısítıfokozatot alkalmaznak. A kimeneti feszültség a tranzisztor kollektorán lép fel és fázist fordít. A frekvenciája f = 2π L C 0. A hangolt kollektorkörös Meissner oszcillátor 3
4 A kapcsolási rajz elemzése A pozitív visszacsatolás megvalósítására a kimeneti feszültség egy részét az L tekerccsel lecsatoljuk, és az R, C soros tagon keresztül visszavezetjük a tranzisztor bázisára. A kapcsolásban fontos szerepet játszik az L és L tekercsek menetiránya, hiszen a visszacsatolt jel a tekercsek menetirányának megfelelıen azonos vagy ellentétes fázisban kerül vissza a kollektorkörbıl a bázisra. RC oszcillátorok Az RC oszcillátorokat kisfrekvencián (pl. hangfrekvencián) használjuk. A közös emitteres erısítı kimeneti és bemeneti feszültsége közötti os eltérést RC elemekkel állítjuk helyre (pl. fázistolós oszcillátornál). Az RC oszcillátorok egy részének hangolható a frekvenciája. Ilyen a Wien-hidas oszcillátor. Az LC oszcillátorok típusai: fázistolós oszcillátor (nem hangolható), Wien-hidas oszcillátor ( hangolható), Kettıs T-hidas oszcillátor (nem hangolható). Wien-hidas oszcillátor A híd felépítése A Wien-hidas oszcillátor esetében a visszacsatolatlan erısítıt egy Wien-híddal csatoljuk vissza. A Wien-híd A híd egy frekvenciafüggı és egy frekvenciafüggetlen ágból áll. A híd baloldali ága frekvenciafüggı, jobb oldali ága pedig frekvenciafüggetlen elemekbıl épül fel. A Wien-híd frekvenciafüggı ága A Wien-híd frekvenciafüggı ágának erısítés-frekvencia jelleggörbéje A Wien-híd frekvenciafüggı ágának fázismenete A híd frekvenciafüggı ága és a leosztott feszültség megállapítása A frekvenciafüggı ág egy osztó áramkör, amelyre igaz, hogy: ω = 0 R C körfrekvencián, az ág alsó részén az U p fázisban van az U bemenı feszültséggel, minden más frekvencián fázistolás lép fel. A híd feszültség-átvitele: U p lesz. 4
5 Tehát a frekvenciafüggı ág által szolgáltatott bemenı feszültség fázisban van az erısítı kimenı feszültségével, amplitúdója annak /3-a, a β = /3 lesz a pozitív visszacsatolási tényezı értéke. A fázistolás értékének meghatározása A jelátvitel a körfrekvencia függvényében úgy változik, hogy az ω 0 körfrekvencián maximális az átvitel, értéke éppen /3 és ezen a frekvencián a tag fázistolása nulla fok. Természetesen a körfrekvencia az RC elemek nagyságának megválasztásától függ, illetve azok változtathatóvá tételével az ω 0 is változtatható. A hídhoz megfelelı erısítıfokozat megválasztása Az erısítı erısítése, A u = 3 értékő kell hogy legyen, hiszen így lesz a hurokerısítés egy értékő. Az erısítıt általában meghatározott frekvenciatartomány átvitelére tervezik. A visszacsatoló kört választjuk frekvenciafüggıre, amint azt az ábrákon is láthatjuk. Az erısítı kialakítása Mivel a híd nem fordít fázist, ezért (fázisfeltétel) az erısítıt is úgy kell kialakítani, hogy fázistolása nulla legyen. A Wien-híd frekvenciafüggı ága az erısítı nem invertáló bemenetére kapcsolja a visszacsatolt jelet, így a fázisfeltétel teljesül. Az amplitúdó feltételt a frekvenciafüggetlen ág teljesíti, ha pl. R = R 2 = R és C = C 2 = C teljesül, akkor az R3 R4 erısítés: A u = 3 = + R3 =. Az erısítés pontos beállítása miatt szükséges az R 4 potenciométer. A R4 2 frekvencia hangolását az R és R 2 együttfutó potenciométerek teszik lehetıvé. Jó alkatrész méretezéssel a kapcsolás az egész hangfrekvenciás sávban (20 Hz-20 khz-ig) szolgáltat szinuszos jelet a kimeneten. Kvarcoszcillátorok Az oszcillátorok frekvenciastabilitása Az oszcillátorok esetében fontos követelmény a frekvencia vándorlása, eltolódása. A jó minıségő oszcillátoroknál a frekvenciaváltozásnak minimálisnak kell lennie. A frekvenciát az áramköri elemek és a tranzisztor paraméterei határozzák meg, amelyek a hımérséklettıl, a tápfeszültség változásától és a terheléstıl függıen változnak. A jóság szerepe A frekvencia pontosságát a relatív frekvenciastabilitással jellemezzük: S f =, f 0 ahol, a f a frekvenciaváltozás, az f 0 pedig a viszonyítási frekvencia. A tervezés során a legnagyobb gondot a tranzisztor paraméterei okozzák, mert ezek a kritikus jellemzık. Az elsıdleges frekvencia- meghatározó elemek (L és C, R és C) jó minıségőeknek kell lenniük, hiszen az oszcillátorkapcsolásnak a stabilitása nem lehet jobb, mint az áramköri elemek stabilitása. Fontos, hogy a terheletlen rezgıkör jósági tényezıje nagy legyen, mert a külsı elemek így csak jelentéktelen mértékben befolyásolhatják a rezonanciafrekvenciát. A kvarc szerepe Igen jó frekvenciastabilitás érhetı el rezgıkvarc alkalmazásával. 5
6 A kristály az egymással szemben lévı oldalaira kapcsolt váltakozó feszültség hatására bizonyos frekvencián mechanikai rezgést végez. Ezek a rezgések a két oldalon elektromos rezgéseket eredményeznek. A velük elérhetı frekvenciastabilitás:s= 0 0. A hımérsékletfüggés A kvarcok frekvenciája hımérsékletfüggı, ezért hımérséklet befolyásolja a pontosságot. A frekvenciastabilitás a kristály hımérsékletének állandósításával tovább növelhetı. A kristály hımérsékletét termosztát alkalmazásával lehet állandó értéken tartani. A termosztálásnak több lehetséges megoldása is ismert. A soros és a párhuzamos rezonancia frekvencia A viselkedésüknek a következı ábrán látható egyszerősített helyettesítı kapcsolásban az L s,c s és r s áramköri elemeket tartalmazó soros rezgıkör felel meg. A rezgıkvarcnak soros és párhuzamos rezonanciája is van. A kristály áramköri jelölése A kristály helyettesítı képe A Miller-kapcsolású oszcillátor A fegyverzetek közötti kristálykapacitás C p, amely sokkal nagyobb, mint a C s kapacitás, ezért a kristály rezonanciafrekvenciáját az L s és C s értékek határozzák meg. Ha a kristály jellemzıi: C p = 0pF, C s = 0,0pF, L s = 0,H, r s = 0 Ω, akkor a jósági tényezı: L s 4 Q 0 = = 0. rs Cs A nagy jósági tényezı az oka a kvarckristályokkal épített oszcillátorok nagyon nagy frekvenciastabilitásának. A Miller-kapcsolású oszcillátor Az oszcillátorban a pozitív visszacsatolást a FET C -el jelölt, drain-gate parazita kapacitása biztosítja. Az LC rezgıkört a kristály rezonanciafrekvenciája alá hangolják, ahol induktív jelleget mutat. Sokszor alkalmaznak trimmer kondenzátort, amelyet a kvarccal sorosan párhuzamosan kapcsolnak, melynek segítségével az oszcillációs frekvencia pontosan beállítható. A kvarckristályokkal kb. 00 MHz-ig lehet oszcillátorokat kialakítani. A felharmónikus tartalmat kihasználva lehetıség kínálkozik ettıl jóval nagyobb frekvenciájú kvarcstabilizált oszcillátorok készítésére. 6
