Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök
|
|
- Virág Szalai
- 6 évvel ezelőtt
- Látták:
Átírás
1 Gyires-Tóth Bálint Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök
2 Deep Learning Híradó Hírek az elmúlt 168 órából
3 Deep Learning Híradó Google What-If Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/2018 3/36
4 Jogi nyilatkozat Jelen előadás diái a Deep Learning a gyakorlatban Python és LUA alapon című tantárgyhoz készültek és letölthetők a honlapról. A diák nem helyettesítik az előadáson való részvételt, csupán emlékeztetőül szolgálnak. Az előadás diái a szerzői jog védelme alatt állnak. Az előadás diáinak vagy bármilyen részének újra felhasználása, terjesztése, megjelenítése csak a szerző írásbeli beleegyezése esetén megengedett. Ez alól kivétel, mely diákon külső forrás külön fel van tüntetve. Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/2018 4/30
5 Vizualizáció Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/2018 5/30
6 Alapvető problémák Hatalmas hiperparaméter tér Bias-variance dilemma Nagyon lassan vagy nem konvergál Adatok standardizálása és min-max skálázás Mini-batch learning Más költségfüggvény és optimizációs algoritmus Tanítóadatok összekeverése Túltanulás train-validation-test Több adat Early stoping Regularizáció: Momentum L1 és L2 (Weight decay) Dropout Stb. Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/2018 6/30
7 Bias-variance dilemma Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/2018 7/30
8 Bias-variance dilemma Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/2018 8/30
9 Tanító-, validációs- és tesztadatok Adatok szétszedés 3 részre: Tanító, validációs és tesztadatok. Saját függvénnyel vagy a sklearn.cross_validation.train_test_split függvényt 2x meghívni. Adatok összekeverése segíti a tanulást: Két egymást követő minta minél távolabb legyen egymástól (pl. külön osztályból). Legyen nagy a hiba a többi tanítómintához képest. Véletlenszerű. Early stoping after patience epochs Ha a validációs hiba adott lépésig nem csökken, akkor leállítjuk a tanítást és visszatöltjük a legjobb modellt. Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/2018 9/30
10 Tanító-validációs-teszt adatok I. Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /30
11 Tanító-validációs-teszt adatok III , , Keresztvalidáció K-fold Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /30
12 Tanító-validációs-teszt adatok II. Túltanítás Neumann János: Négy paraméterrel még egy elefántot is le lehet írni, egy ötödikkel pedig el lehet érni, hogy az ormányát is csóválja. Forráskód: Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /30
13 Standardizálás I. Eltolás kivonása és szórással való osztás. Gyakorlatban: várható érték kivonása és szórással való osztás. Csak a tanító adatokra!!! Max>1!!! Feature szerint sklearn.preprocessing.standardscaler vagy: Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /30
14 Standardizálás II. Miért van rá szükség Súlyok inicializálása: azonos nagyságrendben legyen, egyébként szaturáció lehetséges. A neuronokhoz tartozó hipersíkok: Irányát a súlyok határozzák meg Eltolást a bias határozza meg Kis bias inicializáláskor jó, ha az adat is közel van az origóhoz. Lehetne a súlyokat és a bias-t is a bemenethez illeszteni, de sokkal bonyolultabb. Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /30
15 Standardizálás III. Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /30
16 Min-max skálázás Kimenet átskálázása Kimeneti aktivációs függvény sigmoid vagy tanh Harmóniában a súlyokkal és a bemenettel Probléma: outlier-ek. Csak a tanító adatokra!!! sklearn.preprocessing.standardscaler vagy: Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /30
17 Költségfüggvények és optimizáció Leggyakrabban használt költségfüggvények Regresszió: MSE (Mean Squared Error) Osztályozás: Cross-entropy Több költségfüggvény kombinálása a kimeneten. Leggyakrabban használt optimizációs algoritmusok SGD (Stochastic Gradient Descent) L-BFGS AdaDelta AdaGrad ADAM RMSProp Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /30
18 Momentum módszer Segít elkerülni a súly fluktuációt és kijutni a lokális minimumokból közötti érték. Sebessége lesz a súlyfrissítésnek, amerre a gradiens halad. Újabb változata: Nesterov momentum. Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /30
