CAD-CAM-CAE Példatár
|
|
- Orsolya Bogdán
- 6 évvel ezelőtt
- Látták:
Átírás
1 CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: A01 VEM Síkbeli húzott rúd ÓE-A01 alap közepes haladó VEM Síkbeli hídszerkezet végeselemes vizsgálata 1 Bevezetés Az Óbudai Egyetem Bánki Donát Gépész- és Biztonságtechnikai Mérnöki Kara már 1996 óta rendezi meg mérnökhallgatók körében a Tésztahíd építı bajnokságot. A versenyre elıször csak a kar hallgatói neveztek, majd 2005-tıl már az egész Kárpát-medencébıl érkeztek hallgatók. Nagy lökést adott a versenynek, hogy 2003-óta a kar legsikeresebb hallgatói Kanadában részt vehetnek az Okanaga University Collage által megrendezett világbajnokságon, és azóta minden évben, többször új világcsúcs felállításával nyerik meg a versenyt. Egy ilyen nagy mezınyben a versenyt megnyerni csak komoly elméleti felkészüléssel, a korábbi tapasztalatok felhasználásával és a rengeteg idıt felemésztı precíz gyártással lehet. A hallgatók oktatóik tapasztalatát és a kari laboratóriumok felszereléseit felhasználva több száz vizsgálatot és elemzést végeztek a tészták és kötıanyagok tulajdonságainak meghatározására és az optimális szerkezeti kialakítás megtalálására. 2 A feladat Vizsgálatainkat a verseny hivatalos honlapján ( is megtalálhat, a világ eddigi legerısebb tésztahídját építı Márkos Szilárdnak a 1.1 ábrán bemutatott hídján végezzük. A híd a 2007-es kanadai világbajnokságon 158 kg terhelésnél ment tönkre. A szerkezet hosszához és magasságához képest a keresztirányú kiterjedése kicsi, az egyes rudak hajlásszöge a szerkezet fısíkjához képest elhanyagolható és mivel erıátadás csak a rudak csatlakozási pontjaiban történik, ezért a szerkezetet síkbeli rácsos tartóként modellezzük. 1
2 1.1. ábra. A vizsgált tésztahíd A szerkezet síkbeli modelljét az 1.2 ábra mutatja. Az ábrán a rudak természetes méreteit adtuk meg, ami a végeselem modellben, természetesen mint a TRUSS2D elemek keresztmetszeti területe jelenik majd meg. A szerkezet felsı, nyomott öve 28 mm átmérıjő, 1 mm falvastagságú csıtésztából készült, amibıl az 1.1 ábrán jól láthatóan az alsó két-két osztásban az 1.1 ábrán jól láthatóan kettı-kettı, a felsı osztásokban pedig egy-egy darab került beépítésre, míg a küllı-szerő húzott rudak 24, illetve 28 db 1,7 mm átmérıjő spagettibıl készültek. Mivel a felhasználható alapanyag, a száraztészta csak egyenes rudak formájában áll rendelkezésre, így a modellt is egyenes vonalak alkotják. A szerkezet megtámasztása az alsó sík két végpontján statikailag határozottnak tekinthetı módon történik, a terhelés pedig az alsó sík középpontjában egyetlen koncentrált erı. 2
3 1.2. ábra. A vizsgált szerkezet modellje 3 A feladat megoldása A feladat megoldását a Végeselem tananyag 3. fejezetében bemutatott elméleti ismeretek és a 4. fejezetben bemutatott feladat megoldása alapján végezzük, az ott tárgyalt elméleti részeket mellızzük, csak a feladatmegoldás lépéseit mutatjuk be. A geometria modellt vagy a programrendszer geometriai szerkesztıjében állítjuk elı, vagy importáljuk más modellezı szoftver szabványos rajzcsere formátumának segítségével. A geometriai modell látható az 1.3 ábrán ábra. A geometriai modell 3
4 A végeselem háló létrehozásához szükségünk lesz a geometriai objektumok azonosítására is, ezek megjelenítését mutatja az 1.4 ábra ábra. A geometriai objektumok sorszámának megjelenítése A következı lépés az elemtulajdonságok meghatározása, ami az elemtípus meghatározását, az anyagtulajdonságok megadását és az elemek fizikai tulajdonságainak megadását foglalja magába. Az elemtípus a bevezetı részben már megadott, síkbeli húzott-nyomott rudak, rácsos tartók vizsgálatához alkalmazható TRUSS2D elem (1.5 ábra) ábra. Az elemtípus meghatározása Következı lépés az anyagtulajdonságok megadása, ami a TRUSS2D elemtípus és a lineáris statikai feladat esetében az anyag rugalmassági modulusa. A hallgatók által végzett vizsgálatok alapján a tészta esetében ez 3GPa (1.6 ábra). 4
