Mozgatható térlefedő szerkezetek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mozgatható térlefedő szerkezetek"

Átírás

1 Mozgatható térlefedő szerkezetek TDK Konferencia 2010 Szilárdságtani és tartószerkezeti szekció

2 Tartalomjegyzék 1

3 Absztrakt 2

4 Bevezetés 3

5 Az alakzat mozgásának görbületre gyakorolt hatása 4

6 Teljes összenyomódás 5

7 Az alakzat szerkesztése általános görbére 6

8 7

9 Merevségi vizsgálatok A szerkezet mozgásának és megtámasztásának módját megismerendő, merevségi vizsgálatot végeztem. Rácsos tartóval modelleztem a rendszert, az élekbe rácsrudakat feltételezve. Mivel a lapok háromszöglapok, a rudak merevek a lapok síkjaiban, tehát elmozdulás tényleg csak ott jöhet létre, ahol a szerkezet lapokból felépítve is mozogna. A statikai határozottság meghatározására a Szabó J. Roller B.: Rúdszerkezetek Elmélete és Számítása (3), valamint Dr. Gáspár Zsolt: Tartók Statikája (4) című könyvekben található módszert használtam. A módszer mátrix alakba rendezi a rudak geometriáját, és ezt a mátrixot vizsgálva osztályozza a szerkezetet. A megtámasztásokat többféleképp is lehet kezelni, én a gátolt elmozdulások irányába álló rudakat tételeztem fel, és az így létrejövő alakzat geometriai mátrixának rangját határoztam meg. A mátrix sorai a rácsrudakat (illetve a megtámasztást jelképező rudakat) jelentik, oszlopai pedig a csomópontok vetületi egyensúlyi egyenleteit, csomópontonként 3-at. Amelyik csomópontokban jelen van egy rúd, azokba az oszlopokba kell beírni a rúd vektorának adott irányú vetületét, a csomópontból kifelé mutatva (húzott rudat feltételezve). A mátrix rangja jellemzi a szerkezetet. Ha a mátrix négyzetes, a csomóponti egyenletek és az ismeretlen rúderők száma azonos, a statikai határozottság szükséges feltétele teljesül. Ahhoz, hogy az elégséges feltétel is teljesüljön, az egyenleteknek lineárisan függetleneknek kell legyenek, a mátrix rangja ilyenkor megegyezik sorainak és oszlopainak számával. Amennyivel kisebb a fokszáma a négyzetes mátrixnak az oldalainak méreténél, annyiszor egyszerre határozatlan és túlhatározott a szerkezet. Ha több oszlopa van a mátrixnak, mint sora, az több egyensúlyi egyenletet jelent, mint ahány ismeretlen van, tehát a szerkezet túlhatározott. Ha több sora van, mint oszlopa, akkor a szerkezet határozatlan, lévén több ismeretlen van, mint ahány egyenlet. Téglalap alakú mátrixnál a rang és a hosszabb oldal különbsége adja a határozatlanság illetve túlhatározottság fokszámát. A mátrixok rangjának megállapításához a MATLAB nevű programot használtam. Mivel nem képes paraméteresen dolgozni, felvettem egy konkrét geometriát, és annak a mátrixát vittem be. Parabolaívre szerkesztettem az alakzatot, x;y sík volt a parabola síkja, pedig az egyenlete. A rudak vetületeinek fölírásához szögek helyett aránypárokat használtam, az adott irányú hosszat leosztva a rúd teljes hosszával. Ezáltal kizárólag a csúcspontok koordinátáinak ismeretében felírható a mátrix, hiszen a vetületi és valós hosszak a végpontok koordinátáinak a különbségei. A következőképp néz ki például az 5-6. rúd 5. számú csomópontbeli x irányú vetülete: A második koordináta ( ) mindig az, amelyik csomópontba írjuk a rúd vetületét, az első koordináta ) pedig a rúd másik vége. Először egy kisebb, 12 rúdból álló darabot vizsgáltam (10. ábra). A rudakból egy 12x21-es mátrix adódott, míg a statikai határozottsághoz négyzetes mátrix szükséges =9 irányú megtámasztással statikailag határozottá tehető a szerkezet, ha a mátrix rangja 12. Ez teljesült. Az ábrán ezek a megtámasztások a piros rudak. A teljes mátrix vizsgálatából kiderült, hogy a mátrix rangja 21, tehát a szerkezet ezekkel a megtámasztásokkal statikailag határozott. A szerkezet szélein a függőleges megtámasztás is statikailag határozott állapotot adott, tehát egy oromfallal remekül stabilizálható a szerkezet vége. 8