19 Névnek a NEPTUN kódodat add meg!
20 L1 és L2 regularizáció L1 regularizáció L2 regularizáció (weight decay) Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /30
21 Dropout I. Hinton prof. egyik AHA pillanata: banki ügyintézők. Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /30
22 Dropout II. Az egyes neuronok eldobásának valószínűsége általában 30-50%. Miért működhet? Olyan, mintha több hálót tanítanánk, és azok aggregált becslését átlagolnánk. Így kerüli el a túltanítást. out.pdf Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /30
23 Software I Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /53
24 Software II TensorFlow (Google) Theano 2.0 azonos tulajdonságokkal (negatívumokkal), Elosztott tanításokhoz, Fejlett vizualizáció, Mobil implementáció, Erős marketing és Google támogatás. Keras Python, Theano és TensorFlow backend, TensorFlow része, Nagyon népszerű, Könnyen olvasható kód, gyors fejlesztés, Kaggle.com-on legtöbbet használt. Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /53
25 Software III Torch7, PyTorch (Facebook, Twitter, NVidia, IBM, IDIAP, stb.) LUA, binárisra fordítható, leggyorsabb, Több szintű megvalósítás (C, LUA alacsony és magas szinten, Python), Jól olvasható kód, Mobil implementáció, Tudományos életben standard. Theano (University of Montreal) Python Yosuah Bengio, folyamatos fejlesztés, Szimbolikus nyelv, fordítást igényel, Debuggolni nehézkes, Nehezebben olvasható kód, Tudományos életben standard. Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /53
26 Software IV Caffe (University of California, Berkeley) C++, képfelismerés Kaldi C++, beszédfelismerés 2017 augusztustól TensorFlow integráció Nervana (Intel), Lasagne, Chainer, Microsoft CNTK, Matlab Deep Learning Toolbox, stb. Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /53
27 Szoftverkörnyezet telepítés GPU: NVidia videókártya driver CUDA, cudnn pip install tensorflow-gpu pip install keras CPU: pip install tensorflow pip install keras Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /53
28 Kis házi feladat 2. A Numpy alapú neurális hálózat kódjába valósítsd meg a következő funkciókat: 1. Momentum 2. L1 regularizáció 3. L2 regularizáció 4. Mini-batch 16-os batch mérettel A forráskód új részeit # HF2 start eljárás és # HF2 end eljárás (eljárás=momentum, l1reg, l2reg, mini-batch) kommentek közé tedd és kommentbe írd bele, hogy pontosan mit-miért csináltál. Határidő: október 2. Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /30
29 Deep Learning Híradó Hírek az elmúlt 168 órából
30 Hamiltonian descent Gyires-Tóth Bálint: Deep Learning a gyakorlatban Python és LUA alapon 9/18/ /30
31 Köszönöm a figyelmet! toth.b@tmit.bme.hu
Deep Learning a gyakorlatban Python és LUA alapon Bevezetés
Tóth Bálint Pál Deep Learning a gyakorlatban Python és LUA alapon Bevezetés http://smartlab.tmit.bme.hu Jogi nyilatkozat Jelen előadás diái a Deep Learning a gyakorlatban Python és LUA alapon című tantárgyhoz
Deep Learning a gyakorlatban Python és LUA alapon Felhasználói viselkedés modellezés
Gyires-Tóth Bálint Deep Learning a gyakorlatban Python és LUA alapon Felhasználói viselkedés modellezés http://smartlab.tmit.bme.hu Modellezés célja A telefon szenzoradatai alapján egy általános viselkedési
Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL
Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL TULICS@TMIT.BME.HU Példa X (tanult órák száma, aludt órák száma) y (dolgozaton elért pontszám) (5, 8) 80 (3, 5) 78 (5, 1) 82 (10, 2) 93 (4, 4)
Bevezetés a mesterséges intelligencia mély tanulás eszközrendszerébe
Bevezetés a mesterséges intelligencia mély tanulás eszközrendszerébe Csapó Tamás Gábor http://smartlab.tmit.bme.hu AI, ML, DL Forrás: https://blogs.nvidia.com/blog/2016/10/17/deep-learning-help-business/
Deep Learning a gyakorlatban Python és LUA alapon Hogyan tovább?