5 1.6. ábra. Az anyagtulajdonság megadása A modellben ugyanazt az elemtípust, de négyféle méretben, illetve kialakításban használjuk fel, ennek megfelelıen ehhez az elemtípushoz négy különbözı fizikai tulajdonság megadására van szükség. Figyelem: a végeselem háló létrehozása elıtt meg kell majd határoznunk, hogy a generálni kívánt elemek melyik tulajdonságnak feleljenek majd meg! A fizikai tulajdonságok megadását az 1.7 ábra mutatja. Jelen esetben ez nem más, mint az 1.2 ábrán bemutatott geometriai méretekkel megadott rudak keresztmetszeti területeinek meghatározása és megadása. Ne felejtsük el, hogy ragaszkodnunk kell egy adott mértékegység rendszerhez, azaz a méreteket m-ben és m2-ben kell megadnunk ábra. Fizikai tulajdonságok meghatározása A hálózási tulajdonságok megadása után a végeselem háló generálása következik, de elıtte meg kell határozni aktiválni kell a megfelelı fizikai tulajdonság készletet (1.8 ábra) ábra. A megfelelı fizikai tulajdonságok aktiválása Következı lépés a megadott tulajdonságú végeselemek létrehozása a geometriai modell felhasználásával (1.9. ábra). 5
6 1.9. ábra. A végeselem háló létrehozása Természetesen csak a kiválasztott, adott fizikai tulajdonságokat hordozó geometriai objektumok hálózása történik meg, ahogy azt az 1.10 ábra mutatja ábra. Az adott tulajdonságú végeselemek A teljes végeselem háló létrehozásához a mőveletet még háromszor meg kell ismételni, hogy a szerkezet minden eleme létrejöjjön (1.11 ábra) ábra. Az létrehozott összes végeselem, a csomópontok azonosítóival 6
7 Mivel a végeselem háló geometriai objektumonként külön-külön jön létre, szükség van az egyes rúdvégeken lévı csomópontok összekapcsolására (1.12 ábra) ábra. A rúdvégek összekapcsolása Az 1.13 ábra az elkészült végeselem hálót mutatja ábra. Az elkészült végeselem háló a csomópontok sorszámaival Következik a peremfeltételek definiálása. A tartó bal oldalán X és Y irányú, 0 nagyságú elmozdulási kényszert megfogást alkalmazunk (1.14 ábra), míg a jobb oldalon csak Y irányút megtámasztás így kielégítve a bevezetıben megfogalmazott külsı statikai határozottságot. A kényszerek megadása értelemszerően két külön paranccsal történik ábra. Elmozdulási kényszerek megadása 7
8 Végül meg kall adni a terhelést is, ami a tartó ismert tönkremeneteli határterhelése szerint N, a tartó közepén koncentráltan bevezetett, lefelé mutató erı (1.15. ábra) ábra. A terhelés megadása Az elkészült végeselem modellt mutatja az 1.16 ábra ábra. A végeselem modell A végeselem modell számítása következik (1.17. ábra) ábra. Lineáris statikai vizsgálat futtatása 8
9 A sikeres futtatás után az egyes rudakban keletkezı feszültségek megjelenítés következhet, a jobb elemezhetıség érdekében deformált alakon ábra ábra. Feszültségek megjelenítése A kapott eredményeket az 1.19 ábra mutatja be. Az ábrából kiderül, hogy a felsı nyomott övben a legnagyobb feszültség 11,6 MPa. A felhasznált száraztészta szakítószilárdsága mérések alapján kb. 24 MPa, így az eredmények alapján arra következtethetünk, hogy a szerkezet az elméleti teherbírásának kevesebb mint felét viselte el. Ennek okait a Megjegyzések alfejezetben tisztázzuk ábra. Az elemen értelmezett feszültségek A pontos számszerő eredmények megjelenítésére használjuk a programrendszerek nyújtotta listázási lehetıségeket (1.20. ábra). 9
10 1.20. ábra. Feszültségkomponensek listázása A kapott eredményeket az 1.21 ábra mutatja. A végeselem tananyag 4. fejezetében leírtak szerint mivel a TRUSS elemekben csak húzó-nyomó feszültségek keletkeznek, ezért a táblázat is csak az elemhez kötött koordináta-rendszer szerinti ezen feszültségeket tartalmazza ábra. A feszültségkomponensek elemenként Lehetıség lenn még a szerkezet elmozdulásainak és alakváltozásainak vizsgálatára is, illetve animácó készítésére a terhelés során végbemenı folyamatok elemzéséhez, de ezekkel a feladat megoldása során nem foglalkozunk. 