FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI"

Átírás

1 FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 12

2 XII. STATIsZTIKA ellenőrző feladatsorok 1. FELADATsOR Megoldások: láthatók nem láthatók 1. minta: 6.10, 0.01, 6.97, 6.03, 3.85, 1.11, 4.03, 4.76, 2.02, 1.55, 4.11, 6.64, 4.55, 4.82, 5.19, 1.62, 3.39, 4.59, 1.34, 2.96, 3.20, 6.92, 1.71, 3.50, 1.22, 0.32, 3.33, 6.07, 2.76, 5.83, 3.49, 4.01, 0.80, 5.36, 0.53, 2. minta: 1.63, 1.60, 2.26, 7.60, 1.94, 6.90, 4.66, 3.64, 4.24, 8.35, 6.13, 4.21, -1.73, 3.08, 4.44, 3.95, 13.32, 1.48, 6.60, 4.80, 9.48, -0.78, 6.34, -3.95, 3.55, 7.59, -3.15, 0.16, 3.14, 2.36, 2.73, 9.14, -3.06, 9.98, 2.87, 1.70, , -1.49, 2.82, 3. minta: 1.74, 0.10, 2.25, 0.35, 0.69, 0.26, 0.13, 0.19, 0.38, 0.11, 4.02, 0.32, 0.72, 0.57, 1.28, 0.40, 2.29, 0.33, 0.62, 0.99, 1.74, 5.25, 1.24, 0.12, 0.97, 0.45, 2.31, 2.11, 1.26, 2.48, 0.73, 0.49, 0.43, 0.96, 0.33, 0.04, 0.31, 0.24, 1. Az 1. minta esetén határozza meg a mediánt! 2. Az 1. minta esetén határozza meg a medián abszolút eltérést! 3. A 2. minta esetén határozza meg az átlagot! 4. A 2. minta esetén határozza meg a tapasztalati szórás négyzetet! 5. Készítsen 0.95 valószínűségű (kétoldali) konfidenciaintervallumot a várható értékre a 2. minta esetén. Adja meg az 6. Készítsen 0.95 valószínűségű (kétoldali) konfidenciaintervallumot a szórásnégyzetre a 2. minta esetén. Adja meg az 7. a 0.56 valószínűséghez kvantilis becslést a 3. minta alapján! 8. az 1. minta a intervallumon egyenletes eloszlású, akkor becsülje meg a paramétert! 9. hogy az 1. minta a intervallumon egyenletes eloszlású! Adja meg a statisztika értékét, ha az osztályok száma öt! 10. előző statisztika értékhez adja meg a -eloszlás kritikus értékét 0.95-ös szinten! Írja le a döntést is! 11. A 3. minta esetén határozza meg a korrigált tapasztalati szórást! 12. A 3. minta esetén adja meg a szórási együtthatót! 13. a 3. minta exponenciális eloszlású, akkor becsülje meg a paramétert! 14. hogy a 3. minta exponenciális eloszlású! Adja meg a statisztika értékét, ha az osztályok száma négy! 15. előző statisztika értékhez adja meg a -eloszlás kritikus értékét 0.99-es szinten! Írja le a döntést is!

3 16. hogy a 2. minta normális eloszlású! Adja meg a statisztika értékét, ha az osztályok száma öt! 17. előző statisztika értékhez adja meg a -eloszlás kritikus értékét 0.95-ös szinten! Írja le a döntést is! 18. a 2. és a 3. minta szórása? Adja meg az statisztika értékét! Írja le a döntést is, ha a próba szintje 0.95! 19. Adott a következő hét pont: (-0.35, 2.79), ( 1.42, 5.47), ( 3.11, 6.93), ( 4.06, 9.59), ( 4.89,11.37), ( 4.73,12.60), ( 6.49,14.51), Becsülje meg a regressziós egyenes meredekségét! 20. Az előző feladatban kapott egyenesnek adja meg az ún. -tengelymetszetét! Megoldások: FELADATsOR Megoldások: láthatók nem láthatók 1. minta: 2.18, 0.95, 2.23, 2.19, 2.80, 1.35, 1.99, 2.05, 1.16, 1.81, 0.77, 2.32, 0.22, 1.87, 1.44, 0.29, 0.14, 0.35, 2.79, 0.97, 1.20, 2.49, 1.04, 0.07, 2.48, 0.28, 0.08, 3.03, 2.31, 2.08, 0.27, 1.83, 2.00, 1.59, 1.41, 0.84, 1.69, 0.12, 1.21, 0.21, 1.33,

