Gingl Zoltán, Szeged, :14 Elektronika - Hálózatszámítási módszerek
|
|
- Ildikó Molnár
- 8 évvel ezelőtt
- Látták:
Átírás
1 Gingl Zoltán, Szeged, :4 Elektronika - Hálózatszámítási módszerek
2 :4 Elektronika - Alapok
3 4 A G B C 4 G Áramköri elemek vezetékekkel összekötve Csomópontok Ágak (szomszédos csomópontok közt, nincs elágazás) Áramköri elemek Az elemeken eső feszültség Az elemeken átfolyó áram? :4 Elektronika - Alapok 3
4 deális elemek egyszerűbb számíthatóság jó közelítése a valóságnak Valós elemek, alkatrészek ideális elemek kombinációjával kezelhetők :4 Elektronika - Alapok 4
5 Vezetékek (wire) Csomópontok (junction) Generátorok (jelforrások) Passzív áramköri elemek ellenállás (resistor) kondenzátor, kapacitás (capacitor) induktivitás (inductor) Félvezető elemek (dióda, tranzisztor, ) Aktív áramköri elemek kis jel nagyobbat hoz létre (áram, feszültség, teljesítmény) :4 Elektronika - Alapok 5
6 Bármekkora áram, nincs feszültségesés Feszültség áram összefüggés: =0V, =bármekkora Az áram értékét az áramkör többi része határozza meg :4 Elektronika - Alapok 6
7 A feszültség nem függ a rákötött terheléstől Feszültség áram összefüggés: ()= G G =0V esetén vezeték! Polaritás, előjel Az áram bármekkora lehet, az áramkör határozza meg G :4 Elektronika - Alapok 7
8 Az áram nem függ a rákötött terheléstől Az áram nem függ a feszültségtől Feszültség áram: ()= G G =0A esetén szakadás! Polaritás, előjel A feszültség bármekkora lehet G :4 Elektronika - Alapok 8
9 Két pont közötti feszültség mérése Párhuzamosan kötjük be Nem szabad a mért mennyiséget befolyásolni: szakadásként viselkedik Előjeles: pozitív és negatív is lehet V :4 Elektronika - Alapok 9
10 Vezetéken átfolyó áram mérése Sorosan kötjük be Nem szabad a mért mennyiséget befolyásolni: rövidzárként/vezetékként viselkedik Előjeles: pozitív pólusba befolyó áram pozitív A :4 Elektronika - Alapok 0
11 Feszültség áram: ()= előjeles! Feszültség polaritása? Áram iránya? Technikai áramirány: pozitív töltések mozgási iránya Voltmérő, árammérő mit mutat? V A :4 Elektronika - Alapok
12 Kirchoff. törvénye, csomóponti törvény áramlás szétoszlása, mechanikai analógia Kirchoff. törvénye, huroktörvény A feszültség additív mennyiség Ohm törvénye Az ellenállás definiálása Mechanikai analógiák :4 Elektronika - Alapok
13 Egy csomópontba befolyó áramok összege megegyezik a kifolyó áramok összegével. A csomópontba befolyó áramok algebrai összege nulla. A kifolyó áramok előjele negatív. Tetszőlegesen felvehetjük az áramok irányát (negatív lesz a számítás után, ha nem a valóságost vettük fel) = =0V :4 Elektronika - Alapok 3
14 Egy zárt áramköri hurokban a jelforrások által létrehozott feszültségek összege megegyezik a passzív komponenseken eső feszültségek összegével az áramköri elemeken eső feszültségek összege nulla. A körüljárási irány adja az előjelet! Egy voltmérővel járjuk körbe a hurkot! :4 Elektronika - Alapok 4
15 = + =0V V G V V G V :4 Elektronika - Alapok 5
16 . A alkatrészek adatainak ismerete. Minden alkatrészen az áram és feszültség viszonyának ismerete 3. A törvények alkalmazása 4. Egyenletek felírása 5. Egyenletek megoldása :4 Elektronika - Alapok 6
17 :4 Elektronika - Hálózatszámítási módszerek 7