4 Megjegyzések A feladat megoldása során nem foglalkoztunk a nyomott rudak kihajlásával. A tésztahíd-építésben résztvevık számtalan vizsgálatot hajtottak végre a nyomott rudak kritikus hosszának meghatározására és ezeknek az eredményeit figyelembe véve alakították ki szerkezeteiket. Nem vizsgáltuk és ezzel a modellel nem is vizsgálhatnánk az egyes elemek kapcsolatait. A tésztahidak és gyakran a valós szerkezet teherbírása is a kapcsolatok kialakításától függ. A kialakítás nem csak a tervezést, de a gondos kivitelezést is magába foglalja. A tésztahíd-építésben jeleskedık egy-egy hidat több mint száz munkaóra felhasználásával építenek meg. Ennek a gondos kivitelezésnek is köszönhetik sikereiket. Szintén nem vizsgáltuk és ezzel a modellel szintén nem vizsgálhattuk az elemekben keletkezı hajlítást. Sajnos a tapasztalatok szerint a tészta, mint szerkezeti anyag hasonlít a betonhoz abban a tulajdonságában, hogy a nyomásnak sokkal jobban ellenáll, mint a húzó 10
11 igénybevételnek. Ennek értelmében különösen a hajlítást is elszenvedı húzott szálak ilyen irányú vizsgálata egy adott szerkezet esetében nem elhanyagolható. Ez a probléma összefüggésben van a kapcsolatok kialakításával is, hiszen a valóságban létrehozott kapcsolatok sem nem csuklók, sem nem merevek, azok valós viselkedését a ragasztóanyag tulajdonságai és a létrehozott ragasztás kialakítása például a rétegvastagság döntıen befolyásolja. Elhanyagoltuk azt a szerkezetépítésben ritkán elıforduló logisztikai problémát is, hogy a szerkezet a verseny helyszínére történı szállítás közben károkat szenvedhet el. Károkat okozhat a szerkezetben a jármőveken történı szállítás közben fellépı rázkódás, de károkat okozhat a környezet magas páratartalma is, mivel a megfigyelések alapján a nagy páratartalom a tészták hosszváltozásához, sőrőségváltozásához ami a verseny elıtti mérlegelésen problémát okozhat és szakítószilárdságának csökkenéséhez vezet. 11
CAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM Rúdszerkezet sajátfrekvenciája ÓE-A05 alap közepes haladó
CAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Síkbeli hajlított rúd ÓE-A02 alap közepes haladó VEM Épületszerkezet
CAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM térbeli hajlított rúd ÓE-A03 alap közepes haladó VEM
TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés
TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre
Toronymerevítık mechanikai szempontból
Andó Mátyás: Toronymerevítık méretezése, 9 Gépész Tuning Kft. Toronymerevítık mechanikai szempontból Mint a neve is mutatja a toronymerevítık használatának célja az, hogy merevebbé tegye az autó karosszériáját
A végeselem módszer alapjai. 2. Alapvető elemtípusok
A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,
CAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM befogott tartó ÓE-A15 alap közepes haladó CATIA V5 CAD,
DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás
DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II IV. Előadás Rácsos tartók szerkezeti formái, kialakítása, tönkremeneteli módjai. - Rácsos tartók jellemzói - Méretezési kérdések
MUNKAGÖDÖR TERVEZÉSE
MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 programmal Tartalom Bevezetés VEM - geotechnikai alkalmazási területek
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG
TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.
TERMÉKZIMULÁCIÓ Végeselem módszer Termékszimuláció tantárgy 6. elıadás 211. március 22. Elıadó: Dr. Kovács Zsolt egyetemi tanár A végeselem módszer lényege A vizsgált, tetszıleges geometriai kialakítású
A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező
Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:
Mozgatható térlefedő szerkezetek
Mozgatható térlefedő szerkezetek TDK Konferencia 2010 Szilárdságtani és tartószerkezeti szekció Tartalomjegyzék 1 Absztrakt 2 Bevezetés 3 Az alakzat mozgásának görbületre gyakorolt hatása 4 Teljes összenyomódás
CAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Összeállítás készítése CAD rendszerben ÓE-A12 alap közepes
Gyakorlat 03 Keresztmetszetek II.
