Generáljunk először is mintákat a függvényből. Ezzel fogunk majd később tanítani.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Generáljunk először is mintákat a függvényből. Ezzel fogunk majd később tanítani."

Átírás

1 MATLAB gyorstalpaló Neural Network toolbox és SVM-KM toolbox alkalmazása függvényapproximációra, osztályozásra és idősor-előrejelzésre 1 Függvényapproximáció A függvényapproximációt egy egyszerű egydimenziós sinc függvény approximációján keresztül mutatjuk be különböző módszerekkel. Generáljunk először is mintákat a függvényből. Ezzel fogunk majd később tanítani. x = -20:0.1:20; %legyenek az x vektor elemei sorban -20 és 20 között 0.1 -es lépésközzel d = sin(x)./x; %a d vektor elemei legyenek az x vektor elemeinek szinusza, %elemenként elosztva (./) az x vektor elemeivel plot(x,d); %grafikonon ábrázoljuk x vektor függvényében d vektort 1.1 MLP alkalmazása Tanítsuk meg ezt a generált mintakészletet egy MLP-nek a lehető legegyszerűbb módon: net = newff(x,d,15); %MLP létrehozása 1 rejtett réteggel, benne 15 neuronnal. %Minden egyéb paraméter alapértelmezett. net = train(net,x,d); %futtassuk le a tényleges tanítási algoritmust Látható, hogy a Matlab több dolgot is megcsinált. Egyrészt normálta a mintahalmazt, majd felbontotta tanító, teszt, és validációs halmazokra. Az MLP-t pedig az alapértelmezett, Levenberg Marquardt eljárással tanította. Ellenőrizzük a megtanított MLP-t. Először nézzük meg, hogy mi a háló válasza az x=0 helyen, majd ábrázoljuk a tanítópontokat, illetve a háló ezekre adott válaszait egy grafikonon: y0 = sim(net,0) %számoljuk ki a háló válaszát a 0 helyen. y = sim(net,x); %számoljuk ki a háló válaszát az x vektor összes elemére figure; %nyissunk eg új grafikon ablakot plot(x,d,'b',x, y,'r'); %kékkel ábrázoljuk a tanítómintákat, pirossal a háló válaszát Nézzünk egy kicsit bonyolultabb beállítást. Sokszor előfordul, hogy mi magunknak szeretnénk tanítóés teszt mintahalmazt generálni. Fontos, hogy a minták legyenek összekeverve, hogy a bemeneti tér minden részén legyen tanító- és tesztmintánk is. len = size(x,2); %az x vektor második dimenzió mentén vett mérete, vagyis a hossza perm = randperm(len); %vesszük 1-től az x hosszáig lévő egész számoknak egy véletlen %permutációját trainlen = round(len*0.8); %a leendő tanító mintahalmazunk hossza, az összes minta 80%-a trainx = x(perm(1:trainlen)); %a perm vektor elejéről veszünk trainlen indexet, és vesszük az %ehhez tartozó x értékeket traind = d(perm(1:trainlen)); testx = x(perm(trainlen+1:end)); %vesszük az x vektor maradék elemeit testd = d(perm(trainlen+1:end)); 1