4 2. minta: 1.52, 2.85, 1.22, 5.97, 4.52, 1.45, 1.90, -4.80, 1.24, 9.40, -2.49, -0.04, 5.04, -3.33, -1.49, 5.53, 1.49, 6.42, 1.63, 8.27, 1.62, -1.63, -6.47, 3.58, 1.96, 6.32, -2.34, -7.38, -1.07, 2.59, -1.64, 0.99, 1.57, 3. minta: 0.18, 8.75, 0.63, 0.54, 0.37, 0.30, 0.59, 4.77, 2.13, 0.49, 1.95, 1.17, 6.07, 2.76, 1.09, 0.22, 2.05, 0.46, 4.59, 3.71, 1.56, 0.47, 4.39, 1.04, 3.18, 6.10, 1.04, 0.52, 2.17, 1.26, 2.35, 2.08, 3.36, 1. Az 1. minta esetén határozza meg a mediánt! 2. Az 1. minta esetén határozza meg a medián abszolút eltérést! 3. A 2. minta esetén határozza meg az átlagot! 4. A 2. minta esetén határozza meg a tapasztalati szórás négyzetet! 5. Készítsen 0.95 valószínűségű (kétoldali) konfidenciaintervallumot a várható értékre a 2. minta esetén. Adja meg az 6. Készítsen 0.95 valószínűségű (kétoldali) konfidenciaintervallumot a szórásnégyzetre a 2. minta esetén. Adja meg az 7. a 0.41 valószínűséghez kvantilis becslést a 3. minta alapján! 8. az 1. minta a intervallumon egyenletes eloszlású, akkor becsülje meg a paramétert! 9. hogy az 1. minta a intervallumon egyenletes eloszlású! Adja meg a statisztika értékét, ha az osztályok száma öt! 10. előző statisztika értékhez adja meg a -eloszlás kritikus értékét 0.95-ös szinten! Írja le a döntést is! 11. A 3. minta esetén határozza meg a korrigált tapasztalati szórást! 12. A 3. minta esetén adja meg a szórási együtthatót! 13. a 3. minta exponenciális eloszlású, akkor becsülje meg a paramétert! 14. hogy a 3. minta exponenciális eloszlású! Adja meg a statisztika értékét, ha az osztályok száma négy! 15. előző statisztika értékhez adja meg a -eloszlás kritikus értékét 0.99-es szinten! Írja le a döntést is! 16. hogy a 2. minta normális eloszlású! Adja meg a statisztika értékét, ha az osztályok száma öt! 17. előző statisztika értékhez adja meg a -eloszlás kritikus értékét 0.95-ös szinten! Írja le a döntést is! 18. a 2. és a 3. minta szórása? Adja meg az statisztika értékét! Írja le a döntést is, ha a próba szintje 0.95! 19. Adott a következő hét pont: ( 1.28, 2.60), ( 2.02, 4.67), ( 3.49, 6.41), ( 4.56, 8.26), ( 4.21,11.07), ( 5.61,13.11), ( 6.92,14.62), Becsülje meg a regressziós egyenes meredekségét! 20. Az előző feladatban kapott egyenesnek adja meg az ún. -tengelymetszetét! Megoldások:

5 FELADATsOR Megoldások: láthatók nem láthatók 1. minta: 3.72, 6.61, 0.90, 1.37, 1.43, 6.19, 6.21, 0.81, 4.95, 0.84, 5.91, 0.61, 0.17, 0.52, 4.95, 5.78, 3.11, 2.78, 1.92, 3.08, 1.13, 4.97, 1.72, 6.48, 0.14, 1.81, 1.16, 5.41, 5.06, 2.44, 0.80, 2.66, 3.33, 1.60, 3.00, 1.30, 0.79, 2. minta: -3.80, 5.08, 5.58, -1.59, -0.96, -6.37, , -7.77, 6.42, -0.93, 4.46, -3.79, -3.00, 2.27, -4.61, -2.36, , 1.87, 7.21, 0.50, -3.79, 3.09, 0.31, -7.86, -5.13, 13.19, -4.08, 2.37, -8.04, 2.12, -1.55, -1.02, 6.21, 2.41, , -4.31, -6.36, 3. minta: 1.37, 0.95, 0.66, 0.60, 0.38, 0.10, 1.91, 0.69, 0.59, 1.07, 4.82, 0.69, 0.70, 0.09, 0.27, 1.43, 0.93, 0.74, 0.99, 0.35, 3.81, 1.80, 0.10, 0.20, 1.91, 0.62, 1.33, 0.57, 2.77, 0.09, 1.08, 0.28, 3.43, 0.95, 0.34, 0.13, 0.30, 0.24, 1.48, 1.07, 0.56, 1.93, 1.28, 1.45, 0.41, 0.59, 0.60, 1. Az 1. minta esetén határozza meg a mediánt! 2. Az 1. minta esetén határozza meg a medián abszolút eltérést! 3. A 2. minta esetén határozza meg az átlagot!