18 eceptszerű számítási módszerek Bármilyen bonyolult esetre egyszerű kezelés A megértést is segítheti :4 Elektronika - Hálózatszámítási módszerek 8
19 Minden csomópontra: csomóponti törvény Minden szomszédos csomópontot összekötő ágra Az ágon belüli alkatrészeken eső feszültségek összege = a végpontok közti feszültségkülönbség :4 Elektronika - Hálózatszámítási módszerek 9
20 6 G 3 G 4 G A B C D V G C G B C B C A B A G A :4 0 Elektronika - Hálózatszámítási módszerek
21 Zárt áramköri hurkokra huroktörvény minden ág legyen lefedve Egyszerű egyenletrendszer a hurokáramokra Az előjelre vigyázni kell! A huroktörvény kétféle megfogalmazása szerint Preferált: generátorok feszültségeit kifejezni :4 Elektronika - Hálózatszámítási módszerek
22 G3 G G :4 Elektronika - Hálózatszámítási módszerek
23 V G G G G :4 3 Elektronika - Hálózatszámítási módszerek
24 a hurokhoz tartozó ágakban folyó áramok közös része az ágáramok kiszámíthatók ezekből ágáram: minden olyan hurokáram algebrai összege, mely tartalmazza az ágat ha egy ág csak egy hurokhoz tartozik :4 Elektronika - Hálózatszámítási módszerek 4
25 i i 3 i i i 3 4 G3 4 i i G i 3 G i 5 6 i i i :4 Elektronika - Hálózatszámítási módszerek 5
26 ) ( 0 ) ( ) ( ) ( i i i i i i i i i i i i G G G G ) ( ) ( ) ( i i i i i i i i i G G G G Átrendezve: :4 6 Elektronika - Hálózatszámítási módszerek
27 , 0,, 0 0,,,,,, V u u u G G G G i i i u i i i u i i i u Ezzel: :4 7 Elektronika - Hálózatszámítási módszerek
28 Az egyenlet baloldalán: u k a k-adik hurokhoz tartozó generátorok feszültségösszege pozitív egy generátor járuléka, ha olyan irányú áramot hozna létre, mint az i k hurokáram A hurokáramok együtthatói (ellenállásmátrix): kk a k-adik hurokhoz tartozó ellenállások összege kj a k-adik és j-edik hurokhoz tartozó ellenállások előjeles összege (negatív, ha i k és i j ellentétesen folyik) kj = jk :4 Elektronika - Hálózatszámítási módszerek 8
29 :4 Elektronika - Hálózatszámítási módszerek 9
30 Egy részhálózat, mely két ponton csatlakozik a hálózat többi részéhez, helyettesíthető egy feszültséggenerátorral és egy vele sorba kötött ellenállással észhálózat: generátorok, ellenállások TH TH :4 Elektronika - Hálózatszámítási módszerek 30
31 TH = ü észhálózat: generátorok, ellenállások TH TH V V ü :4 Elektronika - Hálózatszámítási módszerek 3
32 TH = TH / r = Ü / r r észhálózat: generátorok, ellenállások A TH TH A :4 Elektronika - Hálózatszámítási módszerek 3
33 Generátor = 0V rövidzár TH = eredő ellenállás, ha a generátorokat rövidzárakkal helyettesítjük észhálózat: csak ellenállások TH :4 Elektronika - Hálózatszámítási módszerek 33
34 Egy részhálózat, mely két ponton csatlakozik a hálózat többi részéhez, helyettesíthető egy áramgenerátorral és egy vele párhuzamosan kötött ellenállással észhálózat: generátorok, ellenállások N N :4 Elektronika - Hálózatszámítási módszerek 34
35 Egy áramkörben a generátorok hatása összegződik Bármely ágáramot, csomóponti feszültséget kiszámíthatjuk úgy, hogy csak egy generátor hatását vizsgáljuk ezek a részáramok, részfeszültségek Egy generátor hatásának vizsgálatakor: a többi feszültséggenerátor 0V, azaz rövidzár, a többi áramgenerátor 0A, azaz szakadás. Ezen részmennyiségek összege lesz a megoldás :4 Elektronika - Hálózatszámítási módszerek 35
