Az N csatornás kiürítéses MOSFET jelleggörbéi.
|
|
- Lídia Hegedűs
- 9 évvel ezelőtt
- Látták:
Átírás
1 SZIGETELT VEZÉRLİELEKTRÓDÁS TÉRVEZÉRLÉSŐ TRANZISZTOR (MOSFET) A MOSFET-nek (Metal Oxide Semiconductor, fém-oxid-félvezetı) két alaptípusa a kiürítéses és a növekményes MOSFET. Mindkét típusból készítenek n és p csatornás változatokat is. Egy kiürítéses n csatornás MOSFET szerkezetének vázlatát, jelképi jelölését és a mőködéshez szükséges feszültségeket az alábbi ábra mutatja: Kiürítéses n csatornás MOSFET A tranzisztor kialakítása egy p típusú alapkristályon történik Ez a szubsztrát (hordozó). Az ebben kialakított n típusú áramvezetı csatornát az igen jó szigetelıként viselkedı szilíciumoxid réteggel elszigetelik a G fémelektródától. A D-S elektródák közé kapcsolt feszültség hatására az n csatorna szabad elektronjai a pozitív feszültségő Drain elektróda felé mozogva létrehozzák az I D Drain áramot. Ha az elszigetelt G elektródára negatív feszültséget kapcsolunk, akkor elektronok halmozódnak fel rajta. Ezek mennyisége a feszültség nagyságától függ. A töltésmegosztás miatt a szigetelıréteg másik oldalán lévı n csatornában ugyanannyi pozitív töltés jön létre, mint amennyi negatív töltés halmozódott fel a G elektródán. Az így létrehozott pozitív töltések rekombinálják az n réteg töltéshordozóit, ezért csökken a csatorna szabad töltéshordozóinak száma, vagyis az I D áram. Az U GS feszültséget növelve egyre több szabad töltéshordozó rekombinálódik, egyre inkább kiürül a csatorna. Innen kapta a kiürítéses MOSFET elnevezést ez a tranzisztor. Megfelelıen nagy U GS feszültség mellett a csatornában megszőnnek a szabad töltéshordozók, ezért megszőnik az áram is. Ez a feszültség az U 0 zárófeszültség. Az N csatornás kiürítéses MOSFET jelleggörbéi. A p csatornás kiürítéses MOSFET hasonlóképpen mőködik, de az ellentétesen adalékolt rétegek fordított polaritású feszültségeket igényelnek. Milyen alapkristályon történik az kiürítéses n csatornás MOSFET kialakítása? Milyen réteggel szigetelik el az n csatornát a Gate fémelektródáitól? Milyen Gate feszültséggel zárható el a Drain áram? A növekményes típusú MOSFET-ek felépítése annyiban különbözik a kiürítésestıl, hogy a gyártás során nem hoznak létre áramvezetı csatornát a Drain és Source elektródák között. Egy ilyen FET felépítését, jelképi jelölését és a mőködéshez szükséges feszültségeket szemlélteti az alábbi ábra: 1 / 7
2 Növekményes MOSFET A D-S elektródák között úgy jönnek létre a szabad töltéshordozók, hogy a G-re kapcsolt pozitív feszültség miatt, a töltésmegosztás következtében a p rétegben, a szigetelı alatt elektronok halmozódnak fel. Ezek az U DS feszültség hatására elmozdulva létrehozzák az I D áramot. Milyen feszültséggel vezérelhetı a növekményes MOSFET? Valamennyi MOSFET változatra igaz, hogy a vezérlıelektródán nem folyik áram, hiszen igen jól el van szigetelve az áramvezetı csatornától. Ez azt jelenti, hogy a MOSFET vezérléséhez nincs szükség teljesítményre. Valóságos bementi ellenállása a szigetelıréteg szivárgási árama miatt GΩ (gigaohm!) nagyságrendő, tehát gyakorlatilag végtelennek tekinthetı. A nagy bementi ellenállás miatt külön figyelmet érdemel a MOSFET kezelése, ugyanis már az elektródák megérintésekor keletkezı elektrosztatikus töltések is tönkretehetik a tranzisztort. Ennek megakadályozására a gyártók egy ún. rövid zárgyőrővel ellátva szállítják a MOSFETeket, ezt csak beforrasztás után szabad eltávolítani. Folyik-e áram a MOSFET vezérlıelektródáján? Miért nem szükséges teljesítmény a MOSFET vezérléséhez? Mekkora a MOSFET bemeneti ellenállása? Mire kell ügyelni a MOSFET kezelésénél? Mérési feladat: COM3LAB EC2 A MOSFET átviteli jelleggörbéje. A multimédiás mérılabor utasításai szerint készítsük el a MOSFET átviteli jelleggörbéjét, majd határozzuk meg a meredekség értékét: Az átviteli jelleggörbét ugyanúgy kell mérni, mint a JFET esetében. Mivel az átviteli jelleggörbe a pozitív szakaszban van, a MOSFET nem önvezetı, hanem önzáró. Függvénygenerátor: DC Offset=5V; V pp =10V; négyszöghullám; f=50hz Oszcilloszkóp beállítása: Curve=XY, Y1/div=1V, Y2/div=1V, Y2/att=-1, X/div=1ms, Trigger=+Y2; TRIG level=-0,25v (!) 2 / 7