Tóth Bálint Pál Deep Learning a gyakorlatban Python és LUA alapon Hogyan tovább? http://smartlab.tmit.bme.hu Jogi nyilatkozat Jelen előadás diái a Deep Learning a gyakorlatban Python és LUA alapon című
A kibontakozó új hajtóerő a mesterséges intelligencia
5. Magyar Jövő Internet Konferencia» Okos város a célkeresztben «A kibontakozó új hajtóerő a mesterséges intelligencia Dr. Szűcs Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Távközlési és Médiainformatikai
Deep learning szoftverek
Deep learning szoftverek Neurális hálózatok - rétegenkénti szemlélet Előreterjesztés Visszaterjesztés Bemeneti réteg Bemeneti réteg x Rejtett réteg (FC, ReLU) C/ x w1 out1 Rejtett réteg (FC, lin) Rejtett
Konvolúciós neurális hálózatok (CNN)
Konvolúciós neurális hálózatok (CNN) Konvolúció Jelfeldolgozásban: Diszkrét jelek esetén diszkrét konvolúció: Képfeldolgozásban 2D konvolúció (szűrők): Konvolúciós neurális hálózat Konvolúciós réteg Kép,
Visszacsatolt (mély) neurális hálózatok
Visszacsatolt (mély) neurális hálózatok Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Sima előrecsatolt neurális hálózat Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Pl.: kép feliratozás,
NEURONHÁLÓK ÉS TANÍTÁSUK A BACKPROPAGATION ALGORITMUSSAL. A tananyag az EFOP pályázat támogatásával készült.
NEURONHÁLÓK ÉS TANÍTÁSUK A BACKPROPAGATION ALGORITMUSSAL A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült. Neuron helyett neuronháló Neuron reprezentációs erejének növelése: építsünk
Google Summer of Code Project
Neuronhálózatok a részecskefizikában Bagoly Attila ELTE TTK Fizikus MSc, 2. évfolyam Integrating Machine Learning in Jupyter Notebooks Google Summer of Code Project 2016.10.10 Bagoly Attila (ELTE) Machine
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Aradi Bernadett. 2017/18 ősz. TensorFlow konvolúciós hálózatokhoz 2017/18 ősz 1 / 11
TensorFlow konvolúciós hálózatokhoz Aradi Bernadett 2017/18 ősz TensorFlow konvolúciós hálózatokhoz 2017/18 ősz 1 / 11 Tensorflow import tensorflow as tf szoftverkönyvtár neurális hálózatokhoz a Google
Neurális hálózatok.... a gyakorlatban
Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.
Osztályozási feladatok képdiagnosztikában. Orvosi képdiagnosztikai 2017 ősz
Osztályozási feladatok képdiagnosztikában Orvosi képdiagnosztikai 2017 ősz Osztályozás Szeparáló felületet keresünk Leképezéseket tanulunk meg azok mintáiból A tanuláshoz használt minták a tanító minták
Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.
: Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók 2. Előadó: Hullám Gábor Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki
Neurális hálók tanítása során alkalmazott optimalizáció
Neurális hálók tanítása során alkalmazott optimalizáció Háló paramétereinek tanulása Lényegében egy szélsőérték keresési feladat: θ: háló paramétereinek vektora X: tanító minták bemeneteiből képzett mátrix
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
NEURÁLIS HÁLÓZATOK 1. eloadás 1
NEURÁLIS HÁLÓZATOKH 1. eloadás 1 Biológiai elozmények nyek: az agy Az agy az idegrendszerunk egyik legfontosabb része: - képes adatokat tárolni, - gyorsan és hatékonyan mukodik, - nagy a megbízhatósága,
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ
infokommunikációs technológiák III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ KECSKEMÉTI ANNA KUN JEROMOS KÜRT Zrt. KUTATÁSI
A neurális hálózatok tanításának alapjai II.: Módszerek a túltanulás elkerülésére. Szoldán Péter
>ready to transmit A neurális hálózatok tanításának alapjai II.: Módszerek a túltanulás elkerülésére Szoldán Péter A hálózatnak nincs kontextusa Képzeljék el, hogy amióta megszülettek, semmit mást nem
Deep Learning: Mélyhálós Tanulás
Deep Learning Deep Learning: Mélyhálós Tanulás Mesterséges Neuronhálók 2015 o sz Milacski Zoltán Ádám srph25@gmail.com http://milacski.web.elte.hu ELTE Informatika Doktori Iskola 2015-09-21 Deep Learning
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Távközlési és Médiainformatikai Tanszék.