6 4. A 2. minta esetén határozza meg a tapasztalati szórás négyzetet! 5. Készítsen 0.95 valószínűségű (kétoldali) konfidenciaintervallumot a várható értékre a 2. minta esetén. Adja meg az 6. Készítsen 0.95 valószínűségű (kétoldali) konfidenciaintervallumot a szórásnégyzetre a 2. minta esetén. Adja meg az 7. a 0.75 valószínűséghez kvantilis becslést a 3. minta alapján! 8. az 1. minta a intervallumon egyenletes eloszlású, akkor becsülje meg a paramétert! 9. hogy az 1. minta a intervallumon egyenletes eloszlású! Adja meg a statisztika értékét, ha az osztályok száma öt! 10. előző statisztika értékhez adja meg a -eloszlás kritikus értékét 0.95-ös szinten! Írja le a döntést is! 11. A 3. minta esetén határozza meg a korrigált tapasztalati szórást! 12. A 3. minta esetén adja meg a szórási együtthatót! 13. a 3. minta exponenciális eloszlású, akkor becsülje meg a paramétert! 14. hogy a 3. minta exponenciális eloszlású! Adja meg a statisztika értékét, ha az osztályok száma négy! 15. előző statisztika értékhez adja meg a -eloszlás kritikus értékét 0.99-es szinten! Írja le a döntést is! 16. hogy a 2. minta normális eloszlású! Adja meg a statisztika értékét, ha az osztályok száma öt! 17. előző statisztika értékhez adja meg a -eloszlás kritikus értékét 0.95-ös szinten! Írja le a döntést is! 18. a 2. és a 3. minta szórása? Adja meg az statisztika értékét! Írja le a döntést is, ha a próba szintje 0.95! 19. Adott a következő hét pont: (0.80, 2.69), (2.25, 5.00), (2.86, 7.06), (4.14, 8.93), (5.25,11.03), ( 6.12,12.89), ( 7.13,14.97), Becsülje meg a regressziós egyenes meredekségét! 20. Az előző feladatban kapott egyenesnek adja meg az ún. -tengelymetszetét! Megoldások:

7 Digitális Egyetem, Copyright Fegyverneki Sándor, 2011

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 5 V. BECsLÉsELMÉLET 1. STATIsZTIKAI becslés A becsléselméletben gyakran feltesszük, hogy a megfigyelt mennyiségek független valószínűségi

Részletesebben

Sz ekelyhidi L aszl o Val osz ın us egsz am ıt as es matematikai statisztika *************** Budapest, 1998

Sz ekelyhidi L aszl o Val osz ın us egsz am ıt as es matematikai statisztika *************** Budapest, 1998 Székelyhidi László Valószínűségszámítás és matematikai statisztika *************** Budapest, 1998 Előszó Ez a jegyzet a valószínűségszámításnak és a matematikai statisztikának azokat a fejezeteit tárgyalja,

Részletesebben

Statisztika 2016. március 11. A csoport Neptun kód

Statisztika 2016. március 11. A csoport Neptun kód Statisztika 2016. március 11. A csoport Név Neptun kód 1. Egy közösségben az élelmiszerre fordított kiadások az alábbiak szerint alakultak: osszeg (ezer Ft) csalad(db) 20 7 20:1 30 12 30:1 40 20 40:1 50

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. PÉNZÜGYI ÉS SZÁMVITELI KAR MESTERKÉPZÉSI ÉS TÁVOKTATÁSI KÖZPONT 1149 BUDAPEST, BUZOGÁNY U. 10-12. : 06-1-469-6600 I. évfolyam TANTÁRGYI ÚTMUTATÓ Gazdasági matematika II. 2013/2014. II. félév PÉNZÜGYI ÉS

Részletesebben

Kispesti Deák Ferenc Gimnázium

Kispesti Deák Ferenc Gimnázium 4 Kispesti Deák Ferenc Gimnázium Az Önök iskolájára vontakozó egyedi adatok táblázatokban és grafikonokon 1. osztály matematika 1 Standardizált átlagos képességek matematikából Az Önök iskolájának átlagos

Részletesebben

Kispesti Deák Ferenc Gimnázium

Kispesti Deák Ferenc Gimnázium 4 Kispesti Deák Ferenc Gimnázium Az Önök iskolájára vontakozó egyedi adatok táblázatokban és grafikonokon 1. osztály szövegértés 1 Standardizált átlagos képességek szövegértésből Az Önök iskolájának átlagos