3 A meredekség a JFET-hez hasonlóan, a MOSFET-nél is megadja az erısítés mértékét és leírja a differenciális viszonyt a Drain áram és a Gate-Source feszültség között. Mutassa be a MOSFET vezérlését az átviteli jelleggörbe segítségével! Hogyan határozható meg a MOSFET meredeksége? Mérési feladat: COM3LAB EC2 A MOSFET kimenti jelleggörbéje. A MOSFET kimeneti jelleggörbe nyalábja leírja a Drain áram és a Drain-Source feszültség közötti viszonyt. A paraméter a Gate-Source feszültség. A multimédiás mérılabor utasításai szerint készítsük el a MOSFET kimeneti jelleggörbéjét, majd határozzuk meg a kimeneti ellenállás értékét: A Drain áramot az R3 árammérı ellenálláson mérjük. A Drain-Source feszültséget közvetlenül lehet mérni a Drain és a Source között. Függvénygenerátor: DC Offset=5V; V pp =10V; háromszögjel; f=50hz Oszcilloszkóp beállítása: Curve=XY, Y1/div=2V, Y2/div=2V, Y1/att=-1, X/div=1ms, Trigger=+Y1; Kimeneti ellenállás differenciális viszony a Drain-Source feszültség és a Drain áram között. Ez megfelel a jelleggörbe emelkedése reciprok értékének. 3 / 7
4 A kimenti jelleggörbe nyalábokból megállapítható, hogy a MOSFET a JFET-nél magasabb terhelı áramok (Drain áramok) vezérlésére is alkalmas, de a vezérelhetı terhelıáram még mindig alacsonyabb, mint a bipoláris tranzisztoroknál. Mit mutat meg a MOSFET kimeneti jelleggörbe nyalábja? Milyen hatással van a Gate feszültség a jelleggörbére? Hogyan határozható meg a kimenti ellenállás értéke? Hasonlítsuk össze a bipoláris tranzisztor, a JFET és MOSFET jellemzıit a kimeneti jelleggörbe nyaláb segítségével! Mérési feladat: COM3LAB EC2 A MOSFET mint kapcsoló. Mivel a MOSFET nem önvezetı, ezáltal a vezérlési szakasz a pozitív tartományban van, a vezérlése egyszerőbb, mint a JFET-é. MOSFET mint idıkapcsoló: A kapcsolási rajzot követve megállapítható, hogy a C1 kondenzátor feltöltıdése után, nagyon lassan sül ki a MOSFET nagy értékő bemeneti ellenállásán. A kisülés következtében csökkenı Gate-Source feszültség miatt a MOSFET zárni fog. A magas bemeneti ellenállás miatt elegendı kisebb mértékő kapacitás is a hosszabb kapcsolási idı eléréséhez. Kondenzátor R1 ellenállásra csatlakoztatása után feltöltıdik, a lámpa világít. A vezeték eltávolítását követıen a Gate-en keresztül a magas bemeneti ellenállás miatt a kondenzátor csak nagyon lassan sül ki. MOSFET alacsony ellenállású terhelésnél: A MOSFET vezéreljen egy izzólámpát. Az izzólámpa a maga 16Ω-jával igen kis értékőnek számít. A Drain áramot és a Drain-Source feszültséget záró és vezetı MOSFET-él is meg kell mérni. Ezek az értékek lesznek a munkapontok. (P zárt : kondenzátor R2; P nyitott : kondenzátor föld) 4 / 7
5 A MOSFET alkalmasabb a kis ellenállású terhelésekhez, mint a JFET. Ez a tulajdonága és az önzárás teszi alkalmassá, hogy belıle integrált áramköröket építsenek. Ezt a technikát nevezik MOS illetve CMOS technikának és igen nagy elemsőrőséget érnek el vele. Hogyan állítható be az idıvezérlés kapcsolási ideje? Miért elegendı kisebb kapacitás a hosszabb kapcsolási idı eléréséhez? Miért alkalmas a MOS technika integrált áramkörök gyártására? Ellenırzı kérdések Milyen alapkristályon történik az kiürítéses n csatornás MOSFET kialakítása? Milyen réteggel szigetelik el az n csatornát a Gate fémelektródáitól? Milyen Gate feszültséggel zárható el a Drain áram? Folyik-e áram a MOSFET vezérlıelektródáján? Miért nem szükséges teljesítmény a MOSFET vezérléséhez? Mekkora a MOSFET bemeneti ellenállása? Mire kell ügyelni a MOSFET kezelésénél? Mutassa be a MOSFET vezérlését az átviteli jelleggörbe segítségével! Hogyan határozható meg a MOSFET meredeksége? Mit mutat meg a MOSFET kimeneti jelleggörbe nyalábja? Milyen hatással van a Gate feszültség a jelleggörbére? Hogyan határozható meg a kimenti ellenállás értéke? Hasonlítsuk össze a bipoláris tranzisztor, a JFET és MOSFET jellemzıit a kimeneti jelleggörbe nyaláb segítségével! Hogyan állítható be az idıvezérlés kapcsolási ideje? Miért elegendı kisebb kapacitás a hosszabb kapcsolási idı eléréséhez? Miért alkalmas a MOS technika integrált áramkörök gyártására? 5 / 7