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Távközlési és Médiainformatikai Tanszék Benyó Máté Termékkereslet előrejelzés nagyvállalati környezetben mély neurális
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
KÁRTÉKONY NÖVÉNYEK AZONOSÍTÁSA
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Távközlési és Médiainformatikai Tanszék Osváth Márton KÁRTÉKONY NÖVÉNYEK AZONOSÍTÁSA KÖZÖSSÉGI ADATBÁZISBÓL MÉLY KONVOLÚCIÓS
Intelligens orvosi műszerek VIMIA023
Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A
Deep learning. bevezetés
Deep learning bevezetés Egy kis történelem - a kezdetek 1957 - Frank Rosenblatt: Perceptron A perceptron algoritmus első implementációja a Mark I Perceptron gép 20 20 pixeles képet adó kamerához volt kötve
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban Fekete Tamás 2015. December 3. Szoftver verifikáció és validáció tantárgy Áttekintés Miért és mennyire fontos a megfelelő validáció és
BIG DATA ÉS GÉPI TANULÁS KÖRNYEZET AZ MTA CLOUD-ON KACSUK PÉTER, NAGY ENIKŐ, PINTYE ISTVÁN, HAJNAL ÁKOS, LOVAS RÓBERT
BIG DATA ÉS GÉPI TANULÁS KÖRNYEZET AZ MTA CLOUD-ON KACSUK PÉTER, NAGY ENIKŐ, PINTYE ISTVÁN, HAJNAL ÁKOS, LOVAS RÓBERT TARTALOM MTA Cloud Big Data és gépi tanulást támogató szoftver eszközök Apache Spark
Stratégiák tanulása az agyban
Statisztikai tanulás az idegrendszerben, 2019. Stratégiák tanulása az agyban Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Kortárs MI thispersondoesnotexist.com
Teljesen elosztott adatbányászat alprojekt
Teljesen elosztott adatbányászat alprojekt Hegedűs István, Ormándi Róbert, Jelasity Márk Big Data jelenség Big Data jelenség Exponenciális növekedés a(z): okos eszközök használatában, és a szenzor- és
Mesterséges neurális hálók modelljének javítása valószínűségen alapuló módszerrel
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Távközlés és Médiainformatika Tanszék Mesterséges neurális hálók modelljének javítása valószínűségen alapuló módszerrel
Megerősítéses tanulás
Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:
Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok
Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
I. LABOR -Mesterséges neuron
I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 288/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Tanulás az idegrendszerben
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Funkcióvezérelt modellezés Abból indulunk ki, hogy milyen feladatot valósít meg a rendszer Horace Barlow: "A
Intelligens Rendszerek Elmélete
Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html
Hibadetektáló rendszer légtechnikai berendezések számára
Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő
Videókártya - CUDA kompatibilitás: CUDA weboldal: Példaterületek:
Hasznos weboldalak Videókártya - CUDA kompatibilitás: https://developer.nvidia.com/cuda-gpus CUDA weboldal: https://developer.nvidia.com/cuda-zone Példaterületek: http://www.nvidia.com/object/imaging_comp
AliROOT szimulációk GPU alapokon
AliROOT szimulációk GPU alapokon Nagy Máté Ferenc & Barnaföldi Gergely Gábor Wigner FK ALICE Bp csoport OTKA: PD73596 és NK77816 TARTALOM 1. Az ALICE csoport és a GRID hálózat 2. Szimulációk és az AliROOT
Mély neuronhálók alkalmazása és optimalizálása
magyar nyelv beszédfelismerési feladatokhoz 2015. január 10. Konzulens: Dr. Mihajlik Péter A megvalósítandó feladatok Irodalomkutatás Nyílt kutatási eszközök keresése, beszédfelismer rendszerek tervezése
Kovács Ernő 1, Füvesi Viktor 2
Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Gépi tanulás a Rapidminer programmal. Stubendek Attila
Gépi tanulás a Rapidminer programmal Stubendek Attila Rapidminer letöltése Google: download rapidminer Rendszer kiválasztása (iskolai gépeken Other Systems java) Kicsomagolás lib/rapidminer.jar elindítása
KONVOLÚCIÓS NEURONHÁLÓK. A tananyag az EFOP pályázat támogatásával készült.