2 És ezzel a tanító és teszt mintahalmazzal a tanítás, sima egyszerű gradiens módszerrel: %MLP létrehozása, rejtett rétegben szigmoid kimeneti réteg lineáris, legegyszerűbb gradiens %eljárás net = newff(trainx,traind,15,{'tansig', 'purelin'},'traingd'); net.trainparam.lr = 0.1; net.trainparam.epochs = 2000; net.divideparam.testratio = 0; net.divideparam.valratio = 0; net.divideparam.trainratio = 1; net = train(net,trainx,traind); %bátorsági faktor (learning rate) %hányszor iteráljunk végig az összes tanítómintán %minden mintát tanításra használunk %tényleges tanítás plot(x,d,'b',testx,sim(net,testx),'rx'); %teszteljük a háló válaszát a tesztpontokban 1.2 RBF alkalmazása Az RBF hálónak a cos függvényt tanítjuk meg. Ehhez először generálunk tanító és teszt mintapontokat egy meghatározott tartományból. %tanito adat parameterek maxx = 4*pi; % vizsgálati tartomány felsö határa minx = -5*pi; % vizsgálati tartomány alsó határa trainnum = 300; % tanítási pontok száma testnum = 100; % tesztpontok száma noise = 0.1; % tanítási bemenetek x = [minx:(maxx-minx)/(trainnum-1):maxx]; x_t = [minx:(maxx-minx)/(testnum-1):maxx]; d = cos(x); d_t = cos(x_t); y = d + noise*2.0*(rand(1, trainnum)-0.5); Ezek után átparaméterezünk egy hagyományos MLP-t, hogy RBF-ként viselkedjen. Ehhez az első rétegbeli bázisfüggvényeket kell lecserélni radiálisra, a második rétegbelit pedig lineárisra. % hálóépítés neuronnum = 10; spread = 2; x0 = [minx:(maxx-minx)/(neuronnum-1):maxx]; % RBF neuronok 'középpontjai' %input, layern, offset, inputconn, layerconn, outputconn net = network(1,2,[1;1],[1;0],[0 0;1 0],[0 1]); % 1. (RBF) réteg net.inputs{1}.size = 1; %1D bemenet net.layers{1}.size = neuronnum; %1. retegbeli neuronok szama net.inputweights{1, 1}.weightFcn = 'dist'; %a bemenet elso retegbeli sulyoktol valo tavolsaga erdekes net.layers{1}.netinputfcn = 'netprod'; %a beallitott offsettel szorozni szeretnenk net.layers{1}.transferfcn = 'radbas'; %vegul vesszuk ennek az exp függvenyet net.b{1} = ones(neuronnum,1)*sqrt(-log(0.5))/spread; %a beallitott offset (szorasra van hatassal) net.iw{1, 1} = x0'; %kezdo bazisfv kozeppontok % 2. (összegzö) réteg (egy sima perceptron) net.layers{2}.size = 1; net.layers{2}.transferfcn = 'purelin'; net.b{2} = 2.0*(rand(1, 1)-0.5); %veletlen offset net.lw{2, 1} = 2.0*(rand(1, neuronnum)-0.5); %veletlen sulyok A tanítás paraméterei hasonlóak az MLP-nél látottakhoz. 2

3 % tanítási beállítások net.performfcn = 'mse'; net.trainfcn = 'trainlm'; net.inputweights{1}.learn = 0; net.biases{1}.learn = 0; net.trainparam.epochs = 1000; net.trainparam.goal = 1e-4; A tanítás és tesztelés (train, sim) is megegyezik. Az eredményeket egy ábrán jelenítjük meg. % tanítás [net] = train(net, x, y, [], []); % % a tanított háló kimenete out = sim(net, x_t); figure('name', 'tanított háló kimenete', 'position', [50, 450, 600, 400]); plot(x, y, 'g', x_t, d_t, 'b', x_t, out, 'r'); title('a háló kimenete tanítás után'); legend('tanító adatok', 'tesztadatok', 'tanított háló válasza'); 1.3 További módszerek További függvényapproximációs módszerként alkalmazhatunk SVM-et is, lásd később az idősor előrejelzés részben. 2 Osztályozás Az osztályozáshoz betöltjük az adatokat, kiválasztjuk a 2-5 dimenziókat, normalizálunk, keverünk és bontunk tanító, ill. tesztkészletre. clear all; load inputs.mat x y ids; %parameters %SVM toolbox % %mode = 'mlp'; mode = 'svm'; x = x(:,2:5); % normalization x = x - repmat(mean(x),size(x,1),1); x = x./ repmat(std(x),size(x,1),1); %performance measurement trainperf = 0; testperf = 0; tp = 0; fp = 0; tn = 0; fn = 0; %permutate samples mixer = randperm(size(x,1)); x(1:size(x,1),:) = x(mixer,:); y(1:size(y,1),:) = y(mixer,:); %separate train and test sets xtrain = x(1:floor(size(x,1)/2),:); ytrain = y(1:floor(size(x,1)/2),:); 3

4 xtest = x(floor(size(x,1)/2)+1:size(x,1),:); ytest = y(floor(size(x,1)/2)+1:size(x,1),:); Ha SVM-mel szeretnénk osztályozni, először be kell állítanunk néhány paramétert. %SVM mode if(strcmp(mode,'svm')) %svm parameters lambda = 1e-7; verbose = 0; %svm kernel parameter. %use poly with degree 1 for a linear kernel kernel='poly'; % kernel = 'gaussian'; % kernel = 'wavelet'; kerneloption = 1; c = 0.01; %compensate for the unbalanced training set costfactor = sum(ytrain < 0) / sum(ytrain > 0); C = ones(size(ytrain,1),1) * c; C(ytrain > 0) = c * costfactor; A tanításhoz és teszteléshez ezek után már elég 1-1 függvényt hívni. %learn [xsup,w,w0,pos,tps,alpha] = svmclass(xtrain,ytrain,c,lambda,kernel,kerneloption,verbose); %evaluate ytrainpred = svmval(xtrain,xsup,w,w0,kernel,kerneloption,1); ytestpred = svmval(xtest,xsup,w,w0,kernel,kerneloption,1); MLP használatához a már látott függvényeket használhatjuk. %MLP mode elseif(strcmp(mode,'mlp')) %mlp parameters MSE = 1e-5; Epochs = 3000; EpochsToShow = 1; NumLayer1Neurons = 20; end %create net net = newff(xtrain', ytrain', [NumLayer1Neurons], {'tansig', 'tansig'}, 'trainlm'); net.trainparam.epochs = Epochs; % max. hány ciklusban net.trainparam.goal = MSE; % mekkora hibánál álljon le net.trainparam.show = EpochsToShow; %train net = train(net, xtrain', ytrain'); %evaluate ytrainpredt = sim(net, xtrain'); ytestpredt = sim(net, xtest'); ytrainpred = ytrainpredt'; ytestpred = ytestpredt'; A kapott eredményeket MLP és SVM esetén is küszöböljük és összehasonlítjuk a várt kimenetekkel, amiből statisztikát készítünk. 4