6 1) Jelölje meg a MOSFET alaptípusait! 2 p. a) Záróréteges b) Növekményes (I) c) Bipoláris d) Kiürítéses (I) 2) A MOSFET tranzisztor kialakítása egy p típusú alapkristályon történik. Ez a szubsztrát (hordozó). Az ebben kialakított n típusú áramvezetı csatornát az igen jó szigetelıként viselkedı szilícium-oxid réteggel elszigetelik a G fémelektródától. 3 p. 3) Jelölje I betővel az igaz és H betővel a hamis megállapításokat a kiürítéses n csatornás MOSFET mőködésére vonatkozóan! 4 p. a)...a D-S elektródák közé kapcsolt feszültség hatására az n csatorna szabad elektronjai a pozitív feszültségő Drain elektróda felé mozogva létrehozzák az I D Drain áramot. (I) b)...ha az elszigetelt G elektródára pozitív feszültséget kapcsolunk, akkor elektronok halmozódnak fel rajta. (H) c)...az U GS feszültséget növelve egyre több szabad töltéshordozó rekombinálódik, egyre inkább kiürül a csatorna. (I) d)...megfelelıen nagy U GS feszültség mellett a csatornában felhalmozódnak a szabad töltéshordozók, ezért megszőnik az áram is. Ez a feszültség az U 0 zárófeszültség. (H) 4) Miért nem szükséges teljesítmény a MOSFET vezérléséhez? 2 p. a) A vezérlıelektródáján nem folyik áram. (I) b) Bementi ellenállása gyakorlatilag végtelennek tekinthetı. (I) c) Bementi ellenállása néhány ohm. d) A vezérlıelektródáján az I D -vel arányos áram folyik. 5) Mire kell ügyelni a MOSFET kezelésénél? 1 p. a) A kis bementi ellenállás miatt az elektródák megérintésekor keletkezı elektrosztatikus töltések is tönkretehetik a tranzisztort. b) A nagy bementi ellenállás miatt az elektródák megérintésekor keletkezı elektrosztatikus töltések is tönkretehetik a tranzisztort. (I) c) A MOSFET elektrosztatikus töltésre érzéketlen, mert vezérlıelektródáin nagy áram folyik. 6) Mit határoz meg a MOSFET meredeksége? 1 p. a) A bementi ellenállás értékét b) Az erısítés mértékét. (I) c) A kimeneti ellenállás értékét d) A be és kimeneti ellenállás arányát 7) A MOSFET kimeneti ellenállása a Drain-Source. feszültség és a Drain áram változás hányadosa. Ez megfelel a jelleggörbe emelkedése reciprok. értékének. 2 p. 6 / 7
7 8) Jelölje I betővel az igaz, H betővel a hamis állítást pontozott helyeken! 4 p. a)...a MOSFET a JFET-nél magasabb terhelı áramok (Drain áramok) vezérlésére is alkalmas. (I) b)...a MOSFET-tel vezérelhetı terhelıáram alacsonyabb, mint a bipoláris tranzisztoroknál. (I) c)...a MOSFET használható feszültséggel vezérelt ellenállásként. Tipikus csatorna-ellenállása a Drain- és a Source elektródák között: ω. (I) d)...a MOSFET a JFET-nél alacsonyabb terhelı áramok (Drain áramok) vezérlésére alkalmas. (H) 9) Jelölje a MOSFET idıvezérlés kapcsolási idejére vonatkozó helyes megállapításokat? 2 p. a) A MOSFET magas bemeneti ellenállása miatt elegendı kisebb értékő kapacitás is a hosszabb kapcsolási idı eléréséhez. (I) b) A MOSFET magas bemeneti ellenállása miatt nagyobb értékő kapacitás szükséges a hosszabb kapcsolási idı eléréséhez. c) A kondenzátor feltöltıdése után nagyon lassan sül ki a MOSFET nagy értékő bemeneti ellenállásán. (I) d) A kondenzátor feltöltıdése után nagyon gyorsan sül ki a MOSFET nagy értékő bemeneti ellenállásán. 10) A MOSFET önzáró tulajdonsága és kis ellenállású terhelések kapcsolására való alkalmassága lehetıvé teszi, hogy belıle integrált áramköröket építsenek. 3 p. 7 / 7
UNIPOLÁRIS TRANZISZTOR
UNIPOLÁRIS TRANZISZTOR Az unipoláris tranzisztorok térvezérléső tranzisztorok (Field Effect Transistor). Az ilyen tranzisztorok kimeneti áramának nagyságát a bemeneti feszültséggel létrehozott villamos
A BIPOLÁRIS TRANZISZTOR.