Részletesebben

FIT-jelentés :: 2013. Zoltánfy István Általános Iskola 6772 Deszk, Móra F. u. 2. OM azonosító: 200909 Telephely kódja: 005. Telephelyi jelentés

FIT-jelentés :: 2013. Zoltánfy István Általános Iskola 6772 Deszk, Móra F. u. 2. OM azonosító: 200909 Telephely kódja: 005. Telephelyi jelentés FIT-jelentés :: 2013 6. évfolyam :: Általános iskola Zoltánfy István Általános Iskola 6772 Deszk, Móra F. u. 2. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon

Részletesebben

FIT-jelentés :: 2012. Intézményi jelentés. Összefoglalás

FIT-jelentés :: 2012. Intézményi jelentés. Összefoglalás FIT-jelentés :: 2012 Összefoglalás Német Nemzetiségi Gimnázium és Kollégium, Deutsches Nationalitätengymnasium und Schülerwohnheim 1203 Budapest, Serény u. 1. Összefoglalás Az intézmény létszámadatai Tanulók

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu 1. oldal 7. előadás Becslések és minta elemszámok 7-1 Áttekintés 7-2 A populáció arány becslése 7-3 A populáció átlag

Részletesebben

WALTER-LIETH LIETH DIAGRAM

WALTER-LIETH LIETH DIAGRAM TBGL0702 Meteorológia és klimatológia II. Bíróné Kircsi Andrea Egyetemi tanársegéd DE Meteorológiai Tanszék [ C] A diagram fejlécében fel kell tüntetni: - az állomás nevét, - tengerszint feletti magasságát,

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika II. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika II. tanulmányokhoz I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika II. tanulmányokhoz TÁVOKTATÁS 2014/2015-ös tanév II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika II. (Valószínűségszámítás)

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

8. fejezet. Tartalom. Kockázat és hozam MODERN VÁLLALATI PÉNZÜGYEK

8. fejezet. Tartalom. Kockázat és hozam MODERN VÁLLALATI PÉNZÜGYEK Richard A. Brealey Stewart C. Myers MODERN VÁLLALATI PÉNZÜGYEK 8. fejezet Kockázat és hozam Panem, 2005 A diákat jészítette: Matthew Will 8-2 Tartalom Markowitz portfólióelmélete A kockázat és a hozam

Részletesebben

FIT-jelentés :: 2014. Intézményi jelentés. 8. évfolyam

FIT-jelentés :: 2014. Intézményi jelentés. 8. évfolyam FIT-jelentés :: 2014 Hőgyészi Hegyhát Általános Iskola, Gimnázium, Alapfokú Művészeti Iskola és Kollégium 7191 Hőgyész, Fő utca 1-3. Létszámadatok A telephelyek kódtáblázata A 002 - Hőgyészi Hegyhát Általános

Részletesebben

FIT-jelentés :: 2009. Szász Ferenc Kereskedelmi Szakközépiskola és Szakiskola 1087 Budapest, Szörény u. 2-4. OM azonosító: 035418. Intézményi jelentés

FIT-jelentés :: 2009. Szász Ferenc Kereskedelmi Szakközépiskola és Szakiskola 1087 Budapest, Szörény u. 2-4. OM azonosító: 035418. Intézményi jelentés FIT-jelentés :: 2009 Szász Ferenc Kereskedelmi Szakközépiskola és Szakiskola 1087 Budapest, Szörény u. 2-4. Létszámadatok A telephelyek kódtáblázata A 001 - Szász Ferenc Kereskedelmi Szakközépiskola és

Részletesebben

FIT-jelentés :: 2009. Széchenyivárosi Óvoda és Általános Iskola 6000 Kecskemét, Lunkányi János u. 10. OM azonosító: 200922. Intézményi jelentés

FIT-jelentés :: 2009. Széchenyivárosi Óvoda és Általános Iskola 6000 Kecskemét, Lunkányi János u. 10. OM azonosító: 200922. Intézményi jelentés FIT-jelentés :: 2009 Széchenyivárosi Óvoda és Általános Iskola 6000 Kecskemét, Lunkányi János u. 10. Létszámadatok A telephelyek kódtáblázata A 001 - Széchenyivárosi Óvoda és Általános Iskola Arany János

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x

Részletesebben

4. előadás. Statisztikai alkalmazások, Trendvonalak, regresszió. Dr. Szörényi Miklós, Dr. Kallós Gábor

4. előadás. Statisztikai alkalmazások, Trendvonalak, regresszió. Dr. Szörényi Miklós, Dr. Kallós Gábor 4. előadás Statisztikai alkalmazások, Trendvonalak, regresszió Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Statisztikai alapfogalmak Populáció, mérési skálák, hisztogram Alapstatisztikák:

Részletesebben

Sokféle matematikai és ezen kívül többféle kifejezetten statisztikai programcsomag

Sokféle matematikai és ezen kívül többféle kifejezetten statisztikai programcsomag Kiss Gábor Õri István Matematika-tanítás Excel programcsomaggal Mintafeladatokon keresztül mutatjuk meg az Excel lehetőségeit a valószínűség-számítás, a statisztika és a lineáris algebra tanításában. Természetesen

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,

Részletesebben

3. Egy szabályos dobókockát kétszer feldobva mennyi annak a valószínűsége, hogy a dobott számok különbségének abszolutértéke nagyobb mint 4?