Gyakorlat 03 Keresztmetszetek II. 1. Feladat Keresztmetszetek osztályzása Végezzük el a keresztmetszet osztályzását tiszta nyomás és hajlítás esetére! Monoszimmetrikus, hegesztett I szelvény (GY02 1. példája)
KRITIKUS KÉRDÉS: ACÉL ELEMEK
KRITIKUS KÉRDÉS: ACÉL ELEMEK KRITIKUS HŐMÉRSÉKLETE Dr. Horváth László egyetem docens Acélszerkezetek tűzvédelmi tervezése workshop, 2018. 11.09 TARTALOM Acél elemek tönkremeneteli folyamata tűzhatás alatt
Ejtési teszt modellezése a tervezés fázisában
Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,
3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben
1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára
Navier-formula. Frissítve: Egyenes hajlítás
Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a
TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK
TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK 2010.04.09. VASBETON ÉPÜLETEK MEREVÍTÉSE Az épületeink vízszintes terhekkel szembeni ellenállását merevítéssel biztosítjuk. A merevítés lehetséges módjai: vasbeton
A szerkezeti anyagok tulajdonságai és azok vizsgálata
A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minıség, élettartam A termék minısége
Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján. Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke
Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke 1 Tartalom Méretezési alapelvek Numerikus modellezés Analízis és
Rugalmas állandók mérése
Rugalmas állandók mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. április 23. (hétfő délelőtti csoport) 1. Young-modulus mérése behajlásból 1.1. A mérés menete A mérés elméleti háttere megtalálható a jegyzetben
Fa- és Acélszerkezetek I. 8. Előadás Kapcsolatok II. Hegesztett kapcsolatok. Dr. Szalai József Főiskolai adjunktus
Fa- és Acélszerkezetek I. 8. Előadás Kapcsolatok II. Hegesztett kapcsolatok Dr. Szalai József Főiskolai adjunktus I. ZH STATIKA!!! Gyakorlás: Mechanikai példatár I. kötet (6.1 Egyenes tengelyű tartók)
Végeselem módszer 1. gyakorlat
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 1. gyakorlat (kidolgozta: Dr. Pere Balázs egyetemi docens, Szüle Veronika, egyetemi tanársegéd) Feladat: síkbeli rácsos tartó y
Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus
Fa- és Acélszerkezetek I. 1. Előadás Bevezetés Dr. Szalai József Főiskolai adjunktus Okt. Hét 1. Téma Bevezetés acélszerkezetek méretezésébe, elhelyezés a tananyagban Acélszerkezetek használati területei
Gyakorlat 04 Keresztmetszetek III.
Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)
CAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAD rendszer: Kapcsolódó TÁMOP tananyag: A feladat rövid leírása: Szíjtárcsa mőhelyrajzának elkészítése ÓE-A14 alap közepes haladó
Mikrocölöp alapozás ellenőrzése
36. számú mérnöki kézikönyv Frissítve: 2017. június Mikrocölöp alapozás ellenőrzése Program: Fájl: Cölöpcsoport Demo_manual_en_36.gsp Ennek a mérnöki kézikönyvnek a célja, egy mikrocölöp alapozás ellenőrzésének
A.2. Acélszerkezetek határállapotai
A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)
Egy érdekes mechanikai feladat
1 Egy érdekes mechanikai feladat 1. ábra forrása: [ 1 ] A feladat Az 1. ábra szerinti rudazat A csomópontján átvezettek egy kötelet, melynek alsó végén egy m tömegű golyó lóg. A rudak egyező nyúlási merevsége
Tartószerkezetek modellezése
Tartószerkezetek modellezése 5. elıadás Tervezési folyamat Szerkezetek mérete, modellje Végeselem-módszer elve, alkalmazhatósága Tervezési folyamat, együttmőködés más szakágakkal: mérnök építész mőszaki
Segédlet: Kihajlás. Készítette: Dr. Kossa Attila BME, Műszaki Mechanikai Tanszék május 15.
Segédlet: Kihajlás Készítette: Dr. Kossa ttila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2012. május 15. Jelen segédlet célja tömören összefoglalni a hosszú nyomott rudak kihajlásra történő ellenőrzését.