10 A mozgatás hatását is vizsgálni tudtam, egyrészt a mátrix azon elemein keresztül, ahol szerepelt z irányú komponens, másrészt az y irányú komponenseket vizsgálva, az összenyomódás görbületet megváltoztató hatása miatt. A mátrix rangja akkor csökken le, ha egy sora vagy oszlopa 0 sorrá változik. Ez két esetben történhet: Teljesen sík állapotban (t=t max ) az alakzatnak nem lesz y irányú kiterjedése, az y-t tartalmazó elemek 0-k lesznek. Teljes összenyomódás esetén (t=0) az alakzat z tengelyirányú komponenst tartalmazó elemei lesznek 0-k. Előbbi eset egy olyan háromcsuklós tartóra hasonlít, aminek egy tengelybe esnek a csuklói, utóbbi pedig egy olyanhoz, aminek a szélső csuklói egy pontba esnek. Ezután két ilyen alakzatot soroltam, vízszintesen (11. ábra). Ha csak a megtámasztás nélküli szerkezet 36x23-as mátrixát vettem, annak is egyel kisebb, lett a rangja, mint a sorainak (kisebb méretének) a száma. Mivel a sorokban a rudak szerepeltek, és egy felesleges volt belőlük, ez azt jelentette, hogy a szerkezet belsőleg statikailag határozatlan. Ez azonban csak úgy lehetséges, hogy eközben túlhatározott is, hiszen megfelelő megtámasztásokkal négyzetessé tehető a mátrix (az ismeretlenek és egyenletek száma egyenlő lesz akkor). A megtámasztott szerkezet mátrixának rangja 35 lett, egyel kisebb, mint oszlopainak és sorainak száma. Tehát a megtámasztott szerkezet egyszeresen határozatlan és túlhatározott. 9

11 Ez belátható például úgy, hogy megnézzük az antiprizmát a két előzőekben vizsgált, 12 rúdnyi rész csatlakozásánál. Ahhoz, hogy határozott térrácsot kapjunk, A és B pont közt szükség lenne egy rúdra. Mi azonban ezt a rudat máshová tettük, tehát itt létrehoztunk egy túlhatározott részt, ahová a rúd került ott pedig egy határozatlant. Ebből az következik, hogy ahány ilyen belső antiprizma van az alakzatdarabban, annyiszorosan határozatlan és túlhatározott a rendszer. Ez igaz akkor is, ha szélesebb darabot veszünk, és a belső antiprizmák nem csak egy sorban, hanem egymás mellet eltolva is elhelyezkednek. Belső antiprizma az, amelyiket alkotó rudak nem csatlakoznak külső támaszhoz. Maga a túlhatározottság pedig helyén is való, mivel egy mozgó szerkezetről van szó. Egy másik módja, hogy a határozatlanság és túlhatározottság fokát belássuk az, hogy tudunk-e olyan rudat találni, amit sajátfeszültség alá helyezve a csatlakozó rudak erői nem számíthatók, illetve hány darab rúd eltávolítása után határozhatók meg. Az eltávolított rudak száma adja meg a határozatlanság és túlhatározottság fokát. Ezzel a módszerrel is igazolható a fenti megállapítás a túlhatározottsági és határozatlansági fokról. A szerkezetet tehát hosszirányban merevíteni szükséges, célszerűen oldható kapcsolatokkal, hogyha mozgatni is szeretnénk felállítása után. Ha csak az építés megkönnyítésére használjuk a szerkezet mozgási képességét, állandó merevítést is használhatunk. 10