A BIPOLÁRIS TRANZISZTOR. A bipoláris tranzisztor kialakításához a félvezetı kristályt három rétegben n-p-n vagy p-n-p típusúra adalékolják. Az egyes rétegek elnevezése emitter (E), bázis (B), kollektor
FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás
FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás A tranzisztor felfedezése A tranzisztor kifejlesztését a Lucent Technologies kutatóintézetében, a Bell Laboratóriumban végezték el. A laboratóriumban három
Hobbi Elektronika. Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET)
Hobbi Elektronika Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET) 1 Felhasznált irodalom Sulinet Tudásbázis: Unipoláris tranzisztorok Electronics Tutorials: The MOSFET CONRAD Elektronik: Elektronikai
I. Nyitó lineáris tartomány II. Nyitó exponenciális tartomány III. Záróirányú tartomány IV. Letörési tartomány
A DIÓDA. A dióda áramiránytól függı ellenállású alkatrész. Az egykristály félvezetı diódákban a p-n átmenet tulajdonságait használják ki. A p-n átmenet úgy viselkedik, mint egy áramszelep, az áramot az
III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?
III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok
8.B 8.B. 8.B Félvezetı áramköri elemek Unipoláris tranzisztorok
8.B Félvezetı áramköri elemek Unipoláris tranzisztorok Értelmezze az unipoláris tranzisztorok felépítését, mőködését, feszültség- és áramviszonyait, s emelje ki a térvezérlés szerepét! Rajzolja fel a legfontosabb
- elektromos szempontból az anyagokat három csoportra oszthatjuk: vezetők félvezetők szigetelő anyagok
lektro- és irányítástechnika. jegyzet-vázlat 1. Félvezető anyagok - elektromos szempontból az anyagokat három csoportra oszthatjuk: vezetők félvezetők szigetelő anyagok - vezetők: normál körülmények között
Adatok: R B1 = 100 kω R B2 = 47 kω. R 2 = 33 kω. R E = 1,5 kω. R t = 3 kω. h 22E = 50 MΩ -1
1. feladat R B1 = 100 kω R B2 = 47 kω R C = 3 kω R E = 1,5 kω R t = 4 kω A tranzisztor paraméterei: h 21E = 180 h 22E = 30 MΩ -1 a) Számítsa ki a tranzisztor kollektor áramát, ha U CE = 6,5V, a tápfeszültség
Műveleti erősítők - Bevezetés
Analóg és digitális rsz-ek megvalósítása prog. mikroák-kel BMEVIEEM371 Budapesti Műszaki és Gazdaságtudományi Egyetem Műveleti erősítők - Bevezetés Takács Gábor Elektronikus Eszközök Tanszéke (BME) 2014.
ELEKTRONIKA I. TRANZISZTOROK. BSc Mérnök Informatikus Szak Levelező tagozat
ELEKTRONIKA I. TRANZISZTOROK BSc Mérnök Informatikus Szak Levelező tagozat Tranzisztorok Elemi félvezető eszközök Alkalmazásuk Analóg áramkörökben: erősítők Digitális áramkörökben: kapcsolók Típusai BJT
Elektronika I. Dr. Istók Róbert. II. előadás
Elektronika I Dr. Istók Róbert II. előadás Tranzisztor működése n-p-n tranzisztor feszültségmentes állapotban p-n átmeneteknél kiürített réteg jön létre Az emitter-bázis réteg között kialakult diódát emitterdiódának,
10.B Tranzisztoros alapáramkörök Munkapont-beállítás
0.B ranzisztoros alapáramkörök Munkapont-beállítás Definiálja a lineáris és a nemlineáris mőködést, a sztatikus és a dinamikus üzemmódot! Értelmezze a munkapont, a munkaegyenes fogalmát és szerepét! Mutassa
- elektromos szempontból az anyagokat három csoportra oszthatjuk: vezetık félvezetık szigetelı anyagok
lektro- és irányítástechnika. jegyzet-vázlat 1. Félvezetı anyagok - elektromos szempontból az anyagokat három csoportra oszthatjuk: vezetık félvezetık szigetelı anyagok - vezetık: normál körülmények között
Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.