36 :4 Elektronika - Hálózatszámítási módszerek 36
37 :4 Elektronika - Hálózatszámítási módszerek 37
38 V + 3 = + 4 = G 3 =- G, előjel! V G G V 3 V :4 Elektronika - Alapok 38
39 V =0V = G 3 =- G, előjel! V G G V 3 V :4 Elektronika - Alapok 39
40 V G G :4 Elektronika - Alapok 40
41 + V G G :4 Elektronika - Alapok 4
42 + + 3 V G G :4 Elektronika - Alapok 4
43 =0V V G G 0V :4 Elektronika - Alapok 43
44 Az ellenálláson az áram a pozitívabb feszültségű kivezetéstől a negatívabb felé folyik A V G V :4 Elektronika - Alapok 44
45 Elvileg tetszőlegesen kiválaszthatjuk Gyakorlati szempontokat figyelembe veszünk Fémdoboz pontja, védőföldelés A 0V vezetékezése így kevesebb, egyszerűbb is Egyetlen pont feszültsége? A földhöz képest igen! Csomópont feszültségéről beszélhetünk, ami az áramkör földpontjához képest értendő :4 Elektronika - Alapok 45
46 :4 Elektronika - Hálózatszámítási módszerek 46
47 A - B V V A A B G V V G B :4 Elektronika - Alapok 47
48 A, B, C a 0V-hoz képest mért feszültségek A B 3 C G 4 Mekkora A, B, C? :4 Elektronika - Alapok 48
49 A Tipp B kiszámításához: párhozamosan van kapcsolva 3 és 4 soros eredőjéhez B 3 C A B G 4 G E :4 Elektronika - Alapok 49
50 3 G 4 V ü 3 G 4 A r :4 Elektronika - Hálózatszámítási módszerek 50
51 3 G 4 V ü 3 4 TH :4 Elektronika - Hálózatszámítási módszerek 5
52 Mekkora B? smerjük A és C értékét A B C B A C Hogyan számítható ki? :4 Elektronika - Alapok 5
53 A C Mekkora legyen tehát, és B? :4 53 Elektronika - Alapok 5 V C A C A A B B
54 Négy ellenállás Két feszültségosztó Két független ág EF ismert, pontos Mérjük: B - A Mekkora B - A? A B EF EF A EF B :4 Elektronika - Alapok 54
55 Szenzorok: / kicsi Nyomás, mérlegcella, Kicsi változás mérése Ekkor jó a híd. Miért? Mekkora B - A? Az előbbi alapján számoljuk ki A EF B :4 Elektronika - Alapok 55
56 3 A generátorok hatása összegződik Egy generátor hatása: a többi 0V, azaz rövidzár G G G :4 Elektronika - Hálózatszámítási módszerek 56
57 3 G hatása G G :4 Elektronika - Hálózatszámítási módszerek 57
58 3 G hatása G G :4 Elektronika - Hálózatszámítási módszerek 58
59 3 G3 hatása G3 3 G :4 Elektronika - Hálózatszámítási módszerek 59
60 3 G hatása G 3 3 G :4 Elektronika - Hálózatszámítási módszerek 60
61 3 G hatása G G :4 Elektronika - Hálózatszámítási módszerek 6
62 3 G3 hatása G3 3 G :4 Elektronika - Hálózatszámítási módszerek 6
63 3 Legyen egy áramgenerátor is! Ezt is meg tudnánk oldani? G G G :4 Elektronika - Hálózatszámítási módszerek 63
64 3 G hatása? G :4 Elektronika - Hálózatszámítási módszerek 64
65 3 G hatása? G :4 Elektronika - Hálózatszámítási módszerek 65
66 3 G3 hatása? G :4 Elektronika - Hálózatszámítási módszerek 66
67 3 G hatása? G :4 Elektronika - Hálózatszámítási módszerek 67
68 3 G hatása? G :4 Elektronika - Hálózatszámítási módszerek 68
69 3 G3 hatása? G :4 Elektronika - Hálózatszámítási módszerek 69
70 Egy áramkör kimenetére másik áramkört kötünk Befolyásolja a működést észhálózat: generátorok, ellenállások észhálózat: generátorok, ellenállások :4 Elektronika - Hálózatszámítási módszerek 70
71 Példa 3 G :4 Elektronika - Hálózatszámítási módszerek 7