5 %threshold predicted values ytrainpredth = ytrainpred > 0; ytrainpredth = (ytrainpredth-0.5)*2; ytestpredth = ytestpred > 0; ytestpredth = (ytestpredth-0.5)*2; %performance measurement %overall trainperf = trainperf + sum(ytrainpredth == ytrain) / size(ytrain,1) testperf = testperf + sum(ytestpredth == ytest) / size(ytest,1) %true positives tp = tp + sum(ytest == 1 & ytestpredth == 1) %false positives fp = fp + sum(ytest == -1 & ytestpredth == 1) %true negatives tn = tn + sum(ytest == -1 & ytestpredth == -1) %false negatives fn = fn + sum(ytest == 1 & ytestpredth == -1) 3 Idősor előrejelzés Az idősor előrejelzést egy egyszerű egydimenziós idősor példáján mutatjuk be. 3.1 SVM alkalmazása Az adatokat először az alkalmazott idősor modellnek megfelelő alakra kell hozni (azaz a mintapontokat az idősor elemeiből elő kell állítani). clear all; load 'food_train'; prediction_offset = 10; trainlength = 10; %preallocate for speed trainsetx = zeros(1100,trainlength); trainsety = zeros(1100,1); xtest = zeros(296-trainlength,trainlength); ytest = zeros(296-trainlength,1); %fill train data for i=1:1100 trainsetx(i,:) = x(i:i+trainlength-1)'; trainsety(i,1) = x(i+trainlength-1+prediction_offset); end for testi = 1:(296-trainlength) xtest(testi,:) = x(1100+testi:1100+testi+trainlength-1)'; ytest(testi,1) = x(1100+testi+trainlength-1+prediction_offset); end ttest = 1101+trainlength-1+prediction_offset : 1395+prediction_offset; Ezek után az SVM felparaméterezése és tanítása hasonlít az osztályozós esethez, leszámítva, hogy most a regresszióhoz használatos toolbox függvényeket használjuk. %svm parameters lambda = 1e-7; verbose = 0; %svm kernel parameter. %use poly with degree 1 for a linear kernel kernel='poly'; kerneloption = 1; c = 0.01; epsilon = 0.01; 5

6 %training [xsup,ysup,w,b] = svmreg(trainsetx, trainsety, c, epsilon, kernel, kerneloption, lambda, verbose); %test and measure performance predy = svmval(xtest,xsup,w,b,kernel,kerneloption); Az eredmények értékelhetők például az átlagos négyzetes hiba számításával. sqerr = (predy - ytest).^2 /(296-trainlength); figure, plot(t(1:1400),x(1:1400),'b',ttest,predy,'r'); 3.2 MLP alkalmazása A Matlabban van egy egyszerűbben használható, time-delay MLP implementáció is, melyet szintén használhatunk idősor előrejelzésre. clear all; load 'food_train'; prediction_offset = 10; trainlength = 10; x2 = x'; x2 = con2seq(x2); %hozzuk létre az MLP-t, az 1 bemenetet késleltessük lépéssel, ezek %lesznek a tényleges bemenetek. 20 rejtett réteg beli neuront használunk net = newfftd(x2,x2, [1:trainlength], [20], {'tansig', 'purelin'}, 'trainlm'); Tanítsuk a hálót a szokásos train paranccsal: %hozzuk létre a tanítómintákat. A kívánt válasz megfelelő lépéssel %késleltetve van. p = x2(trainlength+1:end-prediction_offset+1); t = x2(prediction_offset+trainlength:end); Pi= x2(1:trainlength); %a késleltetett bemenetek inicializálásához kell net = train(net,p,t,pi); %a háló tanítása Majd ellenőrizzük a működését y = sim(net,p,pi);%ellenőrizzük a hálót y2 = seq2con(y); y2 = y2{1}; Pi2 = seq2con(pi); Pi2 = Pi2{1}; t2 = seq2con(t); t2 = t2{1}; figure; plot(t2,'b'); hold; plot(y2,'r');%ábrázoljuk grafikonon a kívánt választ és a tényleges választ 6

KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM

KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM Kernel módszerek idősor előrejelzés Mérési útmutató Készítette: Engedy István (engedy@mit.bme.hu) Méréstechnika és Információs Rendszerek Tanszék Budapesti Műszaki

Részletesebben

[1000 ; 0] 7 [1000 ; 3000]

[1000 ; 0] 7 [1000 ; 3000] Gépi tanulás (vimim36) Gyakorló feladatok 04 tavaszi félév Ahol lehet, ott konkrét számértékeket várok nem puszta egyenleteket. (Azok egy részét amúgyis megadom.). Egy bináris osztályozási feladatra tanított

Részletesebben

Konvolúciós neurális hálózatok (CNN)

Konvolúciós neurális hálózatok (CNN) Konvolúciós neurális hálózatok (CNN) Konvolúció Jelfeldolgozásban: Diszkrét jelek esetén diszkrét konvolúció: Képfeldolgozásban 2D konvolúció (szűrők): Konvolúciós neurális hálózat Konvolúciós réteg Kép,

Részletesebben

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)

Részletesebben

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Hibadetektáló rendszer légtechnikai berendezések számára

Hibadetektáló rendszer légtechnikai berendezések számára Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79

Részletesebben

Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)

Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence) Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló

Részletesebben

Neurális hálózatok.... a gyakorlatban

Neurális hálózatok.... a gyakorlatban Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.

Részletesebben

Idősor előrejelzés. Szórádi Júlia, BSc konzulens: Dr. Horváth Gábor. Önálló laboratórium (BMEVIMIA362) II. félév

Idősor előrejelzés. Szórádi Júlia, BSc konzulens: Dr. Horváth Gábor. Önálló laboratórium (BMEVIMIA362) II. félév Idősor előrejelzés Szórádi Júlia, BSc konzulens: Dr. Horváth Gábor Önálló laboratórium (BMEVIMIA362) 2010-11 II. félév IDŐSOR ELŐREJELZÉS Az idősor előrejelzés számos területen alapvető fontosságú feladat,

Részletesebben

Intelligens orvosi műszerek VIMIA023

Intelligens orvosi műszerek VIMIA023 Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A

Részletesebben

Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok

Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok Debreceni Egyetem Informatikai Kar Fazekas István Neurális hálózatok Debrecen, 2013 Szerző: Dr. Fazekas István egyetemi tanár Bíráló: Dr. Karácsony Zsolt egyetemi docens A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0103

Részletesebben

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló

Részletesebben

Függvények ábrázolása

Függvények ábrázolása Függvények ábrázolása Matematikai függvényeket analitikusan nem tudunk a matlabban megadni (tudunk, de ilyet még nem tanulunk). Ahhoz, hogy egy függvényt ábrázoljuk, hasonlóan kell eljárni, mint a házi

Részletesebben

Neurális hálózatok bemutató

Neurális hálózatok bemutató Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:

Részletesebben

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük

Részletesebben

Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök

Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök Gyires-Tóth Bálint Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök http://smartlab.tmit.bme.hu Deep Learning Híradó Hírek az elmúlt 168 órából Deep Learning Híradó Google

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

NEURÁLIS HÁLÓZATOK 1. eloadás 1

NEURÁLIS HÁLÓZATOK 1. eloadás 1 NEURÁLIS HÁLÓZATOKH 1. eloadás 1 Biológiai elozmények nyek: az agy Az agy az idegrendszerunk egyik legfontosabb része: - képes adatokat tárolni, - gyorsan és hatékonyan mukodik, - nagy a megbízhatósága,

Részletesebben

Kovács Ernő 1, Füvesi Viktor 2

Kovács Ernő 1, Füvesi Viktor 2 Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,

Részletesebben

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA Kovács Ernő 1, Füvesi Viktor 2 1 Egyetemi docens, PhD; 2 tudományos segédmunkatárs 1 Eletrotechnikai és Elektronikai Tanszék, Miskolci Egyetem

Részletesebben

Modellezés és szimuláció. Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék

Modellezés és szimuláció. Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék Modellezés és szimuláció Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék Kvantitatív forradalmak a földtudományban - geográfiában 1960- as évek eleje: statisztika 1970- as évek eleje:

Részletesebben

I. LABOR -Mesterséges neuron

I. LABOR -Mesterséges neuron I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,

Részletesebben

E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes)