El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Diszkrét aktív alkatrészek és egyszerû alkalmazásaik. Elmélet A diszkrét aktív elektronikai alkatrészek (dióda, különbözõ tranzisztorok, tirisztor) elméleti
ELEKTRONIKA I. (KAUEL11OLK)
Félévi követelmények és beadandó feladatok ELEKTRONIKA I. (KAUEL11OLK) tárgyból a Villamosmérnöki szak levelező tagozat hallgatói számára Óbuda Budapest, 2005/2006. Az ELEKTRONIKA I. tárgy témaköre: Az
MUNKAANYAG. Mészáros Miklós. Félvezető eszközök, áramköri elemek II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása
Mészáros Miklós Félvezető eszközök, áramköri elemek II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma
Gingl Zoltán, Szeged, :44 Elektronika - Diódák, tranzisztorok
Gingl Zoltán, Szeged, 2016. 2016. 12. 13. 7:44 Elektronika - Diódák, tranzisztorok 1 2016. 12. 13. 7:44 Elektronika - Diódák, tranzisztorok 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó
Gingl Zoltán, Szeged, dec. 1
Gingl Zoltán, Szeged, 2017. 17 dec. 1 17 dec. 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó irányban tökéletes vezető (rövidzár) Záró irányban tökéletes szigetelő (szakadás) Valódi dióda:
DIGITÁLIS TECHNIKA 11. Előadás
DIGITÁLIS TECHNIKA 11. Előadás Előadó: Dr. Oniga István Egyetemi docens 2010/2011 II félév Digitális integrált áramkörök technológiája A logikai áramkörök megépítéséhez elıször is ki kell választanunk
12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok
12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-
A PC vagyis a személyi számítógép. VI. rész A mikroprocesszort követően a számítógép következő alapvető építőegysége a memória
i smer d meg! A PC vagyis a személyi számítógép VI. rész A mikroprocesszort követően a számítógép következő alapvető építőegysége a memória (lásd a klasszikus architekturájú univerzális számítógép rendszertömbvázlatát
13.B 13.B. 13.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások
3.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások Ismertesse a többfokozatú erısítık csatolási lehetıségeit, a csatolások gyakorlati vonatkozásait és azok alkalmazási korlátait! Rajzolja
Tájékoztató. Használható segédeszköz: számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított), a 27/2012 (VIII. 27.) NGM rendelet a 29/2016 (III.26.) NMG rendelet által módosított, a 27/2012 (VIII. 27.) NGM rendelet
Hobbi Elektronika. Bevezetés az elektronikába: FET tranzisztoros kapcsolások
Hobbi Elektronika Bevezetés az elektronikába: FET tranzisztoros kapcsolások 1 Felhasznált irodalom CONRAD Elektronik: Elektronikai kíséletező készlet útmutatója 2 FET tranzisztorok FET = Field Effect Transistor,
Elektronika 11. évfolyam
Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.
11.2. A FESZÜLTSÉGLOGIKA
11.2. A FESZÜLTSÉGLOGIKA Ma a feszültséglogika számít az uralkodó megoldásnak. Itt a logikai változó két lehetséges állapotát két feszültségérték képviseli. Elvileg a két érték minél távolabb kell, hogy
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem MIKROELEKTRONIKA, VIEEA306 A MOS inverterek http://www.eet.bme.hu/~poppe/miel/hu/13-mosfet2.ppt http://www.eet.bme.hu Vizsgált absztrakciós szint RENDSZER
Elektronika 2. TFBE1302
Elektronika 2. TFBE1302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3
Térvezérlésű tranzisztor
Térvezérlésű tranzisztor A térvezérlésű tranzisztorok a vékonyréteg félvezetős eszközök kategoriájába sorolhatók és a tranzisztorok harmadik generációját képviselik. 1948-ban jelentik be amerikai kutatók
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS
Irányítástechnika Elıadás. A logikai hálózatok építıelemei
Irányítástechnika 1 6. Elıadás A logikai hálózatok építıelemei Irodalom - Kovács Csongor: Digitális elektronika, 2003 - Zalotay Péter: Digitális technika, 2004 - U. Tiecze, Ch. Schenk: Analóg és digitális
1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?
Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,
ELEKTRONIKAI ALAPISMERETEK
Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006
29.B 29.B. Kombinációs logikai hálózatok
29.B Digitális alapáramkörök Logikai alapáramkörök Ismertesse a kombinációs hálózatok jellemzıit! Ismertesse az alapfüggvényeket megvalósító TTL és CMOS kapuáramkörök jellemzıit és kimeneti megoldásait!