72 Thevenin helyettesítés mindkét oldalon ki ki be 3 4 TH be :4 Elektronika - Hálózatszámítási módszerek 7
73 Digitális voltmérő belső ellenállása 0M Mekkora feszültséget mutat, ha egy 5V-os generátort 00k soros ellenálláson kötünk rá? 00k 5V 0M V :4 Elektronika - Hálózatszámítási módszerek 73
74 Az oszcilloszkóp bemeneti ellenállása M Mekkora lehet a jelforrás kimeneti ellenállása, ha maximum 5% hibát okozhat?? M V :4 Elektronika - Hálózatszámítási módszerek 74
75 Mekkora a méréstartománya? Thevenin helyettesítés? Bemeneti ellenállása? 30k9,5V 7k 39k V 0..,5V :4 Elektronika - Hálózatszámítási módszerek 75
76 Thevenin helyettesítés:,5v generátor és 30k9, 39k 30k9,5V 7k8,398V BE 7k ADC ADC BE 7k ADC ADC 39k 30k939k 7k8 30k9 39k 39k,5V,398V 30k9 39k :4 Elektronika - Hálózatszámítási módszerek 76
77 ADC :0..,5V BE =? ADC ADC BE BE 7k8,398V 7k8 7k 0,,3V BE,min BE,max ADC BE,3V 0, 0V,3V 0,3V 0,,5V,3V 0,6V 0, 7k BE 7k 7k8 ADC,398V ADC :4 Elektronika - Hálózatszámítási módszerek 77
78 Mivel az ADC bemenetét ideális voltmérőnek tekintjük: 7k+7k8 ellenállás,398v-ra kötve ezt látja a jelforrás 30k9,5V 7k8,398V BE 7k ADC ADC BE 7k ADC ADC 39k :4 Elektronika - Hálózatszámítási módszerek 78
79 :4 Elektronika - Hálózatszámítási módszerek 79
80 A hurokáramok módszerének mátrix alakja eceptszerű megadás, u k és kj azonnal felírható Egyszerű, jól algoritmizálható :4 Elektronika - Hálózatszámítási módszerek 80
81 Eredő ellenállás: ellenállásokból álló hálózat két kivezetése között mérhető Ellenállás meghatározása: feszültség rákapcsolása áram meghatározása ellenállás: a feszültség és áram hányadosa :4 Elektronika - Hálózatszámítási módszerek 8
82 p s s p :4 Elektronika - Hálózatszámítási módszerek 8
83 8 9 0 e :4 Elektronika - Hálózatszámítási módszerek 83
84 i i i G i 3 i :4 Elektronika - Hálózatszámítási módszerek 84
Gingl Zoltán, Szeged, szept. 1
Gingl Zoltán, Szeged, 08. 8 szept. 8 szept. 4 A 5 3 B Csomópontok feszültség Ágak (szomszédos csomópontok között) áram Áramköri elemek 4 Az elemeken eső feszültség Az elemeken átfolyó áram Ezek összefüggenek
Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás
Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába
1. konferencia: Egyenáramú hálózatok számítása
1. konferencia: Egyenáramú hálózatok számítása 1.feladat: 20 1 kω Határozzuk meg az R jelű ellenállás értékét! 10 5 kω R z ellenállás értéke meghatározható az Ohm-törvény alapján. Ehhez ismernünk kell
Elektrotechnika- Villamosságtan
Elektrotechnika- Villamosságtan 1.Előadás Egyenáramú hálózatok 1 Magyar Attila Tömördi Katalin Villamos hálózat: villamos áramköri elemek tetszőleges kapcsolása. Reguláris hálózat: ha helyesen felírt hálózati
Fizika A2E, 9. feladatsor
Fizika 2E, 9. feladatsor Vida György József vidagyorgy@gmail.com 1. feladat: hurokáramok módszerével határozzuk meg az ábrán látható kapcsolás ágaiban folyó áramokat! z áramkör két ablakból áll, így két
Tranziens jelenségek rövid összefoglalás
Tranziens jelenségek rövid összefoglalás Átmenet alakul ki akkor, ha van energiatároló (kapacitás vagy induktivitás) a rendszerben, mert ezeken a feszültség vagy áram nem jelenik meg azonnal, mint az ohmos
Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.
evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles
Összetett hálózat számítása_1
Összetett hálózat számítása_1 Határozzuk meg a hálózat alkatrészeinek feszültségeit, valamint az áramkörben folyó eredő áramot! A megoldás lépései: - számítsuk ki a kör eredő ellenállását, - az eredő ellenállás
Elektrotechnika példatár
Elektrotechnika példatár Langer Ingrid Tartalomjegyzék Előszó... 2 1. Egyenáramú hálózatok... 3 1.1. lapfogalmak... 3 1.2. Példák passzív hálózatok eredő ellenállásának kiszámítására... 6 1.3. Impedanciahű
FIZIKA II. Egyenáram. Dr. Seres István
Dr. Seres István Áramerősség, Ohm törvény Áramerősség: I Q t Ohm törvény: U I Egyenfeszültség állandó áram?! fft.szie.hu 2 Seres.Istvan@gek.szie.hu Áramerősség, Ohm törvény Egyenfeszültség U állandó Elektromos
Elektrotechnika. 1. előad. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet
Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai ntézet Elektrotechnika. előad adás Összeállította: Langer ngrid főisk. adjunktus A tárgy t tematikája
Elektromos áramerősség
Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.
1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?
Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,
2.Előadás ( ) Munkapont és kivezérelhetőség
2.lőadás (207.09.2.) Munkapont és kivezérelhetőség A tranzisztorokat (BJT) lineáris áramkörbe ágyazva "működtetjük" és a továbbiakban mindig követelmény, hogy a tranzisztor normál aktív tartományban működjön
Elektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok
12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-
Elektrotechnika 1. előadás
Óudai Egyetem ánki Donát épész és iztonságtechnikai Kar Mechatronikai és utechnikai ntézet Elektrotechnika. előadás Összeállította: Langer ngrid adjunktus tárgy tematikája Egyen- és váltakozó áramú villamos
Elektronika I. Gyakorló feladatok
Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó
Fizika A2E, 8. feladatsor
Fizika AE, 8. feladatsor ida György József vidagyorgy@gmail.com. feladat: Az ábrán látható áramkörben határozzuk meg az áramer sséget! 4 5 Utolsó módosítás: 05. április 4., 0:9 El ször ki kell számolnunk
= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy
Határozzuk meg és ellenállások értékét, ha =00V, = 00, az ampermérő 88mA áramot, a voltmérő,v feszültséget jelez! Az ampermérő ellenállását elhanyagolhatóan kicsinek, a voltmérőét végtelen nagynak tekinthetjük
Átmeneti jelenségek egyenergiatárolós áramkörökben
TARTALOM JEGYZÉK 1. Egyenergiatárolós áramkörök átmeneti függvényeinek meghatározása Példák az egyenergiatárolós áramkörök átmeneti függvényeinek meghatározására 1.1 feladat 1.2 feladat 1.3 feladat 1.4
Hobbi Elektronika. Bevezetés az elektronikába: 1. Alapfogalmak, Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás, feszültségosztó
Hobbi Elektronika Bevezetés az elektronikába: 1. Alapfogalmak, Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás, feszültségosztó 1 Témakörök, célkitűzés I. félév: Alapfogalmak és a legegyszerűbb
Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila április 17.
Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007. április 17. ALAPOK Töltés 1 elektron töltése 1,602 10-19 C 1 C (coulomb) = 6,24 10 18 elemi elektromos töltés. Áram Feszültség I=Q/t
Elektromosságtan. I. Egyenáramú hálózatok általános számítási módszerei. Magyar Attila
Elektromosságtan I. Egyenáramú hálózatok általános számítási módszerei Magyar Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010.
Logaritmikus erősítő tanulmányozása
13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti
EGYFÁZISÚ VÁLTAKOZÓ ÁRAM
VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású
Elektrotechnika 9. évfolyam
Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.
Vízgépészeti és technológiai berendezésszerelő Épületgépészeti rendszerszerelő
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2011. (VII. 18.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
4.A 4.A. 4.A Egyenáramú hálózatok alaptörvényei Ohm és Kirchhoff törvények
4.A Egyenáramú hálózatok alaptörvényei Ohm és Kirchhoff törvények Mutassa be az egyszerő áramkör felépítését és jellemzıit! Értelmezze a t, mint töltésszétválasztót és a fogyasztót, mint töltés kiegyenlítıt!
Elektromos áram, áramkör
Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek
Számítási feladatok megoldással a 6. fejezethez
Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5
Összefüggő szakmai gyakorlat témakörei
Összefüggő szakmai gyakorlat témakörei Villamosipar és elektronika ágazat Elektrotechnika gyakorlat 10. évfolyam 10 óra Sorszám Tananyag Óraszám Forrasztási gyakorlat 1 1.. 3.. Forrasztott kötés típusai:
Az egyenáramú hálózatok
1. hálózatok fogalma és csoportosítása z egyenáramú hálózatok z elektromos termelőkből (feszültségforrás, áramforrás) és fogyasztókból (ellenállások) illetve az ezeket összekötő vezetékekből álló elrendezést
Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők
Gingl Zoltán, Szeged, 06. 06.. 3. 7:47 Elektronika - Műveleti erősítők 06.. 3. 7:47 Elektronika - Műveleti erősítők Passzív elemek nem lehet erősíteni, csi jeleket kezelni erősen korlátozott műveletek
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA
ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri
Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A
Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.
Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.
A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata
Oktatási Hivatal A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK Különösen viselkedő oszcillátor vizsgálata Elméleti bevezető: A mérési feladat
Villamosság biztonsága
Óbudai Egyetem ánki Donát Gépész és iztonságtechnikai Kar Mechatronikai és utótechnikai ntézet Villamosság biztonsága Dr. Noothny Ferenc jegyzete alapján, Összeállította: Nagy stán tárgy tematikája iztonságtechnika
Számítási feladatok a 6. fejezethez
Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz
4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
Elektromos töltés, áram, áramkör
Elektromos töltés, áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban
A tercsnek és a kondenzátornak nincs szerepe, csak ellenállások vannak a körben. A
7. Egyszerű hálózatok A tercsnek és a kondenzátornak nincs szerepe, csak ellenállások vannak a körben. A vezetékek ellenállását hozzáadjuk a fogyasztók ellenállásáhához (koncentrált paraméterű elemek).
Földelt emitteres erősítő DC, AC analízise
Földelt emitteres erősítő DC, AC analízise Kapcsolási vázlat: Az ábrán egy kisjelű univerzális felhasználású tranzisztor (tip: 2N3904) köré van felépítve egy egyszerű, pár alkatrészből álló erősítő áramkör.