Határfeszültségek alapanyag: σ H = 200 N/mm 2, σ ph = 350 N/mm 2 ; szegecs: τ H = 160 N/mm 2, σ ph = 350 N/mm 2. Egy szegecs teherbírása:
ervezze meg az L10.10.1-es szögacélpár eltolt illesztését L100.100.1-es hevederekkel és Ø1 mm-es szegecsekkel. nyagminőség: 8, szegecs: SZ. atárfeszültségek alapanyag: 00 /mm, p 50 /mm szegecs: τ 160 /mm,
Cölöpcsoport elmozdulásai és méretezése
18. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpcsoport elmozdulásai és méretezése Program: Fájl: Cölöpcsoport Demo_manual_18.gsp A fejezet célja egy cölöpcsoport fejtömbjének elfordulásának,
TANTÁRGY ADATLAP és tantárgykövetelmények Cím:
TANTÁRGY ADATLAP és tantárgykövetelmények Cím: ACÉLSZERKEZETEK Tárgykód: PMKSTNE050 Heti óraszám 1 : 2 ea, 2 / 1 gy, 0 lab Kreditpont: 4 / 4 / 3 / 2 Szak(ok)/ típus 2 : Építőmérnök BSc / Gépészmérnök BSc.,
CAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Fröccsöntı szerszám betét CAD modellezés ÓE-C01 alap közepes
TERMÉKSZIMULÁCIÓ I. 9. elıadás
TERMÉKSZIMULÁCIÓ I. 9. elıadás Dr. Kovács Zsolt egyetemi tanár Végeselem típusok Elemtípusok a COSMOSWorks Designer-ben: Lineáris térfogatelem (tetraéder) Kvadratikus térfogatelem (tetraéder) Lineáris
Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései
Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései VII. Városi Villamos Vasúti Pálya Napra Budapest, 2014. április 17. Major Zoltán egyetemi tanársegéd Széchenyi István Egyetem, Győr
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. mőszaki számítások: - analitikus számítások gyorsítása, az eredmények grafikus
Csatlakozás a végeselem modulhoz SolidWorks-ben
Csatlakozás a végeselem modulhoz SolidWorks-ben Meglévő alkatrész vagy összeállítás modellt ellenőrizhetünk különböző terhelési esetekben a CAD rendszer végeselem moduljával ( SolidWorks Simulation ).
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS
TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve ACÉLSZERKEZETEK 1.2 Azonosító (tantárgykód) BMEEOHSAT42 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus óraszám előadás
Cölöp függőleges teherbírásának és süllyedésének CPT alapú számítása
15. számú mérnöki kézikönyv Frissítve: 2017. március Cölöp függőleges teherbírásának és süllyedésének CPT alapú számítása Program: Cölöp CPT Fájl: Demo_manual_15.gpn Ennek a mérnöki kézikönyvnek célja,
Lemez- és gerendaalapok méretezése
Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek
Dr. Mikó Balázs
Gyártórendszerek mechatronikája Termelési folyamatok II. 03 CAM rendszerek Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu miko.balazs@bgk.uni-obuda.hu 1 Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai
1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók.
1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók. Tevékenység: Olvassa el a jegyzet 18-29 oldalain található tananyagát! Tanulmányozza át a segédlet 8.2. és 8.3. fejezeteiben lévı kidolgozott feladatait,
Teherfelvétel. Húzott rudak számítása. 2. gyakorlat
Teherfelvétel. Húzott rudak számítása 2. gyakorlat Az Eurocode 1. részei: (Terhek és hatások) Sűrűségek, önsúly és az épületek hasznos terhei (MSZ EN 1991-1-1) Tűznek kitett tartószerkezeteket érő hatások
Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.
Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő
A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-
A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például
Lemezalkatrész modellezés. SolidEdge. alkatrészen
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A4 alap közepes - haladó SolidEdge CAD 3D
AxisVM rácsos tartó GEOMETRIA
AxisVM rácsos tartó Feladat Síkbeli rácsos tartó igénybevételeinek meghatározás. A rácsostartó övei legyenek I200 szelvényűek. A rácsrudak legyenek 80x80x4 zártszelvényűek Indítás A program elindításához
Korrodált acélszerkezetek vizsgálata
Korrodált acélszerkezetek vizsgálata 1. Szerkezeti példák és laboratóriumi alapkutatás Oszvald Katalin Témavezető : Dr. Dunai László Budapest, 2009.12.08. 1 Általános célkitűzések Korrózió miatt károsodott
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk
FRÖCCSÖNTÉS SZIMULÁCIÓ A SZERKEZETI ANALÍZIS SZOLGÁLATÁBAN
Moldex3D I2 FRÖCCSÖNTÉS SZIMULÁCIÓ A SZERKEZETI ANALÍZIS SZOLGÁLATÁBAN Készítette: Polyvás Péter peter.polyvas@econengineering.com econengineering Kft. www.econengineering.com 2010.04.28. Moldex3D Vezető
Az 1. gyakorlat anyaga. B x. Rácsos szerkezet definíciója: A rudak kapcsolódási pontjaiban (a csomópontokban) csuklók
SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR ALKALMAZOTT MECHANIKA TANSZÉK VÉGESELEM MÓDSZER Az 1. gyakorlat anyaga Feladat: síkbeli rácsos tartó F 1 A y F 2 6x5 m F3 10 m B x Adott: Anyag: E = 2,1 10
Végeselem módszer 7. gyakorlat
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 7. gyakorlat (kidolgozta: Szüle Veronika egyetemi ts.) Feladat: harang sajátrezgéseinek meghatározása 500 100 500 1000 250 250 1.