MODULÁRAMKÖRÖK ÉS KÉSZÜLÉKEK
MODULÁRAMKÖRÖK ÉS KÉSZÜLÉKEK Moduláramkörök alapvető építőelemei Gross Péter Hardware fejlesztő, ARH Informatikai Zrt. E-mail: peter.gross@arh.hu Utoljára módosítva: 2016. 10. 09. BUDAPEST UNIVERSITY OF
Laptop: a fekete doboz
Laptop: a fekete doboz Dankházi Zoltán ELTE Anyagfizikai Tanszék Lássuk a fekete doboz -t NÉZZÜK MEG! És hány GB-os??? SZEDJÜK SZÉT!!!.2.2. AtomCsill 2 ... hát akkor... SZEDJÜK SZÉT!!!.2.2. AtomCsill 3
33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Áramkörök számítása, szimulációja és mérése próbapaneleken
Áramkörök számítása, szimulációja és mérése próbapaneleken. Munkapontbeállítás Elektronika Tehetséggondozás Laboratóriumi program 207 ősz Dr. Koller István.. NPN rétegtranzisztor munkapontjának kiszámítása
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
Mûveleti erõsítõk I.
Mûveleti erõsítõk I. 0. Bevezetés - a mûveleti erõsítõk mûködése A következõ mérésben az univerzális analóg erõsítõelem, az un. "mûveleti erõsítõ" mûködésének alapvetõ ismereteit sajátíthatjuk el. A nyílthurkú
ELKON S-304 autó villamossági mőszer áramköri leírása
ELKON S-304 autó villamossági mőszer áramköri leírása 7.1 Tápegység A mérımőszer tápegysége a T 105, T 106 tranzisztorokból, a D 111, 115 diódákból, a C 131, 132 kondenzátorokból és az R 145 ellenállásokból
Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0
Logikai áramkörök Feszültségszintek A logikai rendszerekben az állapotokat 0 ill. 1 vagy H ill. L jelzéssel jelöljük, amelyek konkrét feszültségszinteket jelentenek. A logikai algebrában a változókat nagy
A/D és D/A konverterek vezérlése számítógéppel
11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,
Összefüggő szakmai gyakorlat témakörei
Összefüggő szakmai gyakorlat témakörei Villamosipar és elektronika ágazat Elektrotechnika gyakorlat 10. évfolyam 10 óra Sorszám Tananyag Óraszám Forrasztási gyakorlat 1 1.. 3.. Forrasztott kötés típusai:
MIKROELEKTRONIKA, VIEEA306
Buapesti Műszaki és Gazaságtuományi Egyetem MKROEEKTRONKA, VEEA6 Térvezérelt tranzisztorok. A JFET-ek http://www.eet.bme.hu/~poppe/miel/hu/11-jfet.ppt http://www.eet.bme.hu Vizsgált absztrakciós szint
Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások
Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Egyenirányítás: egyenáramú komponenst nem tartalmazó jelből egyenáramú összetevő előállítása. Nemlineáris áramköri elemet tartalmazó
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
Mikroelektronika és technológia, VI. sz gyakorlat Mérések a CMOS IC gyártási eljárás ellenõrzésére
Mikroelektronika és technológia, VI. sz gyakorlat Mérések a CMOS IC gyártási eljárás ellenõrzésére Célkitûzés: A gyakorlat célja a CMOS IC-k viselkedésének megismerése, kapcsolat keresése az eszköz tulajdonságok
Alapkapuk és alkalmazásaik
Alapkapuk és alkalmazásaik Bevezetés az analóg és digitális elektronikába Szabadon választható tárgy Összeállította: Farkas Viktor Irányítás, irányítástechnika Az irányítás esetünkben műszaki folyamatok
MIKROELEKTRONIKA 7. MOS struktúrák: -MOS dióda, Si MOS -CCD (+CMOS matrix) -MOS FET, SOI elemek -MOS memóriák
MIKROELEKTRONIKA 7. MOS struktúrák: -MOS dióda, Si MOS -CCD (+CMOS matrix) -MOS FET, SOI elemek -MOS memóriák Fém-félvezetó p-n A B Heteroátmenet MOS Metal-oxide-semiconductor (MOS): a mikroelektronika
Elektronika alapjai. Témakörök 11. évfolyam
Elektronika alapjai Témakörök 11. évfolyam Négypólusok Aktív négypólusok. Passzív négypólusok. Lineáris négypólusok. Nemlineáris négypólusok. Négypólusok paraméterei. Impedancia paraméterek. Admittancia
PN átmenet kivitele. (B, Al, Ga, In) (P, As, Sb) A=anód, K=katód
PN átmenet kivitele A pn átmenet: Olyan egykristályos félvezető tartomány, amelyben egymással érintkezik egy p és egy n típusú övezet. Egy pn átmenetből álló eszköz a dióda. (B, Al, Ga, n) (P, As, Sb)
EGYENÁRAMÚ TÁPEGYSÉGEK
dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
Érzékelők és beavatkozók
Érzékelők és beavatkozók DC motorok 3. rész egyetemi docens - 1 - DC motorvezérlés H-híd: +V r Motor mozgatás előre Motor mozgatás hátra Fékezés Szabadonfutás a vezérlés függvényében UL LL + Ø - UR LR
Földzaj. Földzaj problémák a nagy meghajtó képességű IC-knél
Földzaj. Földzaj problémák a nagy meghajtó képességű IC-knél A nagy áram meghajtó képességű IC-nél nagymértékben előjöhetnek a földvezetéken fellépő hirtelen áramváltozásból adódó problémák. Jelentőségükre
Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.