3. Egy szabályos dobókockát kétszer feldobva mennyi annak a valószínűsége, hogy a dobott számok különbségének abszolutértéke nagyobb mint 4? 1. Kombinatorikus valószínűség 1. Egy dobókockát kétszer feldobunk. a) Írjuk le az eseményteret! b) Mennyi annak a valószínűsége, hogy az első dobás eredménye nagyobb, mint a másodiké?. Mennyi a valószínűsége

Részletesebben

Azonosító jel: Matematika emelt szint

Azonosító jel: Matematika emelt szint I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012

Részletesebben

Kockázatkezelés és biztosítás

Kockázatkezelés és biztosítás Kockázatkezelés és biztosítás Dr. habil. Farkas Szilveszter PhD egyetemi docens, tanszékvezető Pénzügy Intézeti Tanszék Témák 1. Kockáztatott eszközök 2. Károkozó tényezők (vállalati kockázatok) 3. Holisztikus

Részletesebben

ű Ö ű ű Ú Ú ű

ű Ö ű ű Ú Ú ű ű Ö ű ű Ú Ú ű Á Á Ö Ö Ö Ö Ö Ö Á Ö Á Á Á Ú Á Á Á Á Ö ű ű Á ű ű ű Ö Ö Á Á Á Á Á ű Ú Ö ű Ú Ú ű Ú Á Á ű ű ű ű ű ű Á ű ű Á Á Ő Á Á Á Á Á Á Ö Á ű ű Ö Ö ű Ú Ö Ú ű Ú ű ű ű ű ű Ö Á Ú ű Á Ö Á Ú Á Á Á Á Á Á Ö Ö Á

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 7. MA3-7 modul. Helyzetmutatók, átlagok, kvantilisek

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 7. MA3-7 modul. Helyzetmutatók, átlagok, kvantilisek Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 7. MA3-7 modul Helyzetmutatók, átlagok, kvantilisek SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Puskás Tivadar Távközlési Technikum

Puskás Tivadar Távközlési Technikum 27 Puskás Tivadar Távközlési Technikum Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam szakközépiskola matematika Előállítás ideje: 28.3.6. 6:48:31 197 Budapest,

Részletesebben

MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY

MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Másodfokú egyenletek. Ismétlés 1. óra: Másodfokú egyenletek,

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 8. MA3-8 modul. A szórás és a szóródás egyéb mérőszámai

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 8. MA3-8 modul. A szórás és a szóródás egyéb mérőszámai Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 8. MA3-8 modul A szórás és a szóródás egyéb mérőszámai SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

ü ű ö Á ö Ü Ú Ö Á Á ö ő ö ö ö ű ű ö ő ő ö ő ü Ú ú ü ö ö ő Ö ö ő ö ő ő ö ú ö ő ő ö ö ú ö ő ö ö ő ö ö ő ö ő ö Ö ö ö ö ő ö ő ö ö ö ü ű ö ö ő ö ö ű ö ő ö ö ű ö ü ö ö ö ő ö ö ő ű ö ö ü ű ö ö ő ö ö ü ő ő ő ő

Részletesebben

Dr. BALOGH ALBERT: AZ ÚJ STATISZTIKAI TERMINOLÓGIA

Dr. BALOGH ALBERT: AZ ÚJ STATISZTIKAI TERMINOLÓGIA Dr. BALOGH ALBERT: AZ ÚJ STATISZTIKAI TERMINOLÓGIA 1 Az ISO 3534-1 és 3534-2: 2006 szabványok ismertetése Az ISO 3534 szabványsorozat- Szótár és jelölések- tagjai: 1. ISO 3534-1: Statisztikai és fogalmak(2006)

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 11. Hipotézisvizsgálat, statisztikai tesztek Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés Hipotézis, hibák 2 Statisztikai tesztek u-próba