12 Alkalmazások, összegzés 11

13 Kivágható makett 12

14 13

A síkbeli Statika egyensúlyi egyenleteiről

A síkbeli Statika egyensúlyi egyenleteiről 1 A síkbeli Statika egyensúlyi egyenleteiről Statikai tanulmányaink egyik mérföldköve az egyensúlyi egyenletek belátása és sikeres alkalmazása. Most egy erre vonatkozó lehetséges tanulási / tanítási útvonalat

Részletesebben

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

X = 0 B x = 0. M B = A y 6 = 0. B x = 0 A y = 1000 B y = 400

X = 0 B x = 0. M B = A y 6 = 0. B x = 0 A y = 1000 B y = 400 1. feladat Számítsuk ki a bejelölt rúderőket! Az erők N-ban, a hosszak m-ben, a nyomatékok Nm-ben értendők Első lépésként határozzuk meg a kényszererőket. Az S 1 rúderő számítása: Egyensúlyi egyenletek:

Részletesebben

Rugalmasan ágyazott gerenda. Szép János

Rugalmasan ágyazott gerenda. Szép János Rugalmasan ágyazott gerenda vizsgálata AXIS VM programmal Szép János 2013.10.14. LEMEZALAP TERVEZÉS 1. Bevezetés 2. Lemezalap tervezés 3. AXIS Program ismertetés 4. Példa LEMEZALAPOZÁS Alkalmazás módjai

Részletesebben

X i = 0 F x + B x = 0. Y i = 0 A y F y + B y = 0. M A = 0 F y 3 + B y 7 = 0. B x = 200 N. B y =

X i = 0 F x + B x = 0. Y i = 0 A y F y + B y = 0. M A = 0 F y 3 + B y 7 = 0. B x = 200 N. B y = 1. feladat a = 3 m b = 4 m F = 400 N φ = 60 fok Első lépésként alkossuk meg a számítási modellt. A kényszereket helyettesítsük a bennük ébredő lehetséges erőkkel (második ábra). Az F erő felbontásával

Részletesebben

CAD-CAM-CAE Példatár

CAD-CAM-CAE Példatár CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM Rúdszerkezet sajátfrekvenciája ÓE-A05 alap közepes haladó

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

Rácsos szerkezetek. Frissítve: Egy kis elmélet: vakrudak

Rácsos szerkezetek. Frissítve: Egy kis elmélet: vakrudak Egy kis elmélet: vakrudak Az egyik lehetőség, ha két rúd szög alatt találkozik (nem egyvonalban vannak), és nem működik a csomópontra terhelés. Ilyen az 1.ábra C csomópontja. Ekkor az ide befutó mindkét

Részletesebben

Egy érdekes mechanikai feladat

Egy érdekes mechanikai feladat 1 Egy érdekes mechanikai feladat 1. ábra forrása: [ 1 ] A feladat Az 1. ábra szerinti rudazat A csomópontján átvezettek egy kötelet, melynek alsó végén egy m tömegű golyó lóg. A rudak egyező nyúlási merevsége

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK

TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK TARTÓSZERKEZETEK II. VASBETONSZERKEZETEK 2010.04.09. VASBETON ÉPÜLETEK MEREVÍTÉSE Az épületeink vízszintes terhekkel szembeni ellenállását merevítéssel biztosítjuk. A merevítés lehetséges módjai: vasbeton

Részletesebben

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015. Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő

Részletesebben

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II IV. Előadás Rácsos tartók szerkezeti formái, kialakítása, tönkremeneteli módjai. - Rácsos tartók jellemzói - Méretezési kérdések

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy

Részletesebben

Tartószerkezetek I. (Vasbeton szilárdságtan)