El. II. 5. mérés. SZIMMETRIKUS ERŐSÍTŐK MÉRÉSE. A mérés célja : Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. A mérésre való felkészülés során tanulmányozza
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Elektronikai
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését
Elektronika 2. TFBE5302
Elektronika 2. TFBE5302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3
Bevezetés az elektronikába
Bevezetés az elektronikába 2. Feladatsor: Feszültségosztó, dióda karakterisztika, alternatív kapcsolás, kapcsoló logika Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Feszültségosztó
A PC vagyis a személyi számítógép. VII. rész
ismerd meg! A PC vagyis a személyi számítógép MOS logikai integrált áramkörök II. rész A MOS logikai áramkörök kapcsolástechnikai megvalósítását és mûködését egy egyszerû, diszkrét alkatrészekbõl felépített
Integrált áramkörök/2 Digitális áramkörök/1 MOS alapáramkörök. Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék
Integrált áramkörök/2 Digitális áramkörök/1 MOS alapáramkörök Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék Mai témák Az inverter, alapfogalmak Kiürítéses típusú MOS inverter Kapuáramkörök kialakítása
1. Visszacsatolás nélküli kapcsolások
1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ
Versenyző kódja: 31 15/2008. (VIII. 13) SZMM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny
54 523 01 0000 00 00-2014 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 01 0000 00 00 SZVK rendelet száma: 15/2008 (VIII. 13.) SZMM
2.Előadás ( ) Munkapont és kivezérelhetőség
2.lőadás (207.09.2.) Munkapont és kivezérelhetőség A tranzisztorokat (BJT) lineáris áramkörbe ágyazva "működtetjük" és a továbbiakban mindig követelmény, hogy a tranzisztor normál aktív tartományban működjön
19.B 19.B. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges:
9.B Alapáramkörök alkalmazásai Oszcillátorok Ismertesse a szinuszos rezgések elıállítására szolgáló módszereket! Értelmezze az oszcillátoroknál alkalmazott pozitív visszacsatolást! Ismertesse a berezgés
Foglalkozási napló a 20 /20. tanévre
Foglalkozási napló a 20 /20. tanévre Elektronikai műszerész szakma gyakorlati oktatásához OKJ száma: 34 522 03 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma: Tanulók
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem MIKROELEKTRONIKA, VIEEA306 Térvezérelt tranzisztorok II. A MOSFET-ek http://www.eet.bme.hu/~poppe/miel/hu/12-mosfet1.ppt http://www.eet.bme.hu Ismétlés: Működési
Mérési utasítás. P2 150ohm. 22Kohm
Mérési utasítás A mérés célja: Tranzisztorok és optocsatoló mérésén keresztül megismerkedni azok felhasználhatóságával, tulajdonságaival. A mérés során el kell készíteni különböző félvezető alkatrészek
Teljesítményerősítők ELEKTRONIKA_2
Teljesítményerősítők ELEKTRONIKA_2 TEMATIKA Az emitterkövető kapcsolás. Az A osztályú üzemmód. A komplementer emitterkövető. A B osztályú üzemmód. AB osztályú erősítő. D osztályú erősítő. 2012.04.18. Dr.
Teljesítmény-erősítők. Elektronika 2.
Teljesítmény-erősítők Elektronika 2. Az erősítés elve Erősítés: vezérelt energia-átalakítás Vezérlő teljesítmény: Fogyasztó teljesítmény-igénye: Tápforrásból felvett teljesítmény: Disszipálódott teljesítmény:
1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
Elektronika 1. 4. Előadás
Elektronika 1 4. Előadás Bipoláris tranzisztorok felépítése és karakterisztikái, alapkapcsolások, munkapont-beállítás Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch.
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK Szóbeli vizsgarész értékelési táblázata A szóbeli felelet értékelése az alábbi szempontok és alapján történik:
6.B 6.B. Zener-diódák
6.B Félvezetı áramköri elemek Speciális diódák Ismertesse a Zener-, a varicap-, az alagút-, a Schottky-, a tős-dióda és a LED felépítését, jellemzıit és gyakorlati alkalmazási lehetıségeit! Rajzolja fel
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 481 03 Infokommunikációs hálózatépítő
Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő
Műveleti erősítők A műveleti erősítők egyenáramú erősítőfokozatokból felépített, sokoldalúan felhasználható áramkörök, amelyek jellemzőit A u ', R be ', stb. külső elemek csatlakoztatásával széles határok
Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6
Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.