Elektronika alapjai. Témakörök 11. évfolyam
Elektronika alapjai Témakörök 11. évfolyam Négypólusok Aktív négypólusok. Passzív négypólusok. Lineáris négypólusok. Nemlineáris négypólusok. Négypólusok paraméterei. Impedancia paraméterek. Admittancia
5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA
5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA BMF-Kandó 2006 2 A mérést végezte: A mérés időpontja: A mérésvezető tanár tölti ki! Mérés vége:. Az oszcillátorok vizsgálatánál a megadott kapcsolások közül csak egyet
13.B 13.B. 13.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások
3.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások Ismertesse a többfokozatú erısítık csatolási lehetıségeit, a csatolások gyakorlati vonatkozásait és azok alkalmazási korlátait! Rajzolja
Elektronika Oszcillátorok
8. Az oszcillátorok periodikus jelet előállító jelforrások, generátorok. Olyan áramkörök, amelyeknek csak kimenete van, bemenete nincs. Leggyakoribb jelalakok: - négyszög - szinusz A jelgenerálás alapja
Jelgenerátorok ELEKTRONIKA_2
Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.
O S Z C I L L Á T O R O K
ELEKTRONIKAI TECHNIKUS KÉPZÉS 0 3 O S Z C I L L Á T O R O K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - - Tartalomjegyzék Oszcillátorok...3 Negatív ellenállású kétpólussal működő oszcillátorok...3 Pozitív
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
1. ábra 1 (C 2 X C 3 ) C 1 ( R 1 + R 2 ) R 3. 2 π R C
A kettős T-tagos oszcillátorok amplitúdó- és frekvenciastabilitása hasonlóképpen kiváló, mint a Wien hidas oszcillátoroké. Széleskörű alkalmazásának egyetlen tény szabhat csak határt, miszerint a kettős
Wien-hidas oszcillátor mérése (I. szint)
Wien-hidas oszcillátor mérése () A Wien-hidas oszcillátor az egyik leggyakrabban alkalmazott szinuszos rezgéskeltő áramkör, melyet egyszerűen kivitelezhető hangolhatóságának, kedvező amplitúdó- és frekvenciastabilitásának
Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?
Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind
1. ábra a három RC-tagból felépített fázistoló
Az RC-oszcillátorok családjában kétség kívül a fázistolós oszcillátor az egyik legegyszerűbb konstrukció. Nevében a válasz arra, hogy mi is lehet a szelektív hálózata, mely az oszcillátor rezonanciafrekvenciáját
1. ábra A Meißner-oszcillátor mérőpanel kapcsolási rajza
Ismeretellenőrző kérdések mérések megkezdése előtt kérem, gondolja végig a következő kérdéseket! Szükség esetén elevenítse fel ismereteit az ide vonatkozó elméleti tananyag segítségével! 1. Mi a Meißner-oszcillátor
1. ábra A Wien-hidas mérőpanel kapcsolási rajza
Ismeretellenőrző kérdések A mérések megkezdése előtt kérem, gondolja végig a következő kérdéseket, feladatokat! Szükség esetén elevenítse fel ismereteit az ide vonatkozó elméleti tananyag segítségével!
Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató
ÓBUDAI EGYETEM Kandó Kálmán Villamosmérnöki Kar Híradástechnika Intézet Négyszög - Háromszög Oszcillátor Mérése Mérési Útmutató A mérést végezte: Neptun kód: A mérés időpontja: A méréshez szükséges eszközök:
25.B 25.B. 25.B Impulzustechnikai alapáramkörök Impulzusok elıállítása
5.B Impulzustechnikai alapáramkörök Impulzusok elıállítása Értelmezze a félvezetı elemek és a mőveleti erısítı kapcsoló üzemmódját, a stabil- és a kvázistabil állapotot! Magyarázza el a tranzisztoros vagy
Foglalkozási napló a 20 /20. tanévre
Foglalkozási napló a 20 /20. tanévre Elektronikai műszerész szakma gyakorlati oktatásához OKJ száma: 34 522 03 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma: Tanulók
Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1
1. feladat R B1 = 100 kω R B2 = 47 kω R C = 3 kω R E = 1,5 kω R t = 4 kω A tranzisztor paraméterei: h 21E = 180 h 22E = 30 MΩ -1 a) Számítsa ki a tranzisztor kollektor áramát, ha U CE = 6,5V, a tápfeszültség
ELMÉLETI ÉS MÉRÉSI ALAPISMERETEK
ELMÉLETI ÉS MÉRÉSI ALAPISMERETEK Az oszcilláció magyarul rezgést jelent. Az oszcillátorok olyan váltakozófeszültségű generátorok, melyek az idő függvényében meghatározott jelalakú, amplitúdójú és frekvenciájú
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Versenyző kódja: 7 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.
54 523 02-2017 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási,
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus
ANALÓG ÉS DIGITÁLIS TECHNIKA I
ANALÓG ÉS DIGITÁLIS TECHNIKA I Dr. Lovassy Rita lovassy.rita@kvk.uni-obuda.hu Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 2. ELŐADÁS 2010/2011 tanév 2. félév 1 Aktív szűrőkapcsolások A
1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2
Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia
VÁLTAKOZÓ ÁRAMÚ KÖRÖK
Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,
1. ábra A visszacsatolt erősítők elvi rajza. Az 1. ábrán látható elvi rajz alapján a kövezkező összefüggések adódnak:
Az erősítő alapkapcsolások, de a láncbakapcsolt erősítők nem minden esetben teljesítik azokat az elvárásokat, melyeket velük szemben támasztanánk. Ilyen elvárások lehetnek a következők: nagy bemeneti ellenállás;
1. ábra A Colpitts-oszcillátor, valamint közös drain-ű változata, a Clapp-oszcillátor
A tárgyalandó oszcillátortípusok a hárompont-kapcsolásúak egyik alcsoportja, méghozzá a a Colpitts-oszcillátor földelt kollektoros (drain-ű, anódú), valamint földelt emitteres (source-ű, katódú) változatai.
Elektronika 11. évfolyam
Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Számítási feladatok a 6. fejezethez
Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati
12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok
12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
10.B Tranzisztoros alapáramkörök Munkapont-beállítás
0.B ranzisztoros alapáramkörök Munkapont-beállítás Definiálja a lineáris és a nemlineáris mőködést, a sztatikus és a dinamikus üzemmódot! Értelmezze a munkapont, a munkaegyenes fogalmát és szerepét! Mutassa
1. Visszacsatolás nélküli kapcsolások
1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ
2. és 3. ábra az áthidalt T-tag átviteli- és fáziskarakterisztikája
Habár az áthidalt T-tagos szűrőkapcsolás mely az az oszcillátor szelektív hálózata külsőleg a kettős T-tagos szűrőre hasonlít, a jósága inkább a Wien-osztót juttatja az eszünkbe, azzal az óriási különbséggel,
Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő.
3.8. Szinuszos jelek előállítása 3.8.1. Oszcillátorok Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő. Az oszcillátor elvi felépítését (tömbvázlatát)
Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő
Műveleti erősítők A műveleti erősítők egyenáramú erősítőfokozatokból felépített, sokoldalúan felhasználható áramkörök, amelyek jellemzőit A u ', R be ', stb. külső elemek csatlakoztatásával széles határok
Számítási feladatok megoldással a 6. fejezethez
Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését
1. ábra a függvénygenerátorok általános blokkvázlata
A függvénygenerátorok nemszinuszos jelekből állítanak elő kváziszinuszos jelet. Nemszinuszos jel lehet pl. a négyszögjel, a háromszögjel és a fűrészjel is. Ilyen típusú jeleket az úgynevezett relaxációs
Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások
Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Egyenirányítás: egyenáramú komponenst nem tartalmazó jelből egyenáramú összetevő előállítása. Nemlineáris áramköri elemet tartalmazó
ELEKTRONIKAI ALAPISMERETEK
Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc
Az együttfutásról általában, és konkrétan 2.