Tartószerkezetek I. (Vasbeton szilárdságtan) Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek

Részletesebben

Koordináta-geometria feladatok (emelt szint)

Koordináta-geometria feladatok (emelt szint) Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik

Részletesebben

AxisVM rácsos tartó GEOMETRIA

AxisVM rácsos tartó GEOMETRIA AxisVM rácsos tartó Feladat Síkbeli rácsos tartó igénybevételeinek meghatározás. A rácsostartó övei legyenek I200 szelvényűek. A rácsrudak legyenek 80x80x4 zártszelvényűek Indítás A program elindításához

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA

TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA GEMET001-B Miskolci Egyetem Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet MM/37/2018. Miskolc, 2018. február 5. HIRDETMÉNY Statika(GEMET201NB és GEMET001-B)

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár TARTÓK

DEME FERENC okl. építőmérnök, mérnöktanár TARTÓK web-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 19. TARTÓK FOGALMA: TARTÓK A tartók terhek biztonságos hordására és azoknak a támaszokra történő

Részletesebben

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3 BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA ALAPOGALMAK ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA Egy testre általában nem egy erő hat, hanem több. Legalább két erőnek kell hatni a testre, ha az erő- ellenerő alaptétel alapján járunk el. A testek vizsgálatához

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben

Koordináta-geometria. Fogalom. Jelölés. Tulajdonságok, definíciók

Koordináta-geometria. Fogalom. Jelölés. Tulajdonságok, definíciók Koordináta-geometria Fogalom Ezen a helyen találkozik össze a számtan és a mértan. Körök, egyenesek, háromszögek és más egyéb alakzatok, de nem szerkesztenünk kell, vagy méricskélni, hanem számolni, viszont

Részletesebben

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor 12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása

Részletesebben

A bifiláris felfüggesztésű rúd mozgásáról

A bifiláris felfüggesztésű rúd mozgásáról 1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.

Részletesebben

11. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

11. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHENYI ISTVÁN EGYETEM LKLMZOTT MEHNIK TNSZÉK.. Példa:. MEHNIK-STTIK GYKORLT (kidolgozta: Triesz Péter, eg. ts.; Tarnai Gábor, mérnöktanár) Összetett szerkezetek statikája (három csuklós ív, Gerber tartó)

Részletesebben

Mechatronika segédlet 3. gyakorlat

Mechatronika segédlet 3. gyakorlat Mechatronika segédlet 3. gyakorlat 2017. február 20. Tartalom Vadai Gergely, Faragó Dénes Feladatleírás... 2 Fogaskerék... 2 Nézetváltás 3D modellezéshez... 2 Könnyítés megvalósítása... 2 A fogaskerék

Részletesebben

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0. Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Felső végükön egymásra támaszkodó szarugerendák egyensúlya

Felső végükön egymásra támaszkodó szarugerendák egyensúlya 1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra

Részletesebben

Cohen-Sutherland vágóalgoritmus

Cohen-Sutherland vágóalgoritmus Vágási algoritmusok Alapprobléma Van egy alakzatunk (szakaszokból felépítve) és van egy "ablakunk" (lehet a monitor, vagy egy téglalap alakú tartomány, vagy ennél szabálytalanabb poligon által határolt

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira: 005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Leggyakoribb fa rácsos tartó kialakítások

Leggyakoribb fa rácsos tartó kialakítások Fa rácsostartók vizsgálata 1. Dr. Koris Kálmán, Dr. Bódi István BME Hidak és Szerkezetek Tanszék Leggakoribb fa rácsos tartó kialakítások Változó magasságú Állandó magasságú Kis mértékben változó magasságú

Részletesebben

UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI

UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI DR. FARKAS GYÖRGY Professor emeritus BME Hidak és Szerkezetek Tanszék MMK Tartószerkezeti Tagozat Szakmai továbbképzés 2017 október 2. KÁBELVEZETÉS EGYENES