Bevezetés az elektronikába
Bevezetés az elektronikába 6. Feladatsor: Egyszerű tranzisztoros kapcsolások Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Tranziens (átmeneti) jelenségek Az előzőekben csupán az
4.A 4.A. 4.A Egyenáramú hálózatok alaptörvényei Ohm és Kirchhoff törvények
4.A Egyenáramú hálózatok alaptörvényei Ohm és Kirchhoff törvények Mutassa be az egyszerő áramkör felépítését és jellemzıit! Értelmezze a t, mint töltésszétválasztót és a fogyasztót, mint töltés kiegyenlítıt!
A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük.
Elektromos mezőben az elektromos töltésekre erő hat. Az erő hatására az elektromos töltések elmozdulnak, a mező munkát végez. A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
(1900. június 5. Budapest 1979. február 8. London)
100 éve született Gábor Dénes Gábor Dénes a holográfia atyja (1900. június 5. Budapest 1979. február 8. London) A jövõt nem lehet megjósolni, de jövõnket föl lehet találni. Gábor Dénes Gábor Dénes, angol
MIKROELEKTRONIKA, VIEEA306
Budapesti Műszaki és Gazdaságtudományi Egyetem MKROELEKTRONKA, VEEA306 A bipoláris tranzisztor. http://www.eet.bme.hu/~poppe/miel/hu/08-bipol3.ppt http://www.eet.bme.hu Az ideális tranzisztor karakterisztikái
Mikroelektronika. Számolja ki, hogy mekkora nyitófeszültség mellett lesz a nmos tranzisztor telítési árama 10mA. (V T =0.
Mikroelektronika Minek a rövidítése az MPW? Ez mit jelent magyarul? Mi a gazdasági előnye? MPW = multi project wafer, magyarul a lényege: egy szeleten 10-15 terv kerül legyártásra. Gazdasági előnye: a
Gingl Zoltán, Szeged, :14 Elektronika - Hálózatszámítási módszerek
Gingl Zoltán, Szeged, 05. 05.09.9. 9:4 Elektronika - Hálózatszámítási módszerek 05.09.9. 9:4 Elektronika - Alapok 4 A G 5 3 3 B C 4 G Áramköri elemek vezetékekkel összekötve Csomópontok Ágak (szomszédos
Bevezetés az analóg és digitális elektronikába. V. Félvezető diódák
Bevezetés az analóg és digitális elektronikába V. Félvezető diódák Félvezető dióda Félvezetőknek nevezzük azokat az anyagokat, amelyek fajlagos ellenállása a vezetők és a szigetelők közé esik. (Si, Ge)
Versenyző kódja: 7 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.
54 523 02-2017 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási,
Hobbi Elektronika. Bevezetés az elektronikába: A tranzisztor, mint kapcsoló
Hobbi Elektronika Bevezetés az elektronikába: A tranzisztor, mint kapcsoló 1 Felhasznált irodalom Tudásbázis: Bipoláris tranzisztorok (Sulinet - szakképzés) Wikipedia: Tranzisztor Szabó Géza: Elektrotechnika-Elektronika
Vízgépészeti és technológiai berendezésszerelő Épületgépészeti rendszerszerelő
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2011. (VII. 18.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor
Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék Mai témák A CMOS inverter, alapfogalmak működés, számitások, layout CMOS kapu áramkörök
sz. mérés (négypólus)
14 2.4 4. sz. mérés (négypólus) 4.10 Négypólus paraméterek mérése, T kapcsolás (4.10-3 ábrától a 4.10-11 ábráig) 10. ábra A jegyzetben általánosan tárgyaltuk a négypólusokat, a mérend T típusú négypólus
5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA
5. MÉRÉS LC OSZCILLÁTOROK VIZSGÁLATA BMF-Kandó 2006 2 A mérést végezte: A mérés időpontja: A mérésvezető tanár tölti ki! Mérés vége:. Az oszcillátorok vizsgálatánál a megadott kapcsolások közül csak egyet
51. A földelt emitteres kapcsolás és munkaegyenes, munkapont
51. A földelt emitteres kapcsolás és munkaegyenes, munkapont Munkaponti adatok meghatározása: A kapcsolás munkapontját bázisellenállással vagy bázisosztó alkalmazásával állíthatjuk be. A bemenet a bázis-emitter,
Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedés- és Járműirányítási Tanszék Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Segédlet az Irányítástechnika I.
ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 4. DC MOTOROK VEZÉRLÉS
ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 4. DC MOTOROK VEZÉRLÉS Dr. Soumelidis Alexandros 2019.03.06. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG DC motorvezérlés
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)