Az együttfutásról általában, és konkrétan 2. Az első részben áttekintettük azt, hogy milyen számítási eljárás szükséges ahhoz, hogy egy szuperheterodin készülék rezgőköreit optimálisan tudjuk megméretezni.
M ű veleti erő sítő k I.
dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt
Villamosságtan szigorlati tételek
Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok
AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
ATOMATKA ÉS ELEKTONKA SMEETEK KÖZÉPSZNTŰ ÍÁSBEL VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Egy A=,5 mm keresztmetszetű alumínium (ρ= 0,08 Ω mm /m)
ELLENŐRZŐ KÉRDÉSEK. Váltakozóáramú hálózatok
ELLENŐRZŐ KÉRDÉSEK Váltakozóáramú hálózatok Háromfázisú hálózatok Miért használunk többfázisú hálózatot? Mutassa meg a háromfázisú rendszer fontosabb jellemzőit és előnyeit az egyfázisú rendszerrel szemben!
Versenyző kódja: 31 15/2008. (VIII. 13) SZMM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny
54 523 01 0000 00 00-2014 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 01 0000 00 00 SZVK rendelet száma: 15/2008 (VIII. 13.) SZMM
Logaritmikus erősítő tanulmányozása
13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti
2.Előadás ( ) Munkapont és kivezérelhetőség
2.lőadás (207.09.2.) Munkapont és kivezérelhetőség A tranzisztorokat (BJT) lineáris áramkörbe ágyazva "működtetjük" és a továbbiakban mindig követelmény, hogy a tranzisztor normál aktív tartományban működjön
A 2009-es vizsgákon szereplő elméleti kérdések
Kivezérelhetőség és teljesítményfokozatok: A 2009-es vizsgákon szereplő elméleti kérdések 1. Ismertesse a B osztályú teljesítményfokozat tulajdonságait (P fmax, P Tmax, P Dmax(1 tr), η Tmax )! (szinuszos
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK Szóbeli vizsgarész értékelési táblázata A szóbeli felelet értékelése az alábbi szempontok és alapján történik:
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Áramköri elemek mérése ipari módszerekkel
3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek
20.B 20.B. Annak függvényében, hogy a kimeneti feszültség, vagy a kimeneti áram értékét próbáljuk állandó értéken tartani megkülönböztetünk:
20.B Alapáramkörök alkalmazásai Stabilizátorok Mutassa be a soros és a párhuzamos stabilizálás elvét! Ismertesse a Zener-diódás elemi stabilizátor kapcsolás felépítését, mőködését, értelmezze jelleggörbéjét
Elektronika I. Gyakorló feladatok
Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó
Feszültségérzékelők a méréstechnikában
5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2016. október 17. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. október 17. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása
Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30
Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv
Bevezetés a méréstechinkába, és jelfeldologzásba jegyzőkönyv Lódi Péter(D1WBA1) 2015 Március 18. Bevezetés: Mérés helye: PPKE-ITK 3. emeleti 321-es Mérőlabor Mérés ideje: 2015.03.25. 13:15-16:00 Mérés
EGYENÁRAMÚ TÁPEGYSÉGEK
dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan
Zárt mágneskörű induktív átalakítók
árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre
ELKON S-304 autó villamossági mőszer áramköri leírása
ELKON S-304 autó villamossági mőszer áramköri leírása 7.1 Tápegység A mérımőszer tápegysége a T 105, T 106 tranzisztorokból, a D 111, 115 diódákból, a C 131, 132 kondenzátorokból és az R 145 ellenállásokból
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.