Részletesebben

MUNKA- ÉS ENERGIATÉTELEK

MUNKA- ÉS ENERGIATÉTELEK MUNKA- ÉS ENERGIAÉELEK 1. előadás: Alapfogalmak; A virtuális elmozdulások tétele 2. előadás: Alapfogalmak; A virtuális erők tétele Elmozdulások számítása a virtuális erők tétele alapján 3. előadás: Az

Részletesebben

Teherfelvétel. Húzott rudak számítása. 2. gyakorlat

Teherfelvétel. Húzott rudak számítása. 2. gyakorlat Teherfelvétel. Húzott rudak számítása 2. gyakorlat Az Eurocode 1. részei: (Terhek és hatások) Sűrűségek, önsúly és az épületek hasznos terhei (MSZ EN 1991-1-1) Tűznek kitett tartószerkezeteket érő hatások

Részletesebben

Egymásra támaszkodó rudak

Egymásra támaszkodó rudak 1 Egymásra támaszkodó rudak Úgy látszik, ez is egy visszatérő téma. Egy korábbi írásunkban melynek címe: A mandala - tetőről már találkoztunk az 1. ábrán vázolthoz hasonló felülnézetű szerkezettel, foglalkoztunk

Részletesebben

1. MÁSODRENDŰ NYOMATÉK

1. MÁSODRENDŰ NYOMATÉK Gak 01 Mechanka. Szlárdságtan 016 01 Segédlet MECHNK. TNNYG SMÉTLÉSE Tartalom 1. MÁSODRENDŰ NYOMTÉK... 1. RÁCSOS TRTÓ.... GÉNYEVÉTEL ÁRÁK... 5. TÉREL TRTÓK GÉNYEVÉTEL ÁRÁ... 8 Ez a Segédlet a 015, 016

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

A keresett kör középpontja Ku ( ; v, ) a sugara r = 1. Az adott kör középpontjának koordinátái: K1( 4; 2)

A keresett kör középpontja Ku ( ; v, ) a sugara r = 1. Az adott kör középpontjának koordinátái: K1( 4; 2) 55 A kör 87 8 A keresett kör középpontja Ku ( ; v, ) a sugara r = Az adott kör középpontjának koordinátái: K( ; ) és a sugara r =, az adott pont P(; ) Ekkor KP = és KK = () ( u ) + ( v ) =, () ( u ) +

Részletesebben

Kiegészítés a három erő egyensúlyához

Kiegészítés a három erő egyensúlyához 1 Kiegészítés a három erő egyensúlyához Egy régebbi dolgozatunkban melynek jele és címe : RD: Három erő egyensúlya ~ kéttámaszú tartó már sok mindent elmondtunk a címbeli témáról. Ez ugyanis egy megkerülhetetlen

Részletesebben

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 212. október 16. Frissítve: 215. január

Részletesebben

2. E L Ő A D Á S D R. H U S I G É Z A

2. E L Ő A D Á S D R. H U S I G É Z A Mechatronika alapjai 2. E L Ő A D Á S D R. H U S I G É Z A elmozdulás erő nyomaték elmozdulás erő nyomaték Mechanizmusok Mechanizmus: általánosságban: A gép mechanikus elven működő részei Definíció: A

Részletesebben

Segédlet: Kihajlás. Készítette: Dr. Kossa Attila BME, Műszaki Mechanikai Tanszék május 15.

Segédlet: Kihajlás. Készítette: Dr. Kossa Attila BME, Műszaki Mechanikai Tanszék május 15. Segédlet: Kihajlás Készítette: Dr. Kossa ttila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2012. május 15. Jelen segédlet célja tömören összefoglalni a hosszú nyomott rudak kihajlásra történő ellenőrzését.

Részletesebben

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével

Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2013. szeptember 23. Javítva: 2013.10.09.