E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes) 6-7 ősz. gyakorlat Feladatok.) Adjon meg azt a perceptronon implementált Bayes-i klasszifikátort, amely kétdimenziós a bemeneti tér felett szeparálja a Gauss eloszlású mintákat! Rajzolja le a bemeneti

Részletesebben

Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)

Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence) Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de

Részletesebben

Visszacsatolt (mély) neurális hálózatok

Visszacsatolt (mély) neurális hálózatok Visszacsatolt (mély) neurális hálózatok Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Sima előrecsatolt neurális hálózat Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Pl.: kép feliratozás,

Részletesebben

Eredmények kiértékelése

Eredmények kiértékelése Eredmények kiértékelése Nagyméretű adathalmazok kezelése (2010/2011/2) Katus Kristóf, hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tanszék 2011. március

Részletesebben

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs

Részletesebben

Gépi tanulás a Rapidminer programmal. Stubendek Attila

Gépi tanulás a Rapidminer programmal. Stubendek Attila Gépi tanulás a Rapidminer programmal Stubendek Attila Rapidminer letöltése Google: download rapidminer Rendszer kiválasztása (iskolai gépeken Other Systems java) Kicsomagolás lib/rapidminer.jar elindítása

Részletesebben

BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA

BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BESZÉDTUDOMÁNY Az emberi kommunikáció egyik leggyakrabban használt eszköze a nyelv. A nyelv hangzó változta, a beszéd a nyelvi kommunikáció

Részletesebben

II. LABOR Tanulás, Perceptron, Adaline

II. LABOR Tanulás, Perceptron, Adaline II. LABOR Tanulás, Perceptron, Adaline A dolgozat célja a tanító algoritmusok osztályozása, a tanító és tesztel halmaz szerepe a neuronhálók tanításában, a Perceptron és ADALINE feldolgozó elemek struktúrája,

Részletesebben

Osztályozási feladatok képdiagnosztikában. Orvosi képdiagnosztikai 2017 ősz

Osztályozási feladatok képdiagnosztikában. Orvosi képdiagnosztikai 2017 ősz Osztályozási feladatok képdiagnosztikában Orvosi képdiagnosztikai 2017 ősz Osztályozás Szeparáló felületet keresünk Leképezéseket tanulunk meg azok mintáiból A tanuláshoz használt minták a tanító minták

Részletesebben

Gépi tanulás a gyakorlatban. Lineáris regresszió

Gépi tanulás a gyakorlatban. Lineáris regresszió Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

KOOPERATÍ V E S TANULO RENDSZEREK HA ZÍ FELADAT - LÍFEGAME

KOOPERATÍ V E S TANULO RENDSZEREK HA ZÍ FELADAT - LÍFEGAME KOOPERATÍ V E S TANULO RENDSZEREK HA ZÍ FELADAT - LÍFEGAME ÖSSZEFOGLALÁS A Kooperatív és tanuló rendszerek tárgyból az aláírásért a félév során egy egyénileg megoldott házi feladatot kell beadni, mely

Részletesebben

NEURONHÁLÓK ÉS TANÍTÁSUK A BACKPROPAGATION ALGORITMUSSAL. A tananyag az EFOP pályázat támogatásával készült.

NEURONHÁLÓK ÉS TANÍTÁSUK A BACKPROPAGATION ALGORITMUSSAL. A tananyag az EFOP pályázat támogatásával készült. NEURONHÁLÓK ÉS TANÍTÁSUK A BACKPROPAGATION ALGORITMUSSAL A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült. Neuron helyett neuronháló Neuron reprezentációs erejének növelése: építsünk

Részletesebben

Adatbányászati szemelvények MapReduce környezetben

Adatbányászati szemelvények MapReduce környezetben Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt

Részletesebben

Statisztikai eljárások a mintafelismerésben és a gépi tanulásban

Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Varga Domonkos (I.évf. PhD hallgató) 2014 május A prezentáció felépítése 1) Alapfogalmak 2) A gépi tanulás, mintafelismerés alkalmazási

Részletesebben

Neurális hálózatok MATLAB programcsomagban

Neurális hálózatok MATLAB programcsomagban Debreceni Egyetem Informatikai Kar Neurális hálózatok MATLAB programcsomagban Témavezető: Dr. Fazekas István Egyetemi tanár Készítette: Horváth József Programtervező informatikus Debrecen 2011 1 Tartalomjegyzék

Részletesebben

Intelligens Rendszerek Elmélete

Intelligens Rendszerek Elmélete Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 20/2011 Az Előadások Témái 226/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus

Részletesebben

Baran Ágnes. Gyakorlat Függvények, Matlab alapok

Baran Ágnes. Gyakorlat Függvények, Matlab alapok Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Függvények, Matlab alapok Matematika Mérnököknek 1. A gyakorlatok fóliái: https://arato.inf.unideb.hu/baran.agnes/oktatas.html Feladatsorok: https://arato.inf.unideb.hu/baran.agnes/oktatas.html

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

Tanulás az idegrendszerben

Tanulás az idegrendszerben Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Funkcióvezérelt modellezés Abból indulunk ki, hogy milyen feladatot valósít meg a rendszer Horace Barlow: "A

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A

Részletesebben

Készítette: Hadházi Dániel

Készítette: Hadházi Dániel Készítette: Hadházi Dániel Ellenőrzött (osztályozás, predikció): Adott bemeneti mintákhoz elvárt kimenetek. Félig ellenőrzött (valódi problémák): Nincs minden bemeneti mintához ellenőrzött kimenet, de

Részletesebben

Nyolcbites számláló mintaprojekt

Nyolcbites számláló mintaprojekt Nyolcbites számláló mintaprojekt 1. Bevezető A leírás egy nyolcbites számláló elkészítésének és tesztelésének lépéseit ismerteti. A számláló értéke az órajel felfutó élének hatására növekszik. A törlőgombbal

Részletesebben

Least Squares becslés

Least Squares becslés Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás

Részletesebben

Bevezetés a neurális számításokba Analóg processzortömbök,

Bevezetés a neurális számításokba Analóg processzortömbök, Pannon Egyetem Villamosmérnöki és Információs Tanszék Bevezetés a neurális számításokba Analóg processzortömbök, neurális hálózatok Előadó: dr. Tömördi Katalin Neurális áramkörök (ismétlés) A neurális

Részletesebben

TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...

TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése... TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

Megerősítéses tanulás 9. előadás

Megerősítéses tanulás 9. előadás Megerősítéses tanulás 9. előadás 1 Backgammon (vagy Ostábla) 2 3 TD-Gammon 0.0 TD() tanulás (azaz időbeli differencia-módszer felelősségnyomokkal) függvényapproximátor: neuronháló 40 rejtett (belső) neuron

Részletesebben

Matlab alapok. Baran Ágnes. Grafika. Baran Ágnes Matlab alapok Grafika 1 / 21

Matlab alapok. Baran Ágnes. Grafika. Baran Ágnes Matlab alapok Grafika 1 / 21 Matlab alapok Baran Ágnes Grafika Baran Ágnes Matlab alapok Grafika / 2 Vonalak, pontok síkon figure nyit egy új grafikus ablakot plot(x,y) ahol x és y ugyanolyan méretű vektorok, ábrázolja az (x i,y i

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására

Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására VÉGZŐS KONFERENCIA 2009 2009. május 20, Budapest Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására Hidasi Balázs hidasi@tmit.bme.hu Konzulens: Gáspár-Papanek Csaba Budapesti

Részletesebben

A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei. Atomerőművek üzemtana

A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei. Atomerőművek üzemtana A MATLAB alapjai Kezdő lépések - Matlab Promt: >> - Help: >> help sqrt >> doc sqrt - Kilépés: >> quit >> exit >> Futó script leállítása: >> ctrl+c - Változók listásása >> who >> whos - Változók törlése

Részletesebben

A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL

A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL Dr. Ludányi Lajos mk. alezredes egyetemi adjunktus Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti Rendszerek Tanszék

Részletesebben

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =

Részletesebben

Képfeldolgozás haladóknak Lovag Tamás Novák Gábor 2011

Képfeldolgozás haladóknak Lovag Tamás Novák Gábor 2011 Dokumentáció Küszöbölés A küszöbölés során végighaladunk a képen és minden egyes képpont intenzitásáról eldöntjük, hogy teljesül-e rá az a küszöbölési feltétel. A teljes képre vonatkozó küszöbölés esetében

Részletesebben

Flynn féle osztályozás Single Isntruction Multiple Instruction Single Data SISD SIMD Multiple Data MISD MIMD

Flynn féle osztályozás Single Isntruction Multiple Instruction Single Data SISD SIMD Multiple Data MISD MIMD M5-. A lineáris algebra párhuzamos algoritmusai. Ismertesse a párhuzamos gépi architektúrák Flynn-féle osztályozását. A párhuzamos lineáris algebrai algoritmusok között mi a BLAS csomag célja, melyek annak

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók 2. Előadó: Hullám Gábor Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki

Részletesebben

Id sorok elemzése adatbányászati módszerekkel

Id sorok elemzése adatbányászati módszerekkel Id sorok elemzése adatbányászati módszerekkel Deák Szilárd Matematika BSc, Matematikai elemz szakirány Témavezet : Lukács András, tudományos f munkatárs Számítógéptudományi Tanszék Eötvös Loránd Tudományegyetem,

Részletesebben

Első egyéni feladat (Minta)

Első egyéni feladat (Minta) Első egyéni feladat (Minta) 1. Készítsen olyan programot, amely segítségével a felhasználó 3 különböző jelet tud generálni, amelyeknek bemenő adatait egyedileg lehet változtatni. Legyen mód a jelgenerátorok

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

Jelek és rendszerek Gyakorlat_02. A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával.