Tartószerkezetek I. (Vasbeton szilárdságtan)
Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.
HELYI TANTERV. Mechanika
HELYI TANTERV Mechanika Bevezető A mechanika tantárgy tanításának célja, hogy fejlessze a tanulók logikai készségét, alapozza meg a szakmai tantárgyak feldolgozását. A tanulók tanulási folyamata fejlessze
Hajlított elemek kifordulása. Stabilitásvesztési módok
Hajlított elemek kifordulása Stabilitásvesztési módok Stabilitásvesztés (3.3.fejezet) Globális: Nyomott rudak kihajlása Hajlított tartók kifordulása Lemezhorpadás (lokális stabilitásvesztés): Nyomott és/vagy
Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás
tűz alatti eljárás A módszer célja 2 3 Az előadás tartalma Öszvérfödém szerkezetek tűz esetén egyszerű módszere 20 C Födém modell Tönkremeneteli módok Öszvérfödémek egyszerű eljárása magas Kiterjesztés
Cölöpalapozások - bemutató
12. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpalapozások - bemutató Ennek a mérnöki kézikönyvnek célja, hogy bemutassa a GEO 5 cölöpalapozás számításra használható programjainak gyakorlati
Belsőégésű motor hengerfej geometriai érzékenység-vizsgálata Geometriai építőelemek változtatásának hatása a hengerfej szilárdsági viselkedésére
Belsőégésű motor hengerfej geometriai érzékenység-vizsgálata Geometriai építőelemek változtatásának hatása a hengerfej szilárdsági viselkedésére Néhány példa a C3D Műszaki Tanácsadó Kft. korábbi munkáiból
Végeselem módszer 1. gyakorlat síkbeli rácsos tartó
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 1. gyakorlat síkbeli rácsos tartó y F 1 10 m A F2 F3 B x 6 5 m Adott: Anyag: 5 E 2 10 MPa, 0,3, Terhelés: F1 F2 20 kn Rúdátmérő:
Lemezalkatrész modellezés. SolidEdge. alkatrészen
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A2 alap közepes - haladó SolidEdge CAD 3D
Végeselem módszer 3. gyakorlat Síkbeli törtvonlaú tartó
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 3. gyakorlat Síkbeli törtvonlaú tartó y f 5 kn/m 0,5 m F 4 kn 0,2 m x 1m Adott: 5 Anyag: E 2 10 MPa, 0,3, kn Terhelés: f 5 m F 4
Trapézlemez gerincő tartók beroppanásvizsgálata
Trapézlemez gerincő tartók beroppanásvizsgálata Témavezetı: Dr. Dunai László Készítette: Kövesdi Balázs Bevezetés Korábbi eredmények rövid áttekintése Kísérletek bemutatása és értékelése Új kutatási irányok
Lemezalkatrész modellezés. SolidEdge. alkatrészen
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A5 alap közepes - haladó SolidEdge CAD 3D
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. április 20. A mérés száma és címe: 20. Folyadékáramlások 2D-ban Értékelés: A beadás dátuma: 2009. április 28. A mérést végezte: Márton Krisztina Zsigmond
MÉRÉSI JEGYZİKÖNYV. A mérési jegyzıkönyvet javító oktató tölti ki! Mechatronikai mérnök Msc tananyagfejlesztés TÁMOP
MÉRÉSI JEGYZİKÖNYV Katalizátor hatásfok Tanév/félév Mérés dátuma Mérés helye Jegyzıkönyvkészítı e-mail cím Neptun kód Mérésvezetı oktató Beadás idıpontja Mechatronikai mérnök Msc tananyagfejlesztés TÁMOP-4.1.2.A/1-11/1-2011-0042
Tartószerkezetek Megerısítése
Tartószerkezetek Megerısítése Tartalom Az épületdiagnosztika fogalma Épületdiagnosztikai vizsgálatok lépései Erıtani követelmények és azok igazolása Anyagvizsgálatok A szerkezet megerısítés fogalmai Üllıi
