NEWFF letrehoz egy előrecsatolt neuronhálót net = newff(pr,[s1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "NEWFF letrehoz egy előrecsatolt neuronhálót net = newff(pr,[s1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)"

Átírás

1 IV.- LABOR Előrecsatolt többrétegű hálók tanítása IV.- LABOR Előrecsatolt többrétegű hálók tanítása A dolgozat célja: az előrecsatolt többrétegű neuronhálók tanítása, időben változó értékű tanító együtthatók alkalmazása, a háló méretének optimalizálása a háló méretének csökkentésével vagy növelésével, a többrétegű neuronhálókkal kapcsolatos MATLAB függvények alkalmazása neuronhálók tanítására és tesztelésére Elméleti alapfogalmak Alapvető MATLAB függvények az előrecsatolt többrétegű hálók tanítására: newff- egy új többrétegű előrecsatolt perceptron típusú háló létrehozása sim-a háló kimenetének előállítása egy adott bemenetre (előhívási fázis) train-a háló tanítása NEWFF letrehoz egy előrecsatolt neuronhálót net = newff(pr,[s1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) PR -- R x 2 matrix, tartalmazza a minimális és maximális értékeket egy R elemű bemeneti vektorra Si az ik réteg neuronjainak száma, az utolsó (kimeneti réteg) neuronjainak a számát a feladat határozza meg) TFi i-ik réteghez tartozó aktivációs függvények típusa:tansig, logsig, purelin (alapértelmezett = 'tansig') BTF- backpropagation training function trainbfg- -quasi-newton backpropagation trainlm -Levenberg-Marquardt backpropagation traingd -Gradient descent backpropagation traingdm -Gradient descent with momentum backpropagation traingda -Gradient descent with adaptive learning rate backpropagation traingdx -Gradient descent with momentum and adaptive learning rate backpropagation BLF - Backprop weight/bias learning function, default = 'learngdm' LEARNGD-Gradient descent weight/bias learning function LEARNGDM-Gradient descent w/momentum weight/bias learning function PF- Performance function, default = 'mse'. MSE Mean squared error performance function. MSEREG Mean squared error with regularization performance function. MAE Mean absolute error performance function. Példa P = [ ]; T = [ ]; tanító halmaz net = newff([0 10],[5 1],{'tansig' 'purelin'}); % a háló felépítése 23

2 Mesterséges Intelligencia Labor net = train(net,p,t); %a háló tanítása Y = sim(net,p); %a háló kimenetének kiszámolása Ötletek a tanítási algoritmus gyorsítására, a lokális minimumokba való ragadás elkerülésére Milyen értéket kell választani a tanítási együtthatónak? a) Túl nagy tanítási együttható esetében az algoritmus nem konvergens. b) Igen kicsi tanítási együttható esetében a tanulás lassú, és gyakran elakad lokális minimumokban c) Javasolt a változó értékű tanítási együtthatónak az alkalmazása, kezdetben nagyobb együttható biztosítja a gyors tanítást, a tanítás végén pedig egyre kisebb értékű együttható alkalmazása eredményezi a pontos finom a tanulást. Egy javaslat a 1 változó értékű tanítási együttható kiszámítására µ [ k] = µ 0 ahol µ 0 -a tanítási 1+ Tk együttható kezdeti értéke, k-adik tanítási ciklus, T- egy paraméter, melynek segítségével a tanítási együttható változásának meredekségét lehet hangolni, µ [ k] -a tanítási együttható értéke a k-adik tanítási ciklusban 24 d) A lokális minimumokba való elakadás elkerülésére javasolt a momentum módszer alkalmazása. A Widrow Hoff (delta) szabályt egy újabb taggal, úgynevezett momentummal kell kiegészíteni. A momentumos tagnak a lényege, hogy figyelembe veszi a súlyzók módosításának az irányát az előbbi lépésből. Amint az algoritmus nevéből is kiszűrhető, egy tehetetlenségi tagról van szó. w [k + 1] = w [k] + µ δi f ( s ) x [k] + mw [k 1] w -az l-ik réteg i-ik neuronja és j-ik bemenet közötti súlyzó értéke µ l-ik réteghez tartozó tanítási együttható δi -a réteg kimenetén a hiba (a kimeneti réteg esetében a háló kimenetén kiszámolt hiba, rejtett rétegek esetében pedig a visszaáramoltatott hiba) x j [k] -az l-ik réteg j-ik bemenete a k-ik tanítási ciklusban m -momentum tag, 0 és 1 között vehet fel értéket e) Egy módszer a tanítás gyorsítására: ha a tanulás stagnál, duplázzuk meg a tanítási együtthatót ha a tanulás elég gyors, marad a tanítási együttható értéke az előbbi tanítási ciklusból ha a hiba növekedni kezd, felezzük a tanítási együtthatót A neuronháló méretének az optimalizálása Nem elég a feladatot megoldani, hanem a leggyorsabb megoldást szeretnénk elérni. Ha a neuronháló szoftveres megvalósításáról van szó, a háló kimenetének a kiszámítása (és tanítása) annál gyorsabb, minél kevesebb számítást kell elvégeznünk. A háló méretének az optimalizálása az elvégzendő számítások csökkentését eredményezi. A neuronháló optimális mérete a következőképpen határozható meg a) A háló méretének növelésével. Egy kisebb méretű hálóból kiindulva elvégezzük a tanítást. A tanítás végén ellenőrizzük, hogy elfogadható-e a megoldás. Ha nem elfogadható, újabb neuronokat építünk a hálóba. Egy rejtett réteget és egy kimeneti réteget tartalmazó háló esetében a rejtett rétegben egy újabb neuronnak a bevitele a súlyzómátrixoknak a következő módosításait igényli i j