Részletesebben

ú ú ú ű ú ú ú ú ú ú ú ű ú ú ű ű ű ú ú ú ú Ó ú ú ú ú Ü Ü Ü ú ű ű ú ú ú ú ú ű ű ú ú ű ú ű ú ú ű ú Ö Ö Ú Ü Ö ű ű ú ű ű ű ú ű ű ú ű ú ű ú ú ú ú ú ú ú ú ú ű ú ű ú ű ű Ú ú ű ú ú ú Ó ú ú ú ú ű ű ű ú ú ú ú ű ű

Részletesebben

Ü Ú ű ö ö ö Ú ű Ú ö ö Ú Ü ö ű ű ö ö ö Ü ö ö Ü ö ö Ú ö Ú ö Ü Ú ö Ú ö Ü Ú Ú Ú ö ö ö Ú ö ű ö ö ö Ó ö ö ö ö ö ö ű ö ö Ö ö ű ű ö Ó ö ö Ú ö ö Ú Ó ÓÚ ö ö ö ö Ó Ú ű Ú ö ö ö ö ö ö ö ű ö ö ö ö ö ö ö ö ö ö ö ö ű

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu 1. oldal 6. Előadás A normális eloszlás 6-3 A normális eloszlás alkalmazásai 6-4 Statisztikák eloszlása és becslő függvények

Részletesebben

ő ö ü ö ű ö Ó ű ő ő ő ő ú Ó ő ő ö ő ö Ó Ó ő Ó ő Ó ö ő ö Ó ő ő ő ö ő ö ő ö Ó ö ő ű ő ö Ó ö Ó Ó Ó Ó ö ő ö ő ü ö Ó Ó ő ü ő ö Ó ő ö ő ö ő ő ö Ö ö ö ő ő ő ö ő ö ő Ó ő ö ő ő ő ö ő ő ő ö ő ő Ó ö ő ő ü ő ö ü ő

Részletesebben

Mérési hibák 2007.02.22. 1

Mérési hibák 2007.02.22. 1 Mérési hibák 007.0.. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák/ Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség általánosított

Részletesebben

ű ű ű ű ű Ü ű ű Ü Ő

ű ű ű ű ű Ü ű ű Ü Ő ű ű ű Ú ű ű ű ű ű Ü ű ű Ü Ő Ö Ó ű ű ű Ö Ö ű ű Ö Ü ű ű ű Ó ű ű Ö ű Ö Ú Ú ű ű Ú ű ű ű ű ű ű Ö ű ű Ö ű ű ű ű ű ű ű ű ű ű ű Ü Ü ű ű ű Ú ű ű Ö Ö Ü Ó ű Ú Ó Ó ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü Ü ű Ü ű ű ű ű ű ű Ó ű

Részletesebben

ü ü ő ő ü ő ü ő ü Ü ü Ő ő Ú ü ő Ü ü Ú Ó ű Ú Ó Ú Ó Ú ő Ú Ó Ó Ú Ó ű Ú Ó Ú Ó ő Ö Ú Ó Ó Ú Ó Ó ő Ö Ú Ó Ú Ó Ő Ő Ö ő ő Ő Ü Ó Ü ü Ő Ó ő ő ő ő Ó Ü ü ű ő Ó ő Ü ü ő ő ü Ú Ó Ő Ó ő Ő ű ő ü Ú Ú Ö Ö ő ő ő Ö Ő Ő ő ő ű

Részletesebben

MELLÉKLET. A parancsikonok használata: Fıkomponens- és faktorelemzés. I.1. 2.1.: A fıkomponens- és a faktorelemzés indítása.

MELLÉKLET. A parancsikonok használata: Fıkomponens- és faktorelemzés. I.1. 2.1.: A fıkomponens- és a faktorelemzés indítása. MELLÉKLET A parancsikonok használata: Fıkomponens- és faktorelemzés I.1. 2.1.: A fıkomponens- és a faktorelemzés indítása 426 Túlélıkészlet az SPSS-hez I.1. 2.2.: Fıkomponens- és faktorelemzés fımenü elsı

Részletesebben

1. Nyomásmérővel mérjük egy gőzvezeték nyomását. A hőmérő méréstartománya 0,00 250,00 kpa,

1. Nyomásmérővel mérjük egy gőzvezeték nyomását. A hőmérő méréstartománya 0,00 250,00 kpa, 1. Nyomásmérővel mérjük egy gőzvezeték nyomását. A hőmérő méréstartománya 0,0 250,0 kpa, pontossága 3% 2 osztás. Mekkora a relatív hibája a 50,0 kpa, illetve a 210,0 kpa értékek mérésének? rel. hiba_tt

Részletesebben

ö ö ö ö ő ö ö ő ö ő ő ő ö ö ő ő ö ö ő ő ű ű ő ő ö ű ő ö ö ő ö ő ö ú ő ö ű ű ő ő ö ű ő ö ö ű ű ő ö ű ő ö ö ű ű ű ű ű ű ű ö ű ő É ö ú ö ö ö ö Ő ö ö ö ö ő ö ö ő ö ö ő ö ö ő ű ö ö ö ö ö ö ő Ö ő ö ö ő ö ő ö