ACÉLSZERKEZETEK I. LEHÓCZKI Bettina. Debreceni Egyetem Műszaki Kar, Építőmérnöki Tanszék. [1]
ACÉLSZERKEZETEK I. LEHÓCZKI Bettina Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék E-mail: lehoczki.betti@gmail.com [1] ACÉLSZERKEZETEK I. Gyakorlati órák időpontjai: szeptember 25. október 16. november
FÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA
FÉLMEREV KAPCSOLATOK NUMERIKUS SZIMULÁCIÓJA Vértes Katalin * - Iványi Miklós ** RÖVID KIVONAT Acélszerkezeti kapcsolatok jellemzőinek (szilárdság, merevség, elfordulási képesség) meghatározása lehetséges
Leggyakoribb fa rácsos tartó kialakítások
Fa rácsostartók vizsgálata 1. Dr. Koris Kálmán, Dr. Bódi István BME Hidak és Szerkezetek Tanszék Leggakoribb fa rácsos tartó kialakítások Változó magasságú Állandó magasságú Kis mértékben változó magasságú
Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint
Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Dr. Horváth László egyetemi docens Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszék Tartalom Mire ad választ az Eurocode?
LABMASTER anyagvizsgáló program
LABMASTER anyagvizsgáló program A LABMASTER anyagvizsgáló szabványok szerinti vizsgálatok kialakítására és végzésére lett kifejlesztve. Szabványos vizsgálatok széles skálája érhetı el a mérések végrehajtásához
Schöck Isokorb W. Schöck Isokorb W
Schöck Isokorb Schöck Isokorb Schöck Isokorb típus Konzolos faltárcsákhoz alkalmazható. Negatív nyomaték és pozitív nyíróerő mellett kétirányú horizontális erőt tud felvenni. 115 Schöck Isokorb Elemek
GÉPÉSZETI ALKALMAZOTT SZÁMÍTÁSTECHNIKA f iskolai mérnökhallgatók számára. A 4. gyakorlat anyaga. Adott: Geometriai méretek:
SZÉCHENYI ISTVÁN EGYETEM KÖZLEKEDÉSI ÉS GÉPÉSZMÉRNÖKI INTÉZET ÁLTALÁNOS GÉPÉSZETI TANSZÉK GÉPÉSZETI ALKALMAZOTT SZÁMÍTÁSTECHNIKA f iskolai mérnökhallgatók számára A 4. gyakorlat anyaga Feladat: Saját síkjában
KERETSZERKEZETEK. Definíciók, Keretek igénybevételei, méretezése. 10. előadás
KERETSZERKEZETEK Definíciók, Keretek igénybevételei, méretezése 10. előadás Definíciók: Oszlop definíciója: Az oszlop vonalas tartószerkezet, két keresztmetszeti mérete (h, b) lényegesen kisebb, mint a
VisualNastran4D. kinematikai vizsgálata, szimuláció
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Kardáncsukló mûködésének modellezése SZIE-K1 alap közepes - haladó VisualNastran4D
Fogorvosi anyagtan fizikai alapjai 6.
Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv
II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban)
II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) Készítették: Dr. Kiss Rita és Klinka Katalin -1- A
Végeselem módszer 2. gyakorlat
4,5 mm SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 2. gyakorlat (kidolgozta: Aczél Ákos egyetemi tanársegéd, Szüle Veronika egyetemi tanársegéd) Feladat: síkbeli törtvonalú
8. előadás Kis László Szabó Balázs 2012.
8.. előad adás Kis LászlL szló Szabó Balázs 2012. Kerethidak Előadás vázlat Csoportosítás statikai váz alapján, Viselkedésük, Megépült példák. Szekrény keresztmetszetű hidak Csoportosítás km. kialakítás
Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését és elfordulását.