3 IV.- LABOR Előrecsatolt többrétegű hálók tanítása a rejtett réteg súlyzó mátrixához hozzá kell adni egy újabb oszlopot, a kimeneti réteghez hozzá kell adni egy újabb sort Újra és újra elvégezzük a háló tanítását, amíg a hiba a megfelelő érték alá nem csökken. Az új neuron bevitele után a hiba csökkenése lesz észlelhető. Ha a hiba csökkenése stagnál, egy újabb neuron bevitelére kerül sor. b) A háló méretének a csökkentésével. Egy nagyobb méretű hálóból kiindulva (amely biztosan megoldja a feladatot) optimalizáljuk a háló méretét csökkentve a rejtett rétegben levő neuronok számát. A neuronok kivágásánál felmerül a kérdés, hogy melyik neuronokat lehet kivágni a hálóból. A neuron hálóból kivághatóak azok a neuronok, amelyek teljesítik a következő feltételeket: Ha két neuronnak a kimenete hasonló a tanítóhalmaz minden elemére A tanítóhalmaz minden elemére egyes neuronok kimenete nulla (vagy nullához közeli) Egy neuron kivágása után továbbtanítjuk a neuronhálót. Első fázisban a hiba növekedése lesz észlelhető, de ha a háló képes megoldani a feladatot, a hiba az elvárt érték alá csökken. Tehát egy újabb neuront kell kivágni. Addig ismételjük a neuronok kivágását, amíg a hiba az elvárt érték alá nem csökken. Az alábbiakban egy példaprogram látható, amelyben 5x7 méretű alfabetikus karaktereket tanítunk egy előrecsatolt többrétegű mesterséges idegsejthálóval a MATLAB Neural Networks Tolbox függvényeit alkalmazva. clf; figure(gcf) echo on % NEWFF - az elırecsatolt háló inicializálása % TRAINGDX - a háló tanítása gyors backpropagation algoritmussal % SIM - a neurális háló szimulációja %% KARAKTER FELISMERÉS % A TANÍTÓ HALMAZ FELÉPÍTÉSE % ========================== %prprob tartalmazza a tanító halmazt (26 karakter) és az elvárt kimenetet [alphabet,targets] = prprob; [R,Q] = size(alphabet); [S2,Q] = size(targets); %% MEGHATÁROZZUK A HÁLÓ STRUKTÚRÁJÁT % ================================== % logsig típusú aktivációs függvényeket alkalmazunk a rejtett és a kimeneti % rétegbe %S1-a rejtett retegben levı neuronok száma %S2-a kimeneti rétegben levı neuronok száma S1 = 10; net = newff(minmax(alphabet),[s1 S2],{'logsig' 'logsig'},'traingdx'); net.lw{2,1} = net.lw{2,1}*0.01; net.b{2} = net.b{2}*0.01; %a COMMAND ablakba beírva a net változót, láthatjuk, hogy milyen paramétereket %tartalmaz és ha szükséges, módosíthatjuk azokat. %például net.trainparam.lr -a tanítási együttható lekérdezése %például net.trainparam.lr=0.001 %net.layers{1}.transferfcn % a rejtett réteg aktivációs függvényének 25

4 Mesterséges Intelligencia Labor %lekérdezése %net.layers{2}.transferfcn % A második (kimeneti) réteg aktivációs %függvényének lekérdezése %net.layers{1}.transferfcn='tansig' -tansig aktivációs függvény alkalmazása %a rejtett rétegbe %% TANÍTJUK A HÁLÓT (ZAJMENTESEN) % ================================== % Beállítjuk a tanítási paramétereket net.performfcn = 'sse'; % Sum-Squared Error kritérium függvény net.trainparam.goal = 0.1; % a cél hiba net.trainparam.show = 20; % a hiba kirajzolásának frissítése net.trainparam.epochs = 5000; % a maximális tanítási korszakok száma net.trainparam.mc = 0.95; % momentum értéke P = alphabet; %-a tanítandó karakterek T = targets; %-az elvárt kimenet [net,tr] = train(net,p,t); % a háló tanítása %% A HÁLÓ TANÍTÁSA ZAJOS KÖRNYEZETBEN % ================================== netn = net; %lementjük a régi hálót netn.trainparam.goal = 0.6; % a cél hiba netn.trainparam.epochs = 300; % maximális tanítási korszakok száma % A hálót 10 cikluson át tanítjuk, az eredeti karaktereket torzítva T = [targets targets targets targets]; for pass = 1:10 fprintf('sikeres = %.0f\n',pass); P = [alphabet, alphabet,... (alphabet + randn(r,q)*0.1),... (alphabet + randn(r,q)*0.2)]; [netn,tr] = train(netn,p,t); echo off end echo on %% TANITJUK A HÁLÓT AZ EREDETI (nem zajos) KARAKTERKRE % ========================================= % biztosítva ezáltal, hogy az eredeti karaktereket helyesen azonosítja netn.trainparam.goal = 0.1; % célhiba netn.trainparam.epochs = 500; % maximális tanítási korszakok száma net.trainparam.show = 5; % a hiba kirajzolásának frissítése a net hálóra P = alphabet; T = targets; [netn,tr] = train(netn,p,t); %a háló tanítása %% A HÁLÓ TESZTELÉSE % A TESZT PARAMÉTEREK BEÁLLÍTÁSA noise_range = 0:.05:.5; max_test = 100; network1 = []; network2 = []; T = targets; 26