Részletesebben

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium

Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium 26 Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam gimnázium szövegértés Előállítás ideje: 27.3.. 12:28:21

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály 5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,

Részletesebben

A mérési eredmény hibája

A mérési eredmény hibája HIBASZÁMÍTÁS A mérési eredmény hibája A mérési eredmény hibája Hiba: A kísérlet jól meghatározott (reprodukálható) körülmények között játszódik le, lefolyását azonban sok apró, külön-külön nehezen figyelembe

Részletesebben

A fiatalok pénzügyi kultúrája Számít-e a gazdasági oktatás?

A fiatalok pénzügyi kultúrája Számít-e a gazdasági oktatás? A fiatalok pénzügyi kultúrája Számít-e a gazdasági oktatás? XXXII. OTDK Konferencia 2015. április 9-11. Készítette: Pintye Alexandra Konzulens: Dr. Kiss Marietta A kultúrától a pénzügyi kultúráig vezető

Részletesebben

á ú é é ő é ő á ő ő á á ú ű é é ö ő á ő ú ő ő á é Ü Ü á é á é á é á é á ö ö á é ő á ú ű é é á é é ő á ö ö á á é é ú é é ú á á ő é é é ö ö á á é ű ő á é ű ő ú ő á á é á ú é é á é ö á á ö Ü á á é é ú á á

Részletesebben

ű ú ü ö ö ü ö ö ö ú ü ü ö ö ö ú ö ö ü ű ö ö ö ö ü ö ö ü ö ö ú ö ü ö ü ü ü ú ö ö ü ö ü ü ö Ó ü ű ö ö ü ö ü ö ú ö ö ö ö ű ú ú ű ö ö ü ö ö ö ö ü ú ö ü ö ü ü ö ú ü ü ü ű ú ö ü ö ö ö ü ö ü ú ö ö ö ü Ú ű ü ö

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép és készülékszerelő

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.

MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3. MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik

Részletesebben

ő Ö ő ó ő ó ő ő ó ő ő ő ó ő ú ó ő ú ő ú ő ő ú ó ő ő ú ő ő ő ú ú ű ú ő ó ő ű ó ő ő ú ő ő ő ú ú ő ó ű ő ő Ö úú ő ó ú Ö ó ó ő ő Ö ó ú ő ő ő ú ő ó ő ó Ö ó ú Ű ő ő ó ő ő ó ő ú Ö ú Ö ő ő ú ú ő ő ú ú ó ó ő ó

Részletesebben

É ö ü ú ü ö ú ö ü ö ü ú ü ű ü ü ö ö ö ú ü ö ü ü ö ü ü ü ü ü Ü ü ö ú ü ü ö ö ö ö ö ö ö ö ö ö ö ö ö ö ü ö ü ö ü ö ö ú ö ü ö ü ö ö ö ú ö ö ö ö ú ú ö ü ö ü ú ü Ú É ö ö ö ö ö ú ö ű ö ű ö ú ö ö ú Ú ü ö ö ö ö

Részletesebben

A jelenség magyarázata. Fényszórás mérése. A dipólus keletkezése. Oszcilláló dipólusok. A megfigyelhető jelenségek. A fény elektromágneses hullám.

A jelenség magyarázata. Fényszórás mérése. A dipólus keletkezése. Oszcilláló dipólusok. A megfigyelhető jelenségek. A fény elektromágneses hullám. Fényszórás mérése A jelenség magyarázata A megfigyelhető jelenségek A fény elektromágneses hullám. Az elektromos tér töltésekre erőhatást fejt ki. A dipólus keletkezése Dipólusok: a pozitív és a negatív

Részletesebben

ú ú ú Ú ú ú ő ő ú ű ú ő ő ú ő ú ő ő Ó Ó ő ű ő ő ú ő Ó Ó ú ú ú Ú ü ú ú ő Ü ü ő ü ő ő ú ú ő ő ú ő ő ü ü ú ő ű ü ő ő Ü ű ű ű ű ú ü ü ő ú Ö ű ű ő ú Ü ú ü ő ú ő ü ő ű Á Ü Ó Ó ű ü Ü ü ú Ü ő ő ő ő ő ő ő ü Ü ü

Részletesebben

31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló

31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria 005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