KONVOLÚCIÓS NEURONHÁLÓK A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült. 1. motiváció A klasszikus neuronháló struktúra a fully connected háló Két réteg között minden neuron kapcsolódik
[1000 ; 0] 7 [1000 ; 3000]
Gépi tanulás (vimim36) Gyakorló feladatok 04 tavaszi félév Ahol lehet, ott konkrét számértékeket várok nem puszta egyenleteket. (Azok egy részét amúgyis megadom.). Egy bináris osztályozási feladatra tanított
Neurális Hálók. és a Funkcionális Programozás. Berényi Dániel Wigner GPU Labor
Neurális Hálók és a Funkcionális Programozás Berényi Dániel Wigner GPU Labor Alapvető építőkövek Függvény kompozíció Automatikus Differenciálás (AD) 2 Neurális Háló, mint kompozíció Bemenetek Súlyok w
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét
A neurális hálózatok alapjai
A neurális hálózatok alapjai Modern Tudományos Programozás Wigner FK 20 November 2018 Bevezető példa Egyenes illesztés: Sok minden demonstrálható rajta, de tudjuk, van intuíciónk róla, hogyan működik Egyenes
Győri HPC kutatások és alkalmazások
Győri HPC kutatások és alkalmazások dr. Horváth Zoltán dr. Környei László Fülep Dávid Széchenyi István Egyetem Matema5ka és Számítástudomány Tanszék 1 HPC szimulációk az iparban Feladat: Rába- futómű terhelés
Generáljunk először is mintákat a függvényből. Ezzel fogunk majd később tanítani.
MATLAB gyorstalpaló Neural Network toolbox és SVM-KM toolbox alkalmazása függvényapproximációra, osztályozásra és idősor-előrejelzésre 1 Függvényapproximáció A függvényapproximációt egy egyszerű egydimenziós
OPENCV TELEPÍTÉSE SZÁMÍTÓGÉPES LÁTÁS ÉS KÉPFELDOLGOZÁS. Tanács Attila Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem
OPENCV TELEPÍTÉSE SZÁMÍTÓGÉPES LÁTÁS ÉS KÉPFELDOLGOZÁS Tanács Attila Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem OpenCV Nyílt forráskódú szoftver (BSD licensz) Számítógépes látás,
Neurális hálózatok MATLAB programcsomagban
Debreceni Egyetem Informatikai Kar Neurális hálózatok MATLAB programcsomagban Témavezető: Dr. Fazekas István Egyetemi tanár Készítette: Horváth József Programtervező informatikus Debrecen 2011 1 Tartalomjegyzék
Takács Árpád K+F irányok
Takács Árpád K+F irányok 2016. 06. 09. arpad.takacs@adasworks.com A jövőre tervezünk Az AdasWorks mesterséges intelligencia alapú szoftverterfejlesztéssel és teljes önvezető megoldásokkal forradalmasítja
Mély konvolúciós neurális hálózatok. Hadházi Dániel BME IE 338
Mély konvolúciós neurális hálózatok Hadházi Dániel BME IE 338 hadhazi@mit.bme.hu ÚJ ARCHITEKTÚRÁLIS ELEMEK Konvolúciós réteg Motiváció: Klasszikus képfeldolgozásnál alapművelet a konvolúció: Zajszűrésre
Feladat. Bemenő adatok. Bemenő adatfájlok elvárt formája. Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. Például (bemenet/pelda.
Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. BEDTACI.ELTE Programozás 3ice@3ice.hu 11. csoport Feladat Madarak életének kutatásával foglalkozó szakemberek különböző településen különböző madárfaj
BESZÉDPARAMÉTEREK ELEMZÉSE ÉS PREDIKCIÓJA MÉLY NEURÁLIS HÁLÓZATOKKAL
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Távközlési és Médiainformatikai Tanszék Kis Kornél István BESZÉDPARAMÉTEREK ELEMZÉSE ÉS PREDIKCIÓJA MÉLY NEURÁLIS HÁLÓZATOKKAL
A TensorFlow rendszer és a mély tanulás. TensorFlow system and deep learning
Gradus Vol 5, No 2 (2018) 360-367 ISSN 2064-8014 TensorFlow system and deep learning Dr. Buzáné dr. Kis Piroska 1 1 Matematika és Számítástudományi Tanszék, Informatikai Intézet, Dunaújvárosi Egyetem,
Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
GEOSTATISZTIKA II. Geográfus MSc szak. 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
GEOSTATISZTIKA II. Geográfus MSc szak 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy adatlapja Tantárgy neve:
Képfeldolgozás haladóknak Lovag Tamás Novák Gábor 2011
Dokumentáció Küszöbölés A küszöbölés során végighaladunk a képen és minden egyes képpont intenzitásáról eldöntjük, hogy teljesül-e rá az a küszöbölési feltétel. A teljes képre vonatkozó küszöbölés esetében
Adatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM
KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM Kernel módszerek idősor előrejelzés Mérési útmutató Készítette: Engedy István (engedy@mit.bme.hu) Méréstechnika és Információs Rendszerek Tanszék Budapesti Műszaki
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Biológiai és mesterséges neurális hálózatok
Biológiai és mesterséges neurális hálózatok Szegedy Balázs 2018. október 10. Hasonlóságok és külömbségek A mesterséges neurális hálózatok története 1957-ben kezdődött: perceptron (Frank Rosenblatt). 400
NEURONHÁLÓS HANGTÖMÖRÍTÉS. Áfra Attila Tamás
NEURONHÁLÓS HANGTÖMÖRÍTÉS Áfra Attila Tamás Tartalom Bevezetés Prediktív kódolás Neuronhálós prediktív modell Eredmények Források Bevezetés Digitális hanghullámok Pulzus kód moduláció Hangtömörítés Veszteségmentes
Bodó / Csató / Gaskó / Sulyok / Simon október 9. Matematika és Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár
Bodó / Csató / Gaskó / Sulyok / Simon Matematika és Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2016. október 9. Tudnivalók Tudnivalók: 1 Csapatok kiválasztása: a második hét végéig; 2
Algoritmizálás és adatmodellezés tanítása beadandó feladat: Algtan1 tanári beadandó /99 1
Algoritmizálás és adatmodellezés tanítása beadandó feladat: Algtan1 tanári beadandó /99 1 Készítette: Gipsz Jakab Neptun-azonosító: ABC123 E-mail: gipszjakab@seholse.hu Kurzuskód: IT-13AAT1EG 1 A fenti
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Eredmények kiértékelése
Eredmények kiértékelése Nagyméretű adathalmazok kezelése (2010/2011/2) Katus Kristóf, hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tanszék 2011. március
Függvények ábrázolása
Függvények ábrázolása Matematikai függvényeket analitikusan nem tudunk a matlabban megadni (tudunk, de ilyet még nem tanulunk). Ahhoz, hogy egy függvényt ábrázoljuk, hasonlóan kell eljárni, mint a házi
TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...
TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő
A neurális hálók logisztikai alkalmazhatósága
Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar Anyagmozgatási és Logisztikai Rendszerek Tanszék Tóth Gergő RD7H5L A neurális hálók logisztikai alkalmazhatósága Tudományos
Új technológiák az Ubuntuban. Új fejlesztések Amik egy éven belül jelenhetnek meg az Ubuntuban
Új technológiák az Ubuntuban Új fejlesztések Amik egy éven belül jelenhetnek meg az Ubuntuban Mely területeket érintik ezek Ahogy az alkalmazásokat kezeljük Ahogy az adatainkat kezeljük Ahogy a személyes
Kollektív tanulás milliós hálózatokban. Jelasity Márk
Kollektív tanulás milliós hálózatokban Jelasity Márk 2 3 Motiváció Okostelefon platform robbanásszerű terjedése és Szenzorok és gazdag kontextus jelenléte, ami Kollaboratív adatbányászati alkalmazások
Technológia funkciók Számláló, PWM
10. Laborgyakorlat Technológia funkciók Számláló, PWM A gyakorlat célja A technológiai funkciók olyan software vagy hardware eszközök, amelyek segítségével egy adott folyamatirányítási feladat könnyen
Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton
Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke
Teljesen elosztott adatbányászat pletyka algoritmusokkal. Jelasity Márk Ormándi Róbert, Hegedűs István
Teljesen elosztott adatbányászat pletyka algoritmusokkal Jelasity Márk Ormándi Róbert, Hegedűs István Motiváció Nagyméretű hálózatos elosztott alkalmazások az Interneten egyre fontosabbak Fájlcserélő rendszerek
Random Forests - Véletlen erdők
Random Forests - Véletlen erdők Szabó Adrienn Adatbányászat és Webes Keresés Kutatócsoport 2010 Tartalom Fő forrás: Leo Breiman: Random Forests Machine Learning, 45, 5-32, 2001 Alapok Döntési fa Véletlen
KOOPERATÍ V E S TANULO RENDSZEREK HA ZÍ FELADAT - LÍFEGAME
KOOPERATÍ V E S TANULO RENDSZEREK HA ZÍ FELADAT - LÍFEGAME ÖSSZEFOGLALÁS A Kooperatív és tanuló rendszerek tárgyból az aláírásért a félév során egy egyénileg megoldott házi feladatot kell beadni, mely
Szabó Attila Dániel. Valósidejű intrúder felismerés UAV környezetben
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Automatizálási és Alkalmozott Informatikai Tanszék Szabó Attila Dániel Valósidejű intrúder felismerés UAV környezetben
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
Bevezetés a neurális számításokba Analóg processzortömbök,
Pannon Egyetem Villamosmérnöki és Információs Tanszék Bevezetés a neurális számításokba Analóg processzortömbök, neurális hálózatok Előadó: dr. Tömördi Katalin Neurális áramkörök (ismétlés) A neurális
Modellezés és szimuláció. Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék
Modellezés és szimuláció Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék Kvantitatív forradalmak a földtudományban - geográfiában 1960- as évek eleje: statisztika 1970- as évek eleje:
SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával
SAT probléma kielégíthetőségének vizsgálata masszív parallel mesterséges neurális hálózat alkalmazásával Tajti Tibor, Bíró Csaba, Kusper Gábor {gkusper, birocs, tajti}@aries.ektf.hu Eszterházy Károly Főiskola
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 20/2011 Az Előadások Témái 226/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus
Wigner 115. A Felhők felett. Pető Gábor MTA Wigner FK, Adatközpont november 15.
Wigner 115 A Felhők felett Pető Gábor MTA Wigner FK, Adatközpont peto.gabor@wigner.mta.hu 2017. november 15. Repülés? Az ember ősidőktől vonzódott a repüléshez Megalkotta Ikaroszt Lord Kelvin brit fizikus,
TEXTÚRA ANALÍZIS VIZSGÁLATOK LEHETŐSÉGEI A RADIOLÓGIÁBAN
TEXTÚRA ANALÍZIS VIZSGÁLATOK LEHETŐSÉGEI A RADIOLÓGIÁBAN Monika Béres 1,3 *, Attila Forgács 2,3, Ervin Berényi 1, László Balkay 3 1 DEBRECENI EGYETEM, ÁOK Orvosi Képalkotó Intézet, Radiológia Nem Önálló
Programozás alapjai gyakorlat. 4. gyakorlat Konstansok, tömbök, stringek
Programozás alapjai gyakorlat 4. gyakorlat Konstansok, tömbök, stringek Házi ellenőrzés (f0069) Valósítsd meg a linuxos seq parancs egy egyszerűbb változatát, ami beolvas két egész számot, majd a kettő
SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN
SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN Almási Béla, almasi@math.klte.hu Sztrik János, jsztrik@math.klte.hu KLTE Matematikai és Informatikai Intézet Abstract This paper gives a short review on software