5 IV.- LABOR Előrecsatolt többrétegű hálók tanítása % A TESZT ELVÉGZÉSE for noiselevel = noise_range fprintf('a háló tesztelése %.2f zajszintre.\n',noiselevel); errors1 = 0; errors2 = 0; for i=1:max_test P = alphabet + randn(35,26)*noiselevel; % AZ ELS? HÁLÓ TESZTELÉSE (net) A = sim(net,p); % a háló szimulációja a bemenetekre AA = compet(a); % errors1 = errors1 + sum(sum(abs(aa-t)))/2; %a hiba összegzése % A MÁSODIK HÁLÓ TESZTELÉSE An = sim(netn,p); %a háló szimulációja a bemenetekre AAn = compet(an); errors2 = errors2 + sum(sum(abs(aan-t)))/2; %a hiba összegzése echo off end % ÁTLAGHIBA SZÁMOLÁSA 100 x 26 KARAKTERRE network1 = [network1 errors1/26/100]; %elsı háló átlag hibavektora network2 = [network2 errors2/26/100]; %második háló hibavektora end echo on % AZ EREDMÉNY ÁBRÁZOLÁSA % ======================= clf plot(noise_range,network1*100,'--',noise_range,network2*100); title('felismerési HIBA %-ban kifejezve'); xlabel('zajszint'); ylabel('elsı háló(zajmentes tanítás) - - Második háló (Zajos tanítás) - --'); Feladat I. A III. Labor órán megtervezett előrecsatolt többrétegű háló tanítását végezzük el a következő esetekre a. a súlymódosításnál vegyük figyelembe a büntető tagot µλ w, melynek hatására a tanítás után a súlyzók értéke kicsi lesz (közel nullához). A büntető tag alkalmazásával a súlymódósítás a következőképpen alakul : w [ k + 1] = w [ k] + µ δ x µλ w. A büntetőtagot csak azon súlyzókra alkalmazzuk, melyek abszolút értéke egy küszöb alatt van w < θ, ellenkező esetben a háló nem fog tanulni. b. λ felejtési együttható. A büntető tag alkalmazásának a célja, hogy a tanítás elvégzése után egyszerűsítsük a háló struktúráját, kiejtve a hálóból azokat a neuronokat, melyek kimenete a teljes tanítási ciklusra nulla körüli értéket vesz fel. A feladat, hogy a tanítás elvégzése után határozzuk meg az optimális neuronhálótopológiát. 1 c. A tanítás során alkalmazzunk időben változó tanítási együtthatókat µ [ i] = µ 0 1+ ki ahol µ 0 -a tanítási együttható kezdeti értéke, i-az i-edik tanítási ciklus, k- egy paraméter, melynek segítségével a tanítási együttható változásának meredekségét lehet hangolni µ [ i] -a tanítási együttható értéke az i-edik tanítási ciklusban d. Tervezzünk egy többrétegű előrecsatolt perceptron típusú optimális méretű hálót 1. kiindulva egy kisebb méretű hálóból (kevesebb neuron a rejtett rétegben), és növelve a rejtett rétegben levő neuronok számát 2. kiindulni egy nagyobb méretű hálóból (mely biztosan megoldja a i j 27

6 Mesterséges Intelligencia Labor II. feladatot) és csökkenteni a rejtett rétegben (rétegekben) levő neuronok számát. (Azokat a neuronokat távolítsuk el, melyek kimenete a teljes tanítási halmazra nullához közeli értéket ad, vagy melyek nem változnak a tanítás ideje alatt.) Hasonlítsunk össze különböző gradiens alapú algoritmusokat, alkalmazva a NeuralNetworkToolbox függvényeit. Az összehasonlítást alkalmazzuk karakterosztályozásos feladatra. (Az osztályozandó számjegyek 0 9, a karakterek mérete 5x7) A fontosabb függvények, melyek segítségével a feladat elkészíthető, a következők:newff, sim és train 28

Jelek tanulmányozása

Jelek tanulmányozása Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Generáljunk először is mintákat a függvényből. Ezzel fogunk majd később tanítani.

Generáljunk először is mintákat a függvényből. Ezzel fogunk majd később tanítani. MATLAB gyorstalpaló Neural Network toolbox és SVM-KM toolbox alkalmazása függvényapproximációra, osztályozásra és idősor-előrejelzésre 1 Függvényapproximáció A függvényapproximációt egy egyszerű egydimenziós

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

Bevezetés a lágy számítás módszereibe

Bevezetés a lágy számítás módszereibe BLSZM-07 p. 1/10 Bevezetés a lágy számítás módszereibe Nem fuzzy halmaz kimenetű fuzzy irányítási rendszerek Egy víztisztító berendezés szabályozását megvalósító modell Viselkedésijósló tervezési példa

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 288/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák

Részletesebben

Mágneses szuszceptibilitás vizsgálata

Mágneses szuszceptibilitás vizsgálata Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség

Részletesebben

Beszámoló: a kompetenciamérés eredményének javítását célzó intézkedési tervben foglaltak megvalósításáról. Őcsény, 2015. november 20.

Beszámoló: a kompetenciamérés eredményének javítását célzó intézkedési tervben foglaltak megvalósításáról. Őcsény, 2015. november 20. Őcsényi Perczel Mór Általános Iskola székhelye: 7143 Őcsény, Perczel Mór utca 1. Tel: 74/496-782 e-mail: amk.ocseny@altisk-ocseny.sulinet.hu Ikt.sz.: /2015. OM: 036345 Ügyintéző: Ősze Józsefné Ügyintézés

Részletesebben

MATLAB. 4. gyakorlat. Lineáris egyenletrendszerek, leképezések

MATLAB. 4. gyakorlat. Lineáris egyenletrendszerek, leképezések MATLAB 4. gyakorlat Lineáris egyenletrendszerek, leképezések Menetrend Kis ZH MATLAB függvények Lineáris egyenletrendszerek Lineáris leképezések Kis ZH pdf MATLAB függvények a szkriptekhez hasonlóan az

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 12 XII. STATIsZTIKA ellenőrző feladatsorok 1. FELADATsOR Megoldások: láthatók nem láthatók 1. minta: 6.10, 0.01, 6.97, 6.03, 3.85, 1.11,

Részletesebben

[MECHANIKA- HAJLÍTÁS]

[MECHANIKA- HAJLÍTÁS] 2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás

Részletesebben

BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4"yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE

BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE BETONACÉLOK HAJLÍTÁSÁHOZ SZÜKSÉGES l\4"yomaték MEGHATÁROZÁSÁNAK EGYSZERŰ MÓDSZERE BACZY"SKI Gábor Budape?ti 1Iűszaki Egyetem, Közlekedésmérnöki Kar Epítő- és Anyagmozgató Gépek Tanszék Körkeresztmetszet{Í

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 4 előadás Főátlagok összehasonlítása http://uni-obudahu/users/koczyl/gazdasagstatisztikahtm Kóczy Á László KGK-VMI Viszonyszámok (emlékeztető) Jelenség színvonalának vizsgálata

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek

Részletesebben

Rendezési algoritmusok belső rendezés külső rendezés

Rendezési algoritmusok belső rendezés külső rendezés Rendezési algoritmusok belső rendezés külső rendezés belső rendezési algoritmusok buborékrendezés (Bubble sort) kiválasztó rendezés (Selection sort) számláló rendezés (Counting sort) beszúró rendezés (Insertion

Részletesebben

MÁTRIXOK SAJÁTÉRTÉKEINEK ÉS SAJÁTVEKTORAINAK KISZÁMÍTÁSA. 1. Definíció alkalmazásával megoldható feladatok

MÁTRIXOK SAJÁTÉRTÉKEINEK ÉS SAJÁTVEKTORAINAK KISZÁMÍTÁSA. 1. Definíció alkalmazásával megoldható feladatok Bevezetés: MÁTRIXOK SAJÁTÉRTÉKEINEK ÉS SAJÁTVEKTORAINAK KISZÁMÍTÁSA Jelölés: A mátrix sajátértékeit λ 1, λ 2, λ 3,.stb. betűkkel, míg a különböző sajátvektorokat x 1, x 2, x 3 stb. módon jelöljük Definíció:

Részletesebben

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Vektoros elemzés végrehajtása QGIS GRASS moduljával 1.7 dr. Siki Zoltán

Vektoros elemzés végrehajtása QGIS GRASS moduljával 1.7 dr. Siki Zoltán Vektoros elemzés végrehajtása QGIS GRASS moduljával 1.7 dr. Siki Zoltán Egy mintapéldán keresztül mutatjuk be a GRASS vektoros elemzési műveleteit. Az elemzési mintafeladat során gumipitypang termesztésére

Részletesebben

Visszacsatolt (mély) neurális hálózatok

Visszacsatolt (mély) neurális hálózatok Visszacsatolt (mély) neurális hálózatok Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Sima előrecsatolt neurális hálózat Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Pl.: kép feliratozás,

Részletesebben

Bár a digitális technológia nagyon sokat fejlődött, van még olyan dolog, amit a digitális fényképezőgépek nem tudnak: minden körülmények között

Bár a digitális technológia nagyon sokat fejlődött, van még olyan dolog, amit a digitális fényképezőgépek nem tudnak: minden körülmények között Dr. Nyári Tibor Bár a digitális technológia nagyon sokat fejlődött, van még olyan dolog, amit a digitális fényképezőgépek nem tudnak: minden körülmények között tökéletes színeket visszaadni. A digitális

Részletesebben

- mit, hogyan, miért?

- mit, hogyan, miért? - mit, hogyan, miért? Dr. Bélavári Csilla VITUKI Nonprofit Kft., Minőségbiztosítási és Ellenőrzési Csoport c.belavari@vituki.hu 2011.02.10. 2010. évi záróértekezlet - VITUKI, MECS 1 I. Elfogadott érték

Részletesebben

A Hozzárendelési feladat megoldása Magyar-módszerrel

A Hozzárendelési feladat megoldása Magyar-módszerrel A Hozzárendelési feladat megoldása Magyar-módszerrel Virtuális vállalat 2013-2014/1. félév 3. gyakorlat Dr. Kulcsár Gyula A Hozzárendelési feladat Adott meghatározott számú gép és ugyanannyi független

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79

Részletesebben

Párhuzamos programozás

Párhuzamos programozás Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák

Részletesebben

Kombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/

Kombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/ Kombinatorika 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kombinatorika p. 1/ Permutáció Definíció. Adott n különböző elem. Az elemek egy meghatározott sorrendjét az adott

Részletesebben

Egységes jelátalakítók

Egységes jelátalakítók 6. Laboratóriumi gyakorlat Egységes jelátalakítók 1. A gyakorlat célja Egységes feszültség és egységes áram jelformáló áramkörök tanulmányozása, átviteli karakterisztikák felvétele, terhelésfüggőségük

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria 005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

2011. március 9. Dr. Vincze Szilvia

2011. március 9. Dr. Vincze Szilvia . márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer

Részletesebben

Amit a Hőátbocsátási tényezőről tudni kell

Amit a Hőátbocsátási tényezőről tudni kell Amit a Hőátbocsátási tényezőről tudni kell Úton-útfélen mindenki róla beszél, már amikor épületekről van szó. A tervezéskor találkozunk vele először, majd az építkezéstől az épület lakhatási engedélyének

Részletesebben

ADATBÁZIS-KEZELÉS. Funkcionális függés, normál formák

ADATBÁZIS-KEZELÉS. Funkcionális függés, normál formák ADATBÁZIS-KEZELÉS Funkcionális függés, normál formák KARBANTARTÁSI ANOMÁLIÁK beszúrási anomáliák törlési anomáliák módosítási anomáliák DOLG_PROJ(Dszsz, Pszám, Dnév, Pnév, Órák) 2 MÓDOSÍTÁSI ANOMÁLIÁK

Részletesebben

Programozás I. - 9. gyakorlat

Programozás I. - 9. gyakorlat Programozás I. - 9. gyakorlat Mutatók, dinamikus memóriakezelés Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer- és Számítástudományi Tanszék Utolsó frissítés: November 9, 2009 1 tar@dcs.vein.hu

Részletesebben

1. Metrótörténet. A feladat folytatása a következő oldalon található. Informatika emelt szint. m2_blaha.jpg, m3_nagyvaradter.jpg és m4_furopajzs.jpg.

1. Metrótörténet. A feladat folytatása a következő oldalon található. Informatika emelt szint. m2_blaha.jpg, m3_nagyvaradter.jpg és m4_furopajzs.jpg. 1. Metrótörténet A fővárosi metróhálózat a tömegközlekedés gerincét adja. A vonalak építésének története egészen a XIX. század végéig nyúlik vissza. Feladata, hogy készítse el a négy metróvonal történetét

Részletesebben

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan

Részletesebben

Készítsen négy oldalas prezentációt egy vállalat bemutatására!

Készítsen négy oldalas prezentációt egy vállalat bemutatására! 1. feladat Készítsen négy oldalas prezentációt egy vállalat bemutatására! 1. A prezentáció háttere világoskék színű legyen, átlósan le árnyékolással. 2. Az első dia bal oldalán, felül a cég neve olvasható:

Részletesebben

#instagramads Az első tapasztalatok. Contact: Eva Drienyovszki Senior Search Specialist eva.drienyovszki@mecglobal.com

#instagramads Az első tapasztalatok. Contact: Eva Drienyovszki Senior Search Specialist eva.drienyovszki@mecglobal.com #instagramads Az első tapasztalatok Contact: Eva Drienyovszki Senior Search Specialist eva.drienyovszki@mecglobal.com 2010. július 16. Az első fotó az Instagramon 2011. január 27. Az első hashtaggel ellátott

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

Boldva és Vidéke Taka r ékszövetkezet

Boldva és Vidéke Taka r ékszövetkezet A Takarékszövetkezet jelen ben szereplő, változó kamatozású i termékei esetében i kamatváltozást tesz közzé, az állandó (fix) kamatozású i termékek esetében pedig a 2014.06.15-től lekötésre kerülő ekre

Részletesebben

Boldva és Vidéke Taka r ékszövetkezet

Boldva és Vidéke Taka r ékszövetkezet A Takarékszövetkezet jelen ben szereplő, változó kamatozású i termékei esetében i kamatváltozást tesz közzé, az állandó (fix) kamatozású i termékek esetében pedig a 2014.08.13-tól lekötésre kerülő ekre

Részletesebben

Digitális technika (VIMIAA01) Laboratórium 1

Digitális technika (VIMIAA01) Laboratórium 1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 1 Fehér Béla Raikovich Tamás,

Részletesebben

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA Kovács Ernő 1, Füvesi Viktor 2 1 Egyetemi docens, PhD; 2 tudományos segédmunkatárs 1 Eletrotechnikai és Elektronikai Tanszék, Miskolci Egyetem

Részletesebben

Az idegrendszeri memória modelljei

Az idegrendszeri memória modelljei Az idegrendszeri memória modelljei A memória típusai Rövidtávú Working memory - az aktuális feladat Vizuális, auditórikus,... Prefrontális cortex, szenzorikus területek Kapacitás: 7 +-2 minta Hosszútávú

Részletesebben

Növelhető-e a hazai szélerőmű kapacitás energiatárolás alkalmazása esetén?

Növelhető-e a hazai szélerőmű kapacitás energiatárolás alkalmazása esetén? Növelhető-e a hazai szélerőmű kapacitás energiatárolás alkalmazása esetén? Okos hálózatok, okos mérés konferencia Magyar Regula 2012 2012. március 21. Hartmann Bálint, Dr. Dán András Villamos Energetika

Részletesebben

Csoportosított adatok megjelenítése sorhalmaz függvények használatával

Csoportosított adatok megjelenítése sorhalmaz függvények használatával Csoportosított adatok megjelenítése sorhalmaz függvények használatával Célkitűzés A használható sorhalmaz függvények azonosítása A sorhalmaz függvények használatának leírása Adatok csoportosítása a GROUP

Részletesebben

3. Térvezérlésű tranzisztorok

3. Térvezérlésű tranzisztorok 1 3. Térvezérlésű tranzisztorok A térvezérlésű tranzisztorok (Field Effect Transistor = FET) működési elve alapjaiban eltér a bipoláris tranzisztoroktól. Az áramvezetés mértéke statikus feszültséggel befolyásolható.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata

Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának

Részletesebben

Esettanulmányok és modellek 1 Termelésprogramozás az iparban

Esettanulmányok és modellek 1 Termelésprogramozás az iparban Esettanulmányok és modellek Termelésprogramozás az iparban Készítette: Dr. Ábrahám István Egyszerű termelésprogramozási feladatok.) gép felhasználásával kétféle terméket állítanak elő. Az egyes termékekhez

Részletesebben

INFORMATIKAI ALAPISMERETEK

INFORMATIKAI ALAPISMERETEK 0611 ÉRETTSÉGI VIZSGA 2006. május 18. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Általános megjegyzések: Ha egy

Részletesebben

Conjoint-analízis példa (egyszerűsített)

Conjoint-analízis példa (egyszerűsített) Conjoint-analízis példa (egyszerűsített) Az eljárás meghatározza, hogy a fogyasztók a vásárlás szempontjából lényeges terméktulajdonságoknak mekkora relatív fontosságot tulajdonítanak és megadja a tulajdonságok

Részletesebben

G Szabályfelismerés 2.2. 2. feladatcsomag

G Szabályfelismerés 2.2. 2. feladatcsomag ÖSSZEFÜÉSEK Szabályfelismerés 2.2 Alapfeladat Szabályfelismerés 2. feladatcsomag összefüggés-felismerő képesség fejlesztése szabályfelismeréssel megkezdett sorozat folytatása a felismert szabály alapján

Részletesebben

Kooperáció és intelligencia

Kooperáció és intelligencia Kooperáció és intelligencia Tanulás többágenses szervezetekben/2 Tanulás több ágensből álló környezetben -a mozgó cél tanulás problémája (alapvetően megerősítéses tanulás) Legyen az ágens közösség formalizált

Részletesebben

Feladatlap. I. forduló

Feladatlap. I. forduló Feladatlap a Ki Mit Tud a statisztika világáról szakmai versenyhez I. forduló 2010. szeptember 14. 1. feladat (12 pont) A vállalkozás beszerzéseinek adatai Mennyiség Egységár (Ft/db) (db) megoszlása (%)

Részletesebben

Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok

Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok Debreceni Egyetem Informatikai Kar Fazekas István Neurális hálózatok Debrecen, 2013 Szerző: Dr. Fazekas István egyetemi tanár Bíráló: Dr. Karácsony Zsolt egyetemi docens A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0103

Részletesebben

SAP JAM. Felhasználói segédlet

SAP JAM. Felhasználói segédlet SAP JAM Felhasználói segédlet Belépés A JAM modul az SAP SuccessFactors rendszer része. Tökéletesen biztonságos online rendszer. Felhasználónév és jelszó segítségével lehet bejelentkezni. Böngészőbe beírva

Részletesebben

Fordítóprogramok Készítette: Nagy Krisztián

Fordítóprogramok Készítette: Nagy Krisztián Fordítóprogramok Készítette: Nagy Krisztián Reguláris kifejezések (FLEX) Alapelemek kiválasztása az x karakter. tetszőleges karakter (kivéve újsor) [xyz] karakterhalmaz; vagy egy x, vagy egy y vagy egy

Részletesebben

Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6. Alapműveletek

Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6. Alapműveletek Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6 A tömbök deklarálásakor Pascal és C/C++ nyelvekben minden esetben meg kell adni az indexelést (Pascal) vagy az elemszámot (C/C++).

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 5 ÉRETTSÉGI VIZSG 05. október. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ EMBERI ERŐFORRÁSOK MINISZTÉRIM Egyszerű, rövid

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög

Részletesebben

Korszerű geodéziai adatfeldolgozás Kulcsár Attila

Korszerű geodéziai adatfeldolgozás Kulcsár Attila Korszerű geodéziai adatfeldolgozás Kulcsár Attila Nyugat-Magyarországi Egyetem Geoinformatikai Főiskolai Kar Térinformatika Tanszék 8000 Székesfehérvár, Pirosalma -3 Tel/fax: (22) 348 27 E-mail: a.kulcsar@geo.info.hu.

Részletesebben

Felépítettünk egy modellt, amely dinamikus, megfelel a Lucas kritikának képes reprodukálni bizonyos makro aggregátumok alakulásában megfigyelhető szabályszerűségeket (üzleti ciklus, a fogyasztás simítottab

Részletesebben

Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek!

Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek! 1 Mindannyiunk életében előfordulnak jelentős évek, amikor is egy-egy esemény hatására a sorsunk új irányt vesz. Bár ezen események többségének ott és akkor kevésbé tulajdonítunk jelentőséget, csak idővel,

Részletesebben

Tisztelt Hallgatók! Jó tanulást kívánok, üdvözlettel: Kutor László

Tisztelt Hallgatók! Jó tanulást kívánok, üdvözlettel: Kutor László Tisztelt Hallgatók! Az alábbi anyaga arra ó, hogy lehessen tudni, mi tartozik egy-egy kérdéshez. Ami itt olvasható, az a éghegy csúcsa. Ha alapos tudást akarnak, a éghegy alát önállóan kell hozzá gyűteniük.

Részletesebben

Javítóvizsga témakörei matematika tantárgyból

Javítóvizsga témakörei matematika tantárgyból 9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő

Részletesebben

A robbanékony és a gyorserő fejlesztésének elmélete és módszerei

A robbanékony és a gyorserő fejlesztésének elmélete és módszerei A robbanékony és a gyorserő fejlesztésének elmélete és módszerei Tihanyi József Semmelweis Egyetem, Testnevelési és Sporttudományi Kar (TF) Biomechanika, Kineziológia és informatika tanszék Budapest, 2014.

Részletesebben

Ablakok használata. 1. ábra Programablak

Ablakok használata. 1. ábra Programablak Ha elindítunk egy programot, az egy Ablakban jelenik meg. A program az üzeneteit szintén egy újabb ablakban írja ki számunkra. Mindig ablakokban dolgozunk. Az ismertetett operációs rendszer is az Ablakok

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIM Elektronikai alapismeretek

Részletesebben

Neurális hálózatok MATLAB programcsomagban

Neurális hálózatok MATLAB programcsomagban Debreceni Egyetem Informatikai Kar Neurális hálózatok MATLAB programcsomagban Témavezető: Dr. Fazekas István Egyetemi tanár Készítette: Horváth József Programtervező informatikus Debrecen 2011 1 Tartalomjegyzék

Részletesebben

A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban.

A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. E II. 6. mérés Műveleti erősítők alkalmazása A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. A mérésre való felkészülés

Részletesebben

Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl Sándor. Hőközlés.

Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl Sándor. Hőközlés. MŰSZAKI HŐTAN II.. ZÁRTHELYI Adja meg az Ön képzési kódját! N Név: Azonosító: Terem Helyszám: K - Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl

Részletesebben

Reiz Beáta. 2006 április

Reiz Beáta. 2006 április Babes - Bolyai Tudomány Egyetem Matematika Informatika Kar Informatika Szak 2006 április 1 2 (GM) Definíció: olyan gráf, melynek csomópontjai valószínűségi változók élei ezen változók közti függőségi viszonyokat

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév

Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.

Részletesebben

EDC gyors üzembe helyezési útmutató

EDC gyors üzembe helyezési útmutató EDC gyors üzembe helyezési útmutató ALAPFUNKCIÓK Az útmutató az EDC szervó meghajtó alapvető funkcióival ismerteti meg a felhasználót, és segítséget nyújt az üzembe helyezés során. Az útmutató az alábbi

Részletesebben

Milyen segítséget tud nyújtani a döntéshozatalban a nem-hagyományos jelfeldolgozás?

Milyen segítséget tud nyújtani a döntéshozatalban a nem-hagyományos jelfeldolgozás? Milyen segítséget tud nyújtani a döntéshozatalban a nem-hagyományos jelfeldolgozás? Vasmű Néhány tipikus feladat rendszermodellezés irányítás oxygen components (parameters) System Neural model temperature

Részletesebben

XII. LABOR - Fuzzy logika

XII. LABOR - Fuzzy logika XII. LABOR - Fuzzy logika XII. LABOR - Fuzzy logika A gyakorlat célja elsajátítani a fuzzy logikával kapcsolatos elemeket: fuzzy tagsági függvények, fuzzy halmazmveletek, fuzzy következtet rendszerek felépítése,

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Prezentáció és íráskészségfejlesztés. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Prezentáció és íráskészségfejlesztés. tanulmányokhoz I. évfolyam GM és PSZ szak BA TANTÁRGYI ÚTMUTATÓ Prezentáció és íráskészségfejlesztés tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Prezentáció és íráskészség

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,

Részletesebben

B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását. B.Q1.A a víz ph-ja = [0,25 pont]

B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását. B.Q1.A a víz ph-ja = [0,25 pont] B feladat : Ebben a kísérleti részben vizsgáljuk, Összpontszám: 20 B1: a tej pufferkapacitását B2: a tej fehérjéinek enzimatikus lebontását B3: a tej kalciumtartalmának meghatározását B1 A tej pufferkapacitása

Részletesebben

Számrendszerek közötti átváltások

Számrendszerek közötti átváltások Számrendszerek közötti átváltások 10-es számrendszerből tetszőleges számrendszerbe Legyen az átváltani kívánt szám: 723, 10-es számrendszerben. Ha 10-esből bármilyen számrendszerbe kívánunk átváltani,

Részletesebben

Tanulás az idegrendszerben

Tanulás az idegrendszerben Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Funkcióvezérelt modellezés Abból indulunk ki, hogy milyen feladatot valósít meg a rendszer Horace Barlow: "A

Részletesebben

Orvosi diagnosztikai célú röntgenképfeldolgozás

Orvosi diagnosztikai célú röntgenképfeldolgozás Orvosi diagnosztikai célú röntgenképfeldolgozás Önálló labor zárójegyzkönyv Lasztovicza László VII. évf. vill. szakos hallgató 2002. Konzulens: dr. Pataki Béla docens Méréstechnika és Információs Rendszerek

Részletesebben

Lineáris algebra és a rang fogalma (el adásvázlat, 2008. május 29.) Maróti Miklós

Lineáris algebra és a rang fogalma (el adásvázlat, 2008. május 29.) Maróti Miklós Lineáris algebra és a rang fogalma (el adásvázlat, 2008. május 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest feletti

Részletesebben

Mintavételező és tartó áramkörök

Mintavételező és tartó áramkörök 8. Laboratóriumi gyakorlat Mintavételező és tartó áramkörök 1. A dolgozat célja A mintavételező és tartó (Sample and Hold S/H) áramkörök működésének vizsgálata, a tároló kondenzátor értékének és minőségének

Részletesebben

Algoritmuselmélet. Keresés, rendezés, buborék, beszúrásos, összefésüléses, kupacos, láda, radix. Katona Gyula Y.

Algoritmuselmélet. Keresés, rendezés, buborék, beszúrásos, összefésüléses, kupacos, láda, radix. Katona Gyula Y. Algoritmuselmélet Keresés, rendezés, buborék, beszúrásos, összefésüléses, kupacos, láda, radix Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

Variációk egy témára - táblázatkezelő feladatok megoldása többféleképpen

Variációk egy témára - táblázatkezelő feladatok megoldása többféleképpen Variációk egy témára - táblázatkezelő feladatok megoldása többféleképpen Fehérné Mázsár Gabriella (femaga@index.hu) A gondolkodás fejlesztésének a programozás mellett a másik nagyon hatékony lehetősége

Részletesebben

Többfelhasználós adatbázis környezetek, tranzakciók, internetes megoldások

Többfelhasználós adatbázis környezetek, tranzakciók, internetes megoldások Többfelhasználós adatbázis környezetek, tranzakciók, internetes megoldások Alkalmazás modellek Egy felhasználós környezet Több felhasználós környezet adatbázis Központi adatbázis adatbázis Osztott adatbázis

Részletesebben

Lineáris algebra jegyzet

Lineáris algebra jegyzet Lineáris algebra jegyzet Készítette: Jezsoviczki Ádám Forrás: Az előadások és a gyakorlatok anyaga Legutóbbi módosítás dátuma: 2011-12-04 A jegyzet nyomokban hibát tartalmazhat, így fentartásokkal olvasandó!

Részletesebben

Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat) f(x) = 2x 2 x 4. 2x 2 x 4 = 0, x 2 (2 x 2 ) = 0.

Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat) f(x) = 2x 2 x 4. 2x 2 x 4 = 0, x 2 (2 x 2 ) = 0. Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat). Feladat. Végezzük el az f(x) = x x 4 ) Értelmezési tartomány: x R. ) A zérushelyet az f(x) = 0 egyenlet megoldásával kapjuk: amiből

Részletesebben

Számítógép hálózatok gyakorlat

Számítógép hálózatok gyakorlat Számítógép hálózatok gyakorlat 9. Gyakorlat Forgalomirányítás 2016.04.13. Számítógép hálózatok gyakorlat 1 Forgalomirányítás szerepe Példa: Forrás: 192.168.1.1 Cél: 192.168.2.1 2016.04.13. Számítógép hálózatok

Részletesebben

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 5 V. BECsLÉsELMÉLET 1. STATIsZTIKAI becslés A becsléselméletben gyakran feltesszük, hogy a megfigyelt mennyiségek független valószínűségi

Részletesebben

Kötvények és részvények értékelése

Kötvények és részvények értékelése Az eszközök értékelése Cél: A befektetési döntések pénzügyi megítélése Vállalati pénzügyek 1 7-8. előadás Kötvények és részvények értékelése Összehasonlítani a befektetés jövőbeli jövedelmeit a befektetés

Részletesebben

Kerékpárlabda kvalifikációs szabályzat

Kerékpárlabda kvalifikációs szabályzat Kerékpárlabda kvalifikációs szabályzat Érvényesség kezdete: Junior kategória 2016 június 1 Felnőtt kategória 2016 január 1 Tartalom I. Célja... 3 II. Szabályozás... 3 1) A versenyek meghatározása... 3

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 12 KRISTÁLYkÉMIA XII. KÖTÉsTÍPUsOK A KRIsTÁLYOKBAN 1. KÉMIAI KÖTÉsEK Valamennyi kötéstípus az atommag és az elektronok, illetve az elektronok egymás közötti

Részletesebben

xdsl Optika Kábelnet Mért érték (2012. II. félév): SL24: 79,12% SL72: 98,78%

xdsl Optika Kábelnet Mért érték (2012. II. félév): SL24: 79,12% SL72: 98,78% Minőségi mutatók Kiskereskedelmi mutatók (Internet) Megnevezés: Új hozzáférés létesítési idő Meghatározás: A szolgáltatáshoz létesített új hozzáféréseknek, az esetek 80%ban teljesített határideje. Mérési

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Az idősorelemzés alapjai Gánics Gergely 1 gergely.ganics@freemail.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Tizedik előadas Tartalom 1 Alapfogalmak, determinisztikus és sztochasztikus megközelítés

Részletesebben

Neurális hálózatok.... a gyakorlatban

Neurális hálózatok.... a gyakorlatban Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.

Részletesebben

MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla

MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális

Részletesebben

2009.11.12 ECO-LOG-ING. Simon László

2009.11.12 ECO-LOG-ING. Simon László EGY MAGYARORSZÁGI ÉLELMISZERGYÁRTÓ ÜZEM TERMELÉSÉNEK ÉS TERMELÉS- KISZOLGÁLÁSÁNAK SZIMULÁCIÓS VIZSGÁLATA, TAPASZTALATAI 2009.11.12 ECO-LOG-ING Simon László AZ ELŐADÁS VÁZLATA Pár szó a modellezésről Az

Részletesebben

0 1 0 2 Z Á G A N U D

0 1 0 2 Z Á G A N U D Házi gáznyomásszabályozók aktuális kérdései DUNAGÁZ szakmai napok 2010 Készítette: Kiss Tibor 1 Témák Zárt térbe telepíthetı nyomásszabályozók Elıírások Megoldások Javaslat mőszaki megoldás típusok Lefúvató

Részletesebben