Jelek és rendszerek Gyakorlat_02. A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával. A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával. A Szimulink programcsomag rendszerek analóg számítógépes modelljének szimulálására alkalmas grafikus programcsomag. Egy SIMULINK

Részletesebben

IBM SPSS Modeler 18.2 Újdonságok

IBM SPSS Modeler 18.2 Újdonságok IBM SPSS Modeler 18.2 Újdonságok 1 2 Új, modern megjelenés Vizualizáció fejlesztése Újabb algoritmusok (Python, Spark alapú) View Data, t-sne, e-plot GMM, HDBSCAN, KDE, Isotonic-Regression 3 Új, modern

Részletesebben

>> x1 = linspace( ); plot(x1,sin(x1),'linewidth',1,'color',[1 0 0]);

>> x1 = linspace( ); plot(x1,sin(x1),'linewidth',1,'color',[1 0 0]); 1 5. GYAKORLAT SAJÁT FÜGGVÉNYEK, GRAFIKA, FÜGGVÉNYVIZSGÁLAT A PLOT UTASÍTÁS A plot utasítás a legegyszerűbb esetben (x, y) pontpárok összekötött megjelenítésére szolgál (a pontok koordinátáit vektorok

Részletesebben

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját! 1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. 1.-2. Gyakorlat 1 / 42 Numerikus differenciálás

Részletesebben

Közönséges differenciál egyenletek megoldása numerikus módszerekkel: egylépéses numerikus eljárások

Közönséges differenciál egyenletek megoldása numerikus módszerekkel: egylépéses numerikus eljárások Közönséges differenciál egyenletek megoldása numerikus módszerekkel: egylépéses numerikus eljárások Bevezetés Ebben a cikkben megmutatjuk, hogyan használhatóak a Mathematica egylépéses numerikus eljárásai,

Részletesebben

MATLAB. 3. gyakorlat. Mátrixműveletek, címzések

MATLAB. 3. gyakorlat. Mátrixműveletek, címzések MATLAB 3. gyakorlat Mátrixműveletek, címzések Menetrend Kis ZH Mátrixok, alapműveletek Vezérlő szerkezetek Virtuális műtét Statisztikai adatok vizsgálata pdf Kis ZH Mátrixok, alapműveletek mátrix létrehozása,

Részletesebben

Adaptív dinamikus szegmentálás idősorok indexeléséhez

Adaptív dinamikus szegmentálás idősorok indexeléséhez Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november

Részletesebben

SCILAB programcsomag segítségével

SCILAB programcsomag segítségével Felhasználói függvények de niálása és függvények 3D ábrázolása SCILAB programcsomag segítségével 1. Felhasználói függvények de niálása A Scilab programcsomag rengeteg matematikai függvényt biztosít a számítások

Részletesebben

A G320 SERVOMOTOR MEGHAJTÓ ÜZEMBE HELYEZÉSE (2002. március 29.)

A G320 SERVOMOTOR MEGHAJTÓ ÜZEMBE HELYEZÉSE (2002. március 29.) A G320 SERVOMOTOR MEGHAJTÓ ÜZEMBE HELYEZÉSE (2002. március 29.) Köszönjük, hogy a G320 szervomotor meghajtót választotta. A G320 DC szervomotor meghajtóra a vásárlástól számítva 1 év gyártási hibákra kiterjedő

Részletesebben

Intelligens orvosi műszerek (VIMIA023) Gyakorló feladatok, megoldással (2016 ősz)

Intelligens orvosi műszerek (VIMIA023) Gyakorló feladatok, megoldással (2016 ősz) Intelligens orvosi műszerek (VIMIA23) Gyakorló feladatok, megoldással (216 ősz) Régi zárthelyi- és vizsgafeladatok, egyéb feladatok megoldással. Nem jelenti azt, hogy pontosan ezek, vagy pontosan ilyenek

Részletesebben

Algoritmusok és adatszerkezetek 2.

Algoritmusok és adatszerkezetek 2. Algoritmusok és adatszerkezetek 2. Varga Balázs gyakorlata alapján Készítette: Nagy Krisztián 1. gyakorlat Nyílt címzéses hash-elés A nyílt címzésű hash táblákban a láncolással ellentétben egy indexen

Részletesebben

Lineáris regressziós modellek 1

Lineáris regressziós modellek 1 Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák

Részletesebben

Önálló labor beszámoló Képek szegmentálása textúra analízis segítségével. MAJF21 Eisenberger András május 22. Konzulens: Dr.

Önálló labor beszámoló Képek szegmentálása textúra analízis segítségével. MAJF21 Eisenberger András május 22. Konzulens: Dr. Önálló labor beszámoló Képek szegmentálása textúra analízis segítségével 2011. május 22. Konzulens: Dr. Pataki Béla Tartalomjegyzék 1. Bevezetés 2 2. Források 2 3. Kiértékelő szoftver 3 4. A képek feldolgozása

Részletesebben

Programozás alapjai. 6. gyakorlat Futásidő, rekurzió, feladatmegoldás

Programozás alapjai. 6. gyakorlat Futásidő, rekurzió, feladatmegoldás Programozás alapjai 6. gyakorlat Futásidő, rekurzió, feladatmegoldás Háziellenőrzés Egészítsd ki úgy a simplemaths.c programot, hogy megfelelően működjön. A program feladata az inputon soronként megadott

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei

A MATLAB alapjai. Kezdő lépések. Változók. Aktuális mappa Parancs ablak. Előzmények. Részei A MATLAB alapjai Atomerőművek üzemtanának fizikai alapjai - 2016. 03. 04. Papp Ildikó Kezdő lépések - Matlab Promt: >> - Help: >> help sqrt >> doc sqrt - Kilépés: >> quit >> exit - Változók listásása >>

Részletesebben

Baran Ágnes. Gyakorlat Halmazok, függvények, Matlab alapok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 34

Baran Ágnes. Gyakorlat Halmazok, függvények, Matlab alapok. Baran Ágnes Matematika Mérnököknek Gyakorlat 1 / 34 Matematika Mérnököknek 1. Baran Ágnes Gyakorlat Halmazok, függvények, Matlab alapok Baran Ágnes Matematika Mérnököknek 1. 1.-2. Gyakorlat 1 / 34 Matematika Mérnököknek 1. A gyakorlatok fóliái: https://arato.inf.unideb.hu/baran.agnes/oktatas.html

Részletesebben

Adatbányászati feladatgyűjtemény tehetséges hallgatók számára

Adatbányászati feladatgyűjtemény tehetséges hallgatók számára Adatbányászati feladatgyűjtemény tehetséges hallgatók számára Buza Krisztián Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalomjegyék Modellek kiértékelése...

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x

Részletesebben

NEWFF letrehoz egy előrecsatolt neuronhálót net = newff(pr,[s1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

NEWFF letrehoz egy előrecsatolt neuronhálót net = newff(pr,[s1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) IV.- LABOR Előrecsatolt többrétegű hálók tanítása IV.- LABOR Előrecsatolt többrétegű hálók tanítása A dolgozat célja: az előrecsatolt többrétegű neuronhálók tanítása, időben változó értékű tanító együtthatók

Részletesebben

A regisztrált álláskeresők számára vonatkozó becslések előrejelző képességének vizsgálata

A regisztrált álláskeresők számára vonatkozó becslések előrejelző képességének vizsgálata A regisztrált álláskeresők számára vonatkozó becslések előrejelző képességének vizsgálata Az elemzésben a GoogleTrends (GT, korábban Google Insights for Search) modellek mintán kívüli illeszkedésének vizsgálatával

Részletesebben

Szoftverminőségbiztosítás

Szoftverminőségbiztosítás NGB_IN003_1 SZE 2017-18/2 (9) Szoftverminőségbiztosítás Specifikáció alapú (black-box) technikák A szoftver mint leképezés Szoftverhiba Hibát okozó bement Hibás kimenet Input Szoftver Output Funkcionális

Részletesebben

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat 9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:

Részletesebben

Orvosi diagnosztikai célú röntgenképfeldolgozás

Orvosi diagnosztikai célú röntgenképfeldolgozás Orvosi diagnosztikai célú röntgenképfeldolgozás Önálló labor zárójegyzkönyv Lasztovicza László VII. évf. vill. szakos hallgató 2002. Konzulens: dr. Pataki Béla docens Méréstechnika és Információs Rendszerek

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

Csima Judit április 9.

Csima Judit április 9. Osztályozókról még pár dolog Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. április 9. Csima Judit Osztályozókról még pár dolog 1 / 19 SVM (support vector machine) ez is egy

Részletesebben