El. II. 5. mérés. SZIMMETRIKUS ERŐSÍTŐK MÉRÉSE. A mérés célja : Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. A mérésre való felkészülés során tanulmányozza
10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2009. október 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. október 19. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális
ELEKTRONIKA I. (KAUEL11OLK)
Félévi követelmények és beadandó feladatok ELEKTRONIKA I. (KAUEL11OLK) tárgyból a Villamosmérnöki szak levelező tagozat hallgatói számára Óbuda Budapest, 2005/2006. Az ELEKTRONIKA I. tárgy témaköre: Az
ELEKTRONIKAI ALAPISMERETEK
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati
7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?
1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás
Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris.
Alapkapcsolások (Attól függően, hogy a tranzisztor három csatlakozási pontja közül melyiket csatlakoztatjuk állandó potenciálú pólusra, megkülönböztetünk): földelt emitteres földelt bázisú földelt kollektoros
ÍRÁSBELI FELADAT MEGOLDÁSA
54 523 02-2017 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT MEGOLDÁSA Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet
Elektronika 1. 4. Előadás
Elektronika 1 4. Előadás Bipoláris tranzisztorok felépítése és karakterisztikái, alapkapcsolások, munkapont-beállítás Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch.
4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN
Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe
ELEKTRONIKAI ALAPISMERETEK
Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006
Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?
Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.
Versenyző kódja: 28 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.
54 523 02-2016 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási/áramköri/tervezési
Foglalkozási napló a 20 /20. tanévre
Foglalkozási napló a 20 /20. tanévre Audio- és vizuáltechnikai műszerész szakma gyakorlati oktatásához OKJ száma: 35 522 01 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának
Lehetővé teszi szűrőáramkörök tervezésekor az átviteli karakterisztika megvalósítását közelítő függvényekkel.
Passzív szűrők Fajtái Frekvenciamenet szerint: - aluláteresztő, - felüláteresztő, - sáváteresztő, - sávzáró, - rezgőkör Megvalósítás szerint: - szűrőáramkörök - szilárdtest szűrők Előnyök: - nem kell tápfeszültség,
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. október 15. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
Összefoglaló kérdések fizikából 2009-2010. I. Mechanika
Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;
FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok
Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két
Az N csatornás kiürítéses MOSFET jelleggörbéi.
SZIGETELT VEZÉRLİELEKTRÓDÁS TÉRVEZÉRLÉSŐ TRANZISZTOR (MOSFET) A MOSFET-nek (Metal Oxide Semiconductor, fém-oxid-félvezetı) két alaptípusa a kiürítéses és a növekményes MOSFET. Mindkét típusból készítenek
11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét
ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Passzív alkatrészek és passzív áramkörök. Elmélet A passzív elektronikai alkatrészek elméleti ismertetése az. prezentációban található. A 2. prezentáció
Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?
1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐORRÁS
Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő.
3.8. Szinuszos jelek előállítása 3.8.1. Oszcillátorok Az oszcillátor olyan áramkör, amely periodikus (az analóg elektronikában általában szinuszos) jelet állít elő. Az oszcillátor elvi elépítését (tömbvázlatát)
ANALÓG ÉS DIGITÁLIS TECHNIKA I
ANALÓG ÉS DIGITÁLIS TECHNIKA I Dr. Lovassy Rita lovassy.rita@kvk.uni-obuda.hu Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet. ELŐADÁS: PASSZÍV RC ÉS RLC HÁLÓZATOK 200/20 tanév 2. félév IRODALOM
UNIPOLÁRIS TRANZISZTOR
UNIPOLÁRIS TRANZISZTOR Az unipoláris tranzisztorok térvezérléső tranzisztorok (Field Effect Transistor). Az ilyen tranzisztorok kimeneti áramának nagyságát a bemeneti feszültséggel létrehozott villamos
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű
FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás
FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás A tranzisztor felfedezése A tranzisztor kifejlesztését a Lucent Technologies kutatóintézetében, a Bell Laboratóriumban végezték el. A laboratóriumban három