Részletesebben

Példa keresztmetszet másodrendű nyomatékainak számítására

Példa keresztmetszet másodrendű nyomatékainak számítására Példa keresztmetszet másodrendű nyomatékainak számítására Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. február 22. Tekintsük az alábbi keresztmetszetet. 1. ábra. A vizsgált

Részletesebben

Robotok inverz geometriája

Robotok inverz geometriája Robotok inverz geometriája. A gyakorlat célja Inverz geometriai feladatot megvalósító függvények implementálása. A megvalósított függvénycsomag tesztelése egy kétszabadságfokú kar előírt végberendezés

Részletesebben

Példa: Háromszög síkidom másodrendű nyomatékainak számítása

Példa: Háromszög síkidom másodrendű nyomatékainak számítása Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

Közgazdaságtan I. Számolási feladat-típusok a számonkérésekre 1. hét. 2018/2019/I. Kupcsik Réka

Közgazdaságtan I. Számolási feladat-típusok a számonkérésekre 1. hét. 2018/2019/I. Kupcsik Réka Közgazdaságtan I. Számolási feladat-típusok a számonkérésekre 1. hét 2018/2019/I. Témakörök I. Bevezetés II. Horizontális összegzés 1. III. Horizontális összegzés 2. IV. Piaci egyensúly V. Mennyiségi adó

Részletesebben

EGY ABLAK - GEOMETRIAI PROBLÉMA

EGY ABLAK - GEOMETRIAI PROBLÉMA EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az

Részletesebben

Láthatósági kérdések

Láthatósági kérdések Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok

Részletesebben

Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2

Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2 Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű

Részletesebben

Bevezetés az elméleti zikába

Bevezetés az elméleti zikába Bevezetés az elméleti zikába egyetemi jegyzet Kúpszeletek Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 2011 TARTALOMJEGYZÉK 6 TARTALOMJEGYZÉK Azokat a görbéket, amelyeknek egyenlete

Részletesebben

TANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet. OKTATÓ, ELŐADÓ címe: fogadóórája a szorgalmi időszakban:

TANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet. OKTATÓ, ELŐADÓ  címe: fogadóórája a szorgalmi időszakban: Mechanika 1 Mechanika I. (Statika) Mechanika I. (Statika) Neptun kódja: SGYMMET2001XA Neptun kódja: SGYMMET201XXX Tantárgy neve angolul: Mechanics 1 Építészmérnöki szak, Építőmérnöki szak Nappali tagozat

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei

Részletesebben

Analitikus térgeometria

Analitikus térgeometria 5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T

Részletesebben

Építészeti tartószerkezetek II.

Építészeti tartószerkezetek II. Építészeti tartószerkezetek II. Vasbeton szerkezetek Dr. Szép János Egyetemi docens 2019. 05. 03. Vasbeton szerkezetek I. rész o Előadás: Vasbeton lemezek o Gyakorlat: Súlyelemzés, modellfelvétel (AxisVM)

Részletesebben

Koordináta-geometria feladatgyűjtemény

Koordináta-geometria feladatgyűjtemény Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs

Részletesebben

TÁRGYLEÍRÁS 1. ALAPADATOK

TÁRGYLEÍRÁS 1. ALAPADATOK TÁRGYLEÍRÁS 1. ALAPADATOK 1.1. Tantárgy neve A STATIKA ÉS DINAMIKA ALAPJAI 1.2. Azonosító (tantárgykód) BMEEOTMAT41 1.3. A tantárgy jellege kontaktórás tanegység 1.4. Óraszámok gyakorlat: 5 óra/hét 1.5.

Részletesebben

Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra.

Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra. Tisztelt Hallgatók! Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra. Az, hogy valaki egy korábbi vizsga megoldását

Részletesebben

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019. 8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához

Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához 1 Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához Az interneten való nézelődés során találkoztunk az [ 1 ] művel, melyben egy érdekes és fontos feladat pontos(abb) megoldásához

Részletesebben

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer 8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó.

Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. 1 Végein függesztett rúd egyensúlyi helyzete Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. A feladat Ehhez tekintsük a 2. ábrát is! 1. ábra forrása:

Részletesebben

Mechanika. II. előadás március 4. Mechanika II. előadás március 4. 1 / 31

Mechanika. II. előadás március 4. Mechanika II. előadás március 4. 1 / 31 Mechanika II. előadás 219. március 4. Mechanika II. előadás 219. március 4. 1 / 31 4. Merev test megtámasztásai, statikai feladatok megtámasztás: testek érintkezése útján jön létre, az érintkezés során

Részletesebben

Tartószerkezetek modellezése

Tartószerkezetek modellezése Tartószerkezetek modellezése 15. elıadás Kötél- és ponyvaszerkezetek Kötelek: Acél sodronykötél. Kötélszerkezetek acél sodronykötél: Elıny: - nagy szilárdság, - aránylag olcsó, - tetszıleges hosszban gyártható.

Részletesebben

Végeselem modellezés alapjai 1. óra

Végeselem modellezés alapjai 1. óra Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,

Részletesebben

Ellipszis átszelése. 1. ábra

Ellipszis átszelése. 1. ábra 1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva

Részletesebben

CAD-CAM-CAE Példatár

CAD-CAM-CAE Példatár CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: A01 VEM Síkbeli húzott rúd ÓE-A01 alap közepes haladó VEM

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Síklefedések Erdősné Németh Ágnes, Nagykanizsa

Síklefedések Erdősné Németh Ágnes, Nagykanizsa Magas szintű matematikai tehetséggondozás Síklefedések Erdősné Németh Ágnes, Nagykanizsa Kisebbeknek és nagyobbaknak a programozási versenyfeladatok között nagyon gyakran fordul elő olyan, hogy valamilyen

Részletesebben

A -Y és a Y- átalakítás bemutatása. Kiss László április havában

A -Y és a Y- átalakítás bemutatása. Kiss László április havában A -Y és a Y- átalakítás bemutatása Kiss László 2011. április havában -Y átalakítás ohmos ellenállásokra Mint ismeretes, az elektrotechnikai gyakorlatban többször előfordul olyan kapcsolási kép, ami a megszokott

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését és elfordulását.

Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését és elfordulását. 10. számú mérnöki kézikönyv Frissítve: 2016. Február Síkalap süllyedése Program: Fájl: Síkalap Demo_manual_10.gpa Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését

Részletesebben

Síkbeli csuklós rúdnégyszög egyensúlya

Síkbeli csuklós rúdnégyszög egyensúlya Síkbeli csuklós rúdnégyszög egyensúlya Két korábbi dolgozatunkban melyek címe és azonosítója: [KD ]: Egy érdekes feladat, [KD ]: Egy másik érdekes feladat azt vizsgáltuk, hogy egy csuklós rúdnégyszög milyen

Részletesebben

Henger és kúp metsződő tengelyekkel

Henger és kúp metsződő tengelyekkel Henger és kúp metsződő tengelyekkel Ebben a dolgozatban egy forgáshenger és egy forgáskúp áthatását tanulmányozzuk abban az egyszerűbb esetben, amikor a két test tengelye egyazon síkban fekszik, vagyis

Részletesebben

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot

Részletesebben

Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA

Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA UNIVERSITAS-GYŐR Nonprofit Kft. Győr, 2010 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR ALKALMAZOTT MECHANIKA TANSZÉK ALKALMAZOTT

Részletesebben

A spirális Yoshimura alakzat mint mechanizmus

A spirális Yoshimura alakzat mint mechanizmus A spirális Yoshimura alakzat mint mechanizmus TDK Dolgozat 2011 Készítette: Baranyi Tamás Konzulens: dr. Sajtos István Tartalomjegyzék [2] A spirális Yoshimura alakzat mint mechanizmus 0. Absztrakt [3]

Részletesebben

Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz

Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz 1. feladattípus a megadott adatok alapján lineáris keresleti, vagy kínálati függvény meghatározása 1.1. feladat

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben