A -Y és a Y- átalakítás bemutatása. Kiss László április havában
|
|
- Boglárka Hegedüs
- 7 évvel ezelőtt
- Látták:
Átírás
1 A -Y és a Y- átalakítás bemutatása Kiss László április havában
2 -Y átalakítás ohmos ellenállásokra Mint ismeretes, az elektrotechnikai gyakorlatban többször előfordul olyan kapcsolási kép, ami a megszokott (egyszerű) módszerrel nem oldható meg. Ez azt jelenti, hogy az egymáshoz csatlakozó ellenállások sem sorosan, sem párhuzamosan nem számíthatók, mivel közöttük csomópont, tehát áramelágazás található. Ebben az esetben segít a -Y átalakítás. Ezt ellenállás-hű, (más néven impedanciahű) átalakításnak is nevezzük, hiszen a keletkező Y alakzat azonos pontok felől nézve ugyanakkora ellenállást (impedanciát) képvisel mint a kiinduló alakzat. A -Y átalakítás egy algoritmus, aminek az elsajátítása mindenki számára egyszerű. Az egyszerű átalakítási szabályok alkalmazásával csak helyes eredmény adódhat Kiss László 2
3 A -Y átalakítás levezetése 1. Az alapáramkörök felrajzolása. A R ABY A R AB R 12 R 1 R 2 R 13 R 23 B R 3 C B C Kiss László 3
4 A -Y átalakítás levezetése 2. Az átalakítási elv tisztázása. A delta alakzat bármely két pontja között mérhető egy-egy ellenállás érték. Ezek rendre a következők: R AB, R AC és R BC. A csillag alakzat azonos betűjellel ellátott kapcsai között szintén mérhető egy-egy ellenállásérték. Ezek rendre a következők: R ABY, R ACY és R BCY. 3. Az átalakítás akkor egyenértékű, ha a két alakzat azonos betűkkel jelölt kapocspárjai között azonos ellenállás mérhető, tehát írható, hogy: R AB =R ABY, R AC =R ACY, és R BC =R BCY. Az előző dián látható az A-B kapocspárra vonatkozó mérési elrendezés 4. Fel kell írni a két hálózat azonos pontjai között az eredő ellenállások egyenlőségét. I. R AB = R 1 x R 2 + R 3 R ABY = R 12 + R 13 II. R AC = R 2 x R 1 + R 3 R ACY = R 12 + R 23 III. R BC = R 3 x R 1 + R 2 R BCY = R 13 + R Kiss László 4
5 A -Y átalakítás levezetése 5. Tehát: I. R 1 x R 2 + R 3 = R 12 + R 13 II. R 2 x R 1 + R 3 = R 12 + R 23 III. R 3 x R 1 + R 2 = R 13 + R Kifejtve az egyenleteket: I. egyenlet R 1 R 2 + R 1 R 3 R 1 + R 2 + R 3 = R 12 + R 13 II. egyenlet R 2 R 1 + R 2 R 3 R 1 + R 2 + R 3 = R 12 + R 23 III. egyenlet R 3 R 1 + R 3 R 2 R 1 + R 2 + R 3 = R 13 + R Kiss László 5
6 A -Y átalakítás levezetése 7. Az a cél, hogy kifejezzük a három egyenletből a három ismeretlen ellenállást, amelyek rendre a következők: R 12, R 13 és R 23. Például, fejezzük ki R 13 értékét! Ennek érdekében egy kis matematika. 8. Adjuk össze I.-et és III.-at, majd ebből az összegből vonjuk ki II.-őt. A I. és III. összege: R 1 R R 1 R 3 + R 2 R 3 = R R 1 + R 2 + R R 13 + R 23 3 És miután a II.-őt kivontuk belőle: 2 R 1 R 3 = 2 R R 1 + R 2 + R vel való egyszerűsítés után és a nevezőt egyszerűbb alakba írva kapjuk az eredményt: R 13 = R 1 R 3 Ω R Az R 12 és R 23 is a meghatározása is a fenti módon történik. Gyakorlásképpen hasznos elvégezni a számítást Kiss László 6
7 A Y- átalakítás levezetése 1. Mint az eddigiekből kiderült a két átalakítás egyenértékű hálózatokat eredményez. Most sorra vesszük a inverz műveleteket, amelynek során a csillag hálózatból deltát tudunk készíteni. 2. Az alapáramkör felrajzolásával kezdjük. R ABY A A R AB R 12 R 1 R 2 R 13 R 23 B C C B R Kiss László 7
8 A Y- átalakítás levezetése 3. A csillag kapcsolás deltává való átalakításának az az alapgondolata, hogy ha a 7-es dián látható két alakzat ugyanazon pontjait páronként rövidre zárjuk, akkor az eredő ellenállásuk szintén páronként nem változik. Ezt az alábbi ábrán teszem szemléletessé. A A R ABY R AB R 12 R 1 R 2 B R 13 R 23 C B R 3 C Értelemszerűen a lila színű rövidzárat az óramutató járásával ellentétesen minden mérésnél tovább mozgatjuk. A 10-es dián ennek felelnek meg az egyenletek Kiss László 8
9 A Y- átalakítás levezetése 4. Célunk még, hogy formailag ugyanolyan egyenleteket kapjunk, mint a delta-csillag átalakítás során. 5. Ennek érdekében a vezetésekre kell áttérni és akkor (csak formailag) valóban kinézetre ugyanolyan egyenleteket kapunk majd, mint a delta csillag átalakítás során. G 12Y = 1 G R 13Y = 1 G 12Y R 23Y = 1 13Y R 23Y G 1 = 1 G R 2 = 1 G 1 R 3 = 1 2 R 3 6. Következhet az egyenletrendszerek felírása a két kapcsolásra. Ez a következő dián látható Kiss László 9
10 A Y- átalakítás levezetése G ABY = G 12 x G 13 + G 23 és G BCY = G 13 x G 12 + G 23 és G ACY = G 23 x G 12 + G 13 G AB = G 1 + G 2 és G BC = G 1 + G 3 és G AC = G 2 + G 3 I. G ABY = G AB II. G BCY = G BC III. G ACY = G AC I. G 12 x G 13 + G 12 = G 1 + G 2 II. G 13 x G 12 + G 23 = G 1 + G 3 III. G 23 x G 12 + G 13 = G 2 + G 3 A következő dián kifejtjük az egyenleteket Kiss László 10
11 I. G 12 G 13 + G 12 G 23 G 12 + G 13 + G 23 = G 1 + G 2 II. G 13 G 12 + G 13 G 23 G 12 + G 13 + G 23 = G 1 + G 3 III. G 23 G 12 + G 23 G 13 G 12 + G 13 + G 23 = G 2 + G 3 A Y- átalakítás levezetése I. +III. G 12 G G 12 G 23 + G 23 G 13 G 12 + G 13 + G 23 = G G 2 + G 3 I. +III. II. 2 G 12 G 23 G 12 + G 13 + G 23 = 2 G 2 2-vel egyszerűsítve és a nevezőt egyszerűbb alakba írva kapjuk az eredményt. G 2 = G 12 G 23 G R 2 = 1 G Kiss László 11
12 A -Y és Y- átalakítás összefoglalása Mint már említettem az átalakítás egy egyszerű algoritmus, ami könnyen elsajátítható. Célszerű mind a két esetben a hiányzó tagok meghatározásához a levezetéseket önállóan elvégezni, ezzel is elmélyítve az átalakítás lépéseit. A teljességhez tartozik, hogy magának a levezetésnek a mindennapi gyakorlatban nincs szerepe, az inkább a megértést szolgálja. A napi gyakorlat számára elegendőek a végső összefüggések ismerete. Ezeket az összefüggéseket és a hozzájuk tartozó kapcsolásokat vizsgálva mindenki megállapíthatja az egyszerű törvényszerűséget, amelyek alapján már a képleteket sem kell megjegyezni, csupán a rendező elvet Kiss László 12
13 A -Y és Y- átalakítás összefoglalása A rendező elv a -Y átalakításnál a következő: A csillag alakzat egy adott ellenállása egyenlő, a delta alakzatban az őt közrefogó ellenállásoknak a szorzata osztva a delta hálózatban lévő ellenállások összegével. R 12 = R 1 R 2 Ω ; R R 13 = R 1 R 3 Ω ; R R 23 = R 2 R 3 R A rendező elv a Y- átalakításnál a következő: A delta alakzat egy adott vezetése egyenlő, a csillagalakzatban az őt közrefogó vezetések szorzata osztva csillag hálózatban lévő vezetések összegével. Az így meghatározott vezetés reciproka a kérdéses ellenállás értéke. Ω. G 1 = G 12 G 13 G S ; G 2 = G 12 G 23 G S ; G 3 = G 13 G 23 G S. R 1 = 1 G 1 Ω ; R 2 = 1 G 2 Ω ; R 3 = 1 G 3 Ω Kiss László 13
14 Eredményes tanulást és gyakorlást mindenkinek Ebből csak akkor lesz tudás, ha az érdeklődő levezeti önállóan az átalakításokat, és elkészít néhány gyakorló feladatot.
1. konferencia: Egyenáramú hálózatok számítása
1. konferencia: Egyenáramú hálózatok számítása 1.feladat: 20 1 kω Határozzuk meg az R jelű ellenállás értékét! 10 5 kω R z ellenállás értéke meghatározható az Ohm-törvény alapján. Ehhez ismernünk kell
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
RészletesebbenElektrotechnika példatár
Elektrotechnika példatár Langer Ingrid Tartalomjegyzék Előszó... 2 1. Egyenáramú hálózatok... 3 1.1. lapfogalmak... 3 1.2. Példák passzív hálózatok eredő ellenállásának kiszámítására... 6 1.3. Impedanciahű
RészletesebbenFizika A2E, 9. feladatsor
Fizika 2E, 9. feladatsor Vida György József vidagyorgy@gmail.com 1. feladat: hurokáramok módszerével határozzuk meg az ábrán látható kapcsolás ágaiban folyó áramokat! z áramkör két ablakból áll, így két
RészletesebbenMatematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
RészletesebbenPélda: Háromszög síkidom másodrendű nyomatékainak számítása
Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög
RészletesebbenDiszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
RészletesebbenElektrotechnika. 1. előad. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet
Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai ntézet Elektrotechnika. előad adás Összeállította: Langer ngrid főisk. adjunktus A tárgy t tematikája
RészletesebbenÖVEGES JÓZSEF ORSZÁGOS FIZIKAVERSENY II. fordulója feladatainak javítókulcsa április 5.
ÖVEGES JÓZSEF ORSZÁGOS FIZIKAVERSENY II. fordulója feladatainak javítókulcsa 2005. április 5. Számítási feladatok Valamennyi számítási feladat javítására érvényes: ha a versenyző számítási hibát vét, de
Részletesebben1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
RészletesebbenEgyenletek, egyenlőtlenségek X.
Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak
RészletesebbenFöldelt emitteres erősítő DC, AC analízise
Földelt emitteres erősítő DC, AC analízise Kapcsolási vázlat: Az ábrán egy kisjelű univerzális felhasználású tranzisztor (tip: 2N3904) köré van felépítve egy egyszerű, pár alkatrészből álló erősítő áramkör.
RészletesebbenMásodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.
RészletesebbenNégypólusok tárgyalása Laplace transzformációval
Négypólusok tárgyalása Laplace transzformációval Segédlet az Elektrotechnika II. c. tantárgyhoz Összeállította: Dr. Kurutz Károly egyetemi tanár Szászi István egyetemi tanársegéd . Laplace transzformáció
RészletesebbenMásodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:
RészletesebbenEgyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
RészletesebbenTétel: A háromszög belső szögeinek összege: 180
Tétel: A háromszög belső szögeinek összege: 180 Bizonyítás: legyenek az ABC háromszög belső szögei α, β, γ. Húzzunk a C csúcson át párhuzamost AB-vel. A C csúcsnál keletkezett egyenesszöget a háromszög
Részletesebben2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
Részletesebben1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül
Részletesebben9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
Részletesebben10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
RészletesebbenEgy sík és a koordinátasíkok metszésvonalainak meghatározása
1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -
RészletesebbenTranziens jelenségek rövid összefoglalás
Tranziens jelenségek rövid összefoglalás Átmenet alakul ki akkor, ha van energiatároló (kapacitás vagy induktivitás) a rendszerben, mert ezeken a feszültség vagy áram nem jelenik meg azonnal, mint az ohmos
RészletesebbenNémeth László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így
RészletesebbenElektrotechnika 1. előadás
Óudai Egyetem ánki Donát épész és iztonságtechnikai Kar Mechatronikai és utechnikai ntézet Elektrotechnika. előadás Összeállította: Langer ngrid adjunktus tárgy tematikája Egyen- és váltakozó áramú villamos
Részletesebben8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.
8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az
RészletesebbenMATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA
RészletesebbenArany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/01-ös tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. Adott az alábbi két egyenletrendszer:
RészletesebbenGauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
RészletesebbenOktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
Részletesebben2018/2019. Matematika 10.K
Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül
RészletesebbenFirst Prev Next Last Go Back Full Screen Close Quit. Matematika I
Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html
RészletesebbenHALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.
HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x
Részletesebben2. Algebrai átalakítások
I. Nulladik ZH-ban láttuk: 2. Algebrai átalakítások 1. Mi az alábbi kifejezés legegyszerűbb alakja a változó lehetséges értékei esetén? (A) x + 1 x 1 (x 1)(x 2 + 3x + 2) (1 x 2 )(x + 2) (B) 1 (C) 2 (D)
Részletesebben3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
RészletesebbenMAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY Heti 4 óra Évi 148 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató 1 / 5 I. Az általános iskolai ismeretek ismétlése 1. óra: Műveletek
RészletesebbenLineáris Algebra gyakorlatok
A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk
RészletesebbenElektronikai műszerész Elektronikai műszerész
A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
RészletesebbenHúrnégyszögek, Ptolemaiosz tétele
Húrnégyszögek, Ptolemaiosz tétele Markó Zoltán 11C Húrnégyszögek Definíció: Húrnégyszögnek nevezzük az olyan négyszöget, amely köré kör írható Vagyis az olyan konvex négyszögek, amelyeknek oldalai egyben
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenFénypont a falon Feladat
Fénypont a falon 3. Dolgozat - sorozatunk. és. részében két speiális eset vizsgálatát részleteztük. Itt az általánosabb síkbeli esettel foglalkozunk, főbb vonalaiban. Ehhez tekintsük az. ábrát is! 3. Feladat.
RészletesebbenLehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
RészletesebbenMegoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
Részletesebbenegyenlőtlenségnek kell teljesülnie.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenA 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal A 0/04 tanévi Országos Középiskolai Tanulmányi erseny második forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 57 olyan háromjegyű szám, amelynek számjegyei
RészletesebbenVersenyző kódja: 31 15/2008. (VIII. 13) SZMM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny
54 523 01 0000 00 00-2014 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 01 0000 00 00 SZVK rendelet száma: 15/2008 (VIII. 13.) SZMM
RészletesebbenVillamosság biztonsága
Óbudai Egyetem ánki Donát Gépész és iztonságtechnikai Kar Mechatronikai és utótechnikai ntézet Villamosság biztonsága Dr. Noothny Ferenc jegyzete alapján, Összeállította: Nagy stán tárgy tematikája iztonságtechnika
RészletesebbenVersenyző kódja: 28 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.
54 523 02-2016 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási/áramköri/tervezési
RészletesebbenMatematika 8. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály I. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék I. rész: Algebra................................
RészletesebbenArany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. A k valós paraméter értékétől függően
Részletesebben12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok
12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-
RészletesebbenDr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN
Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe
Részletesebben1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:
1 Determinánsok 1 Bevezet definíció Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: a 11 x 1 +a 12 x 2 = b 1 a 21 x 1 +a 22 x 2 = b 2 Szorozzuk meg az első egyenletet
RészletesebbenKoordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a
RészletesebbenTanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz
MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.
RészletesebbenA soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra
A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
RészletesebbenGingl Zoltán, Szeged, :14 Elektronika - Hálózatszámítási módszerek
Gingl Zoltán, Szeged, 05. 05.09.9. 9:4 Elektronika - Hálózatszámítási módszerek 05.09.9. 9:4 Elektronika - Alapok 4 A G 5 3 3 B C 4 G Áramköri elemek vezetékekkel összekötve Csomópontok Ágak (szomszédos
RészletesebbenMatematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék
RészletesebbenGingl Zoltán, Szeged, szept. 1
Gingl Zoltán, Szeged, 08. 8 szept. 8 szept. 4 A 5 3 B Csomópontok feszültség Ágak (szomszédos csomópontok között) áram Áramköri elemek 4 Az elemeken eső feszültség Az elemeken átfolyó áram Ezek összefüggenek
RészletesebbenI. Egyenlet fogalma, algebrai megoldása
11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel
RészletesebbenEgyenletek, egyenlőtlenségek V.
Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenPélda: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk
RészletesebbenMatematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak)
Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak) Erre a dokumentumra az Edemmester Gamer Blog kiadványokra vonatkozó szabályai érvényesek. 1. feladat: Határozd meg az a, b és
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
Részletesebben3. Egyenletek, egyenletrendszerek, egyenlőtlenségek
. Egyenletek, egyenletrendszerek, egyenlőtlenségek I. Nulladik ZH-ban láttuk: 1. Mennyi a 2x 2 8x 5 = 0 egyenlet gyökeinek a szorzata? (A) 10 (B) 2 (C) 2,5 (D) 4 (E) ezek egyike sem Megoldás I.: BME 2011.
RészletesebbenELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
RészletesebbenExponenciális és logaritmikus kifejezések Megoldások
Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása
RészletesebbenSzá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz
Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz 1. feladattípus a megadott adatok alapján lineáris keresleti, vagy kínálati függvény meghatározása 1.1. feladat
RészletesebbenÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ I. feladatlap Egyszerű, rövid feladatok megoldása Maximális pontszám: 40. feladat 4 pont
RészletesebbenElső zárthelyi dolgozat megoldásai biomatematikából * A verzió
Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos
RészletesebbenPélda. Job shop ütemezés
Példa Job shop ütemezés Egy üzemben négy gép működik, és ezeken 3 feladatot kell elvégezni. Az egyes feladatok sorra a következő gépeken haladnak végig (F jelöli a feladatokat, G a gépeket): Az ütemezési
Részletesebben17/1. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram.
7/. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram. A szinuszos áramú hálózatok vizsgálatánál gyakran alkalmazunk különbözı komplex átviteli függvényeket. Végezzük ezt a hálózat valamilyen
Részletesebben1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?
Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,
RészletesebbenIV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői
IV.3. GONDOLJ, GONDOLJ... Tárgy, téma A feladatsor jellemzői Elsőfokú egyenletek, egyenlőtlenségek megoldása. Ezek felhasználása szöveges feladatok megoldásánál. Előzmények Egyenletek, egyszerűbb algebrai
Részletesebben15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
RészletesebbenMatematika A 9. szakiskolai évfolyam. 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA. Készítették: Vidra Gábor és Koller Lászlóné dr.
Matematika A 9. szakiskolai évfolyam 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA Készítették: Vidra Gábor és Koller Lászlóné dr. MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 11. modul: EGYENLETEK, EGYENLŐTLENSÉGEK
RészletesebbenLineáris egyenletrendszerek Műveletek vektorokkal Geometriai transzformációk megadása mátrixokkal Determinánsok és alkalmazásaik
1. Bevezetés A félév anyaga. Komplex számok Műveletek Kapcsolat a geometriával Gyökvonás Polinomok A gyökök száma A gyökök és együtthatók összefüggése Szorzatra bontás, számelméleti kérdések A harmad-
RészletesebbenTrigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
RészletesebbenNémeth László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny, Hódmezővásárhely 2013. április 8. A 9-10. osztályosok feladatainak javítókulcsa 1. Jelöljük x-szel az adott hónapban megkezdett 100 kb-s csomagok számát. Az első szolgáltatónál
RészletesebbenGauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
RészletesebbenMódszertani megjegyzés: A kikötés az osztás műveletéhez kötődik. A jobb megértés miatt célszerű egy-két példát mu-
. modul: ELSŐFOKÚ TÖRTES EGYENLETEK A következő órákon olyan egyenletekkel foglalkozunk, amelyek nevezőjében ismeretlen található. Ha a tört nevezőjében ismeretlen van, akkor kikötést kell tennünk: az
Részletesebben9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.
9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: R) a) log 4 (x ) = 3 b) lg (x 4) = lg (8x 10) c) log x + log 3 = log 15 d) log x 0x log x 5 = e) log 3 (x 1) = log 3 4 f) log 5 x = 4 g) lg
RészletesebbenVáltakozó áram. A váltakozó áram előállítása
Váltakozó áram A váltakozó áram előállítása Mágneses térben vezető keretet fogatunk. A mágneses erővonalakat metsző vezetőpárban elektromos feszültség (illetve áram) indukálódik. Az indukált feszültség
Részletesebben1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
RészletesebbenSegédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból
Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból 1 Átviteli tényező számítása: Lineáris rendszer: Pl1.: Egy villanymotor 100V-os bemenő jelre 1000 fordulat/perc kimenő jelet ad.
RészletesebbenAz egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
RészletesebbenAz 1. forduló feladatainak megoldása
Az 1. forduló feladatainak megoldása 1. Bizonyítsa be, hogy a kocka éléből, lapátlójából és testátlójából háromszög szerkeszthető, és ennek a háromszögnek van két egymásra merőleges súlyvonala! Megoldás:
RészletesebbenMATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember
MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra
RészletesebbenKÖZÖS EMITTERŰ FOKOZAT BÁZISOSZTÓS MUNKAPONTBEÁLLÍTÁSA
KÖZÖS EMITTERŰ FOKOZT BÁZISOSZTÓS MUNKPONTBEÁLLÍTÁS Mint ismeretes, a tranzisztor bázis-emitter diódájának jelentős a hőfokfüggése. Ugyanis a hőmérséklet növekedése a félvezetőkben megnöveli a töltéshordozók
RészletesebbenVektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
RészletesebbenAnalitikus térgeometria
Analitikus térgeometria Wettl Ferenc el adása alapján 2015.09.21. Wettl Ferenc el adása alapján Analitikus térgeometria 2015.09.21. 1 / 23 Tartalom 1 Egyenes és sík egyenlete Egyenes Sík 2 Alakzatok közös
RészletesebbenArany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók
Részletesebben17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK
MATEMATIK A 9. évfolyam 17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK KÉSZÍTETTE: DARABOS NOÉMI ÁGNES Készítette: Darabos Noémi Ágnes Matematika A 9. évfolyam. 17. modul: EGYENLETEK,
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 10 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
RészletesebbenElektronika I. Gyakorló feladatok
Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó
Részletesebben4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
Részletesebben