2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával
Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett
dt Az elektromos áram egysége az Amper [A]. Egy R ellenállású vezet két végére U feszültséget kapcsolva a rajta átfolyó áram I = U / R
1.3. EGYENÁRAMÚ HÁLÓZATSZÁMÍTÁS 1.3.1. Elektromos potenciál, feszültség, áram; ellenállás Azokban a hálózatokban, amelyekkel foglalkozni fogunk, létezik potenciál. A φ potenciál értéke a tér egy pontjában
Elektrotechnika I. dr. Hodossy, László
Elektrotechnika I. dr. Hodossy, László Elektrotechnika I. írta dr. Hodossy, László Publication date 2012 Szerzői jog 2012 dr. Hodossy László Kézirat lezárva: 2012. január 31. Készült a TAMOP-4.1.2.A/2-10/1
Egyszerű kísérletek próbapanelen
Egyszerű kísérletek próbapanelen készítette: Borbély Venczel 2017 Borbély Venczel (bvenczy@gmail.com) 1. Egyszerű áramkör létrehozása Eszközök: áramforrás (2 1,5 V), izzó, motor, fehér LED, vezetékek,
Elektrotechnika- Villamosságtan
Elektrotechnika- Villamosságtan Általános áramú hálózatok 1 Magyar Attila Tömördi Katalin Alaptörvények-áttekintés Alaptörvények Áram, feszültség, teljesítmény, potenciál Források Ellenállás Kondenzátor
21. laboratóriumi gyakorlat. Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú
1. laboratóriumi gyakorlat Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú kismintán 1 Elvi alapok Távvezetékek villamos számításához, üzemi viszonyainak vizsgálatához a következő
TARTALOMJEGYZÉK. Előszó 9
TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha
Elektronika 11. évfolyam
Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.
Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok
Elektrotechnika 11/C Villamos áramkör A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.
Elektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)
Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű
Mûveleti erõsítõk I.
Mûveleti erõsítõk I. 0. Bevezetés - a mûveleti erõsítõk mûködése A következõ mérésben az univerzális analóg erõsítõelem, az un. "mûveleti erõsítõ" mûködésének alapvetõ ismereteit sajátíthatjuk el. A nyílthurkú
Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata
Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások
TÁVKÖZLÉS ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Távközlés ismeretek középszint 8 ÉRETTSÉGI VIZSGA 208. október 9. TÁVKÖZLÉS ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének
Ideális műveleti erősítő
Ideális műveleti erősítő Az műveleti erősítő célja, hogy alap építőeleméül szolgáljon analóg matematikai műveleteket végrehajtó áramköröknek. Az ideális műveleti erősítő egy gyakorlatban nem létező áramköri
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Villamosipar és elektronika ismeretek középszint 7 ÉRETTSÉGI VIZSG 07. október 0. VILLMOSIPR ÉS ELEKTRONIK ISMERETEK KÖZÉPSZINTŰ ÍRÁSELI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMUTTÓ EMERI ERŐFORRÁSOK MINISZTÉRIUM
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK
ÉRETTSÉGI VIZSGA 2017. október 20. VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2017. október 20. 8:00 I. Időtartam: 60 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:
Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati
Gingl Zoltán, Szeged, dec. 1
Gingl Zoltán, Szeged, 2017. 17 dec. 1 17 dec. 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó irányban tökéletes vezető (rövidzár) Záró irányban tökéletes szigetelő (szakadás) Valódi dióda:
Gingl Zoltán, Szeged, :44 Elektronika - Diódák, tranzisztorok
Gingl Zoltán, Szeged, 2016. 2016. 12. 13. 7:44 Elektronika - Diódák, tranzisztorok 1 2016. 12. 13. 7:44 Elektronika - Diódák, tranzisztorok 2 Egyenirányító (rectifier) Mint egy szelep deális dióda Nyitó
4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
1. ábra A visszacsatolt erősítők elvi rajza. Az 1. ábrán látható elvi rajz alapján a kövezkező összefüggések adódnak:
Az erősítő alapkapcsolások, de a láncbakapcsolt erősítők nem minden esetben teljesítik azokat az elvárásokat, melyeket velük szemben támasztanánk. Ilyen elvárások lehetnek a következők: nagy bemeneti ellenállás;
Áramköri elemek mérése ipari módszerekkel
3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek
Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?
Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.
Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre
ELEKTROKÉMIA. Alapmennyiségek. I: áramersség, mértékegysége (SI alapegység): A:
ELEKTOKÉMIA Alapmennyiségek I: áramersség, mértékegysége (SI alapegység): A: A az áram erssége, ha 2 végtelen hosszú, elhanyagolható átmérj vezetben áramló konstans áram hatására a két vezet között 2 0-7
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális
Elektromos áram, áramkör
Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek
Elosztott paraméterű hálózatok modellezése
Elosztott paraméterű hálózatok modellezése Dr. Rácz Ervin egyetemi docens Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai Intézet Tudnivalók nappali tagozat Személyes: Dr. Rácz Ervin
Mérnök Informatikus. EHA kód: f
A csoport Név:... EHA kód:...2009-2010-1f 1. Az ábrán látható hálózatban a) a felvett referencia irányok figyelembevételével adja meg a hálózat irányított gráfját, a gráfhoz tartozó normál fát (10%), a
VÁLTAKOZÓ ÁRAMÚ KÖRÖK
Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,
0 Általános műszer- és eszközismertető
0 Általános műszer- és eszközismertető A laborgyakorlatok során előforduló eszközök vázlatos áttekintésében a teljesség igénye nélkül s a célfeladatokra koncentrálva a következő oldalak nyújtanak segítséget.
Hármas tápegység Matrix MPS-3005L-3
Hármas tápegység Matrix MPS-3005L-3 Általános leírás Az MPS-3005L-3 tápegység egy fix 5V-os, 3A-rel terhelhető és két 0V-30V-között változtatható,legfeljebb 5A-rel terhelhető kimenettel rendelkezik. A
Elektromos áram, áramkör, kapcsolások
Elektromos áram, áramkör, kapcsolások Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az
1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
Bevezetés az elektronikába
Bevezetés az elektronikába 6. Feladatsor: Egyszerű tranzisztoros kapcsolások Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Tranziens (átmeneti) jelenségek Az előzőekben csupán az
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati
Fizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.
.feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú
Analóg áramkörök Műveleti erősítővel épített alapkapcsolások
nalóg áramkörök Műveleti erősítővel épített alapkapcsolások Informatika/Elektronika előadás encz Márta/ess Sándor Elektronikus Eszközök Tanszék 07-nov.-22 Témák Műveleti erősítőkkel kapcsolatos alapfogalmak
Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai
Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.
Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?
Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind
Versenyző kódja: 31 15/2008. (VIII. 13) SZMM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny
54 523 01 0000 00 00-2014 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 01 0000 00 00 SZVK rendelet száma: 15/2008 (VIII. 13.) SZMM
ELEKTRONIKAI TECHNIKUS KÉPZÉS EGYENÁRAMÚ HÁLÓZATOK ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR
ELEKTRONIKAI TECHNIKUS KÉPZÉS 2 0 1 3 EGYENÁRAMÚ HÁLÓZATOK ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Elektrotechnika tárgya és helye a tudományok között...3 Elektrotechnikai jelölések,
ikerfém kapcsoló Eloadás Iváncsy Tamás termisztor â Közvetett védelem: áramvédelem
â Közvetlen motorvédelem: hovédelem ikerfém kapcsoló kis teljesítményen: közvetlenül kapcsolja a motort nagy teljesítményen: kivezetéssel muködteti a 3 fázisú kapcsolót Iváncsy Tamás termisztor â Közvetett
MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)
MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) 1. - Mérőtermi szabályzat, a mérések rendje - Balesetvédelem - Tűzvédelem - A villamos áram élettani hatásai - Áramütés elleni védelem - Szigetelési
MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MEGOLDÁSA
MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MEGOLDÁSA Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Számolási, áramköri, tervezési
A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató
Oktatási Hivatal A 06/07 tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I KATEGÓRIA Javítási-értékelési útmutató feladat Három azonos méretű, pontszerűnek tekinthető, m, m, m tömegű
Elektronika II. 5. mérés
Elektronika II. 5. mérés Műveleti erősítők alkalmazásai Mérés célja: Műveleti erősítővel megvalósított áramgenerátorok, feszültségreferenciák és feszültségstabilizátorok vizsgálata. A leírásban a kapcsolások
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:
Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:
Elektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Bemutatkozás Ballagi Áron egyetemi adjunktus Széchenyi István Egyetem, Automatizálási Tanszék C707 es szoba Tel.: 3255 E mail: ballagi@sze.hu Web: http://www.sze.hu/~ballagi/elektrotechnika/