10. számú mérnöki kézikönyv Frissítve: 2016. Február Síkalap süllyedése Program: Fájl: Síkalap Demo_manual_10.gpa Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését
MIKE URBAN MOUSE Csıhálózati áramlási modell. DHI Prága oktatási anyagainak felhasználásával. Kiválasztás menü és eszköztár. Csomópontok és csövek
MIKE URBAN MOUSE Csıhálózati áramlási modell Modell elemek Készült az projekt keretében, a DHI Prága oktatási anyagainak felhasználásával 1 Kiválasztás menü és eszköztár Csomópontok és csövek A csomópont
Négycsuklós mechanizmus modelljének. Adams. elkészítése, kinematikai vizsgálata,
A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Négycsuklós mechanizmus modellezése SZIE-K2 alap közepes - haladó Adams
Könyvtári kölcsönzések kezelése
Könyvtári kölcsönzések kezelése Célkitőzés Feladatunk egy egyetemi könyvtár kölcsönzéseit nyilvántartó rendszert elkészítése, amely lehetıséget nyújt a könyvtár tagjainak, illetve könyveinek nyilvántartása.
Geometria megadása DXF fájl importálásából
30. sz. Mérnöki kézikönyv Frissítve: 2016. március Geometria megadása DXF fájl importálásából Program: GEO5 FEM GEO5 Fájl: Demo_manual_30.gmk DXF Fájlok: - model201.dxf eredeti fájl, amit bonyolultsága
Útmutató a MATARKA adatbázisból való adatátvételhez
Útmutató a MATARKA adatbázisból való adatátvételhez A MATARKA - Magyar folyóiratok tartalomjegyzékeinek kereshetı adatbázisa a következı címrıl érhetı el: http://www.matarka.hu/ A publikációs lista kinyerése
Mőködési elv alapján. Alkalmazás szerint. Folyadéktöltéső nyomásmérık Rugalmas alakváltozáson alapuló nyomásmérık. Manométerek Barométerek Vákuummérık
Nyomásm smérés Nyomásm smérés Mőködési elv alapján Folyadéktöltéső nyomásmérık Rugalmas alakváltozáson alapuló nyomásmérık Alkalmazás szerint Manométerek Barométerek Vákuummérık Nyomásm smérés Mérési módszer
CAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag: A feladat rövid leírása: Mőanyag alkatrész fröccsöntésének szimulációja ÓE-B09 alap közepes
forgalmi folyamatok mérése, elemzése A vizsgált jellemzıkhöz kapcsolódó fontosabb munkáink Jármőkésedelem Csomópontok kapacitása
forgalmi folyamatok mérése, elemzése A vizsgált jellemzıkhöz kapcsolódó fontosabb munkáink Jármőkésedelem A felsorolt jellemzık közül elsı az ún. jármőkésedelem (az útkeresztezıdésen való áthaladás idıvesztesége).
Végeselem módszer 6. gyakorlat Befalazott rúd sajátfrekvencia- és dinamikai vizsgálata mm
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 6. gyakorlat Befalazott rúd sajátfrekvencia- és dinamikai vizsgálata y 1000 mm F x 10N 10 Adott: Anyag: Terhelés: 5 E 2 10 MPa,
Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok. Dr. Szalai József Főiskolai adjunktus
Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok Dr. Szalai József Főiskolai adjunktus Tartalom Acélszerkezetek kapcsolatai Csavarozott kapcsolatok kialakítása Csavarozott kapcsolatok
Miért kell megerősítést végezni?
Megerősítések okai Megerősítések okai Szerkezetek megerősítése szálerősítésű polimerekkel SZERKEZETEK MEGERŐSÍTÉSÉNEK OKAI Prof. Balázs L. György Miért kell megerősítést végezni? 1/75 4/75 3/75 Megerősítések
MiTek-lemezes faszerkezetes magastetık. családi- és társasházak felújításához
I.G.M.-H Kft 2011 Budakalász Iparos u. 2. T: +36 (26) 342-675 Web: www.igmh.hu M: igminfo@igmh.hu MiTek-lemezes faszerkezetes magastetık családi- és társasházak felújításához www.igmh.hu 2011 augusztus
Földstatikai feladatok megoldási módszerei
Földstatikai feladatok megoldási módszerei A véges elemes analízis (Finite Element Method) alapjai Folytonos közeg (kontinuum) mechanikai állapotának leírása Egy pont mechanikai állapotjellemzıi és egyenletek
6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)
SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy
MARINKÓ ÁDÁM RJCTW8 TDK DOKUMENTÁCIÓ 2015
MARINKÓ ÁDÁM RJCTW8 TDK DOKUMENTÁCIÓ 2015 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék MARINKÓ ÁDÁM TDK DOLGOZAT 2015 Nyomástartó