É Ú ű Ö ű ű ű ű ű Ü ű ű ű ű ű Ú Ü ű Ú Ö ű ű Ö ű ű ű ű ű ű ű ű ű ű ű ű ű ű ű ű Ö ű ű ű ű ű ű ű ű Ö Ö ű É ű Ö ű Ö Ú Ó ű ű Ü Ú ű É Ó ű ű ű Ö ű ű É ű É É Ö É É É É É Ö Ö É Ú É Ó Ú É É Ö Ö Ö ű Ó ű Ö ű ű ű ű

Részletesebben

Ú Ó ö Ő ö Ú Ú Ó Á Á ü ő ö Ú Ú Ó ű ő ő ő ő ü Á ö ü ö ö ő Ó Á Á ő Á Ú ö Ó Ű Ú Ó ű Á ő ő ő ö Ú ö ű ö ö ö ő Ó Á Á ű ű ö ü ű ü Á Á ű ű ö ü ű ü ü ö ü ő ü Ó Ó ő ő ő ő ű ö ő ű ü Á Á ő ü ő Ú Ó ü ö ő ő ö ő ö ö ő

Részletesebben

ő ő Ü ü Á ú ú ü ú ú ü ú ü ú ú ü ő ú Á ü ú Á ü ü ü ú Á Á Ó Ü ő ü ú ú ú ü ű ú Ü ü ű Ü ú Á ú Ó ő ü Ú ú Á ő ő ú ű Á ú ü ő Á ú ú Á ú Á ú Ü Á Ö ú ú ő ő ú ű ü ő Á ő Ú ü Ö Á Á Á Á ő Ü Ö ü Ú Ö Á Á ú ő Ú Á Á ü

Részletesebben

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége Dr. Balogh Albert: A statszta adatfeldolgozás éháy érdeessége Kérdése:. Hogya becsüljü a tapasztalat eloszlásfüggvéyt? 2. M az a redezett mta? 3. M az a medá rag és mlye becslése vaa?. Hogya becsüljü a

Részletesebben

Ü Ú Ú Á Á Ő É é ö é é é é é ü ö é é é é é é é é é é ö é ö ö ö é é é é é é ö é é é é ö é ű é é é ö é é é é éé ö é éö é é ö é é é é ö é ű é é é ö ö é é é é é ö é ö é é ö ö é ö é é é é é é ü é é ö é é é é

Részletesebben

ő ú ö ű ő ö ő ö ö ö ű ö ö ű

ő ú ö ű ő ö ő ö ö ö ű ö ö ű ő ú ő ö ő ő ü ö ő ú ú ú ő ú ő ö ő ö ő ö ö ő ő ö ö ö ö ö ő ö ú ö ő ő ő ö ö ö ű ő ő ő ö ö ö ö ö ö ú ő ö ö ő ö ő ő ü ő ő ő ö ő ú ő ő ö ő ö ő ő ő ö ő ő ö ö ö ö ő ú ö ö ő ő ö ü ő ú ö ű ő ö ő ö ö ö ű ö ö ű Ő

Részletesebben

ű ű ű ű ű ű Ú ű ű ű ű ű ű ű ű Ú ű ű ű Ú ű ű ű ű Ó ű ű ű ű Ü É ű ű ű ű ű ű ű ű ű ű ű ű Ú É ű ű ű É Ó Ú Ó Ü Ő Ó Ó ű É ű ű ű É ű É ű ű ű ű Ö Ü ű ű ű ű ű ű ű ű ű ű ű ű É ű É É ű Ö ű ű ű ű É ű ű ű ű ű ű ű Ö

Részletesebben

Feladatok diszkriminancia anaĺızisre

Feladatok diszkriminancia anaĺızisre Feladatok diszkriminancia anaĺızisre. A normált Fisher-féle lineáris diszkriminancia függvény a osztály esetén használatos alakja: az osztályozási kritérium: Lx c µ µ T Σ x µ ahol c µ T Σ µ µ ha Lx > Lµ

Részletesebben

ö ó É ó Ú ÜÉ ó ö ó ó ö É ó ó ó ó Ü ó ó É ó ó Ú ó ő Úó É ö ó Ü ó ó ó ó Ú ó Ü ó É Ó ő ó ó ó ó ö É ö ó ó Ü ó É ö ó ó ó É ó É Ü ó ó ö ú Ö É Ú É Ü É ó ó ó Ü ó Ü ő É Ö Ó É ó ó ó ó ó ó ó ó ó ö ó Ó ő ö ó ó ó ó

Részletesebben

É Ő ú ú Ü Ú Ü ú Ü Ú Ú Ú Ü Ü Ú ű Ü ú É Ü Ü Ü Ú ú ű Ü Ü Ü ű ű Ü Ü ú Ú ű Ü ű Ú ű Ü ű Ú Ü É É ű É É É É É Ü Ü Ü É ÉÉ Ö ú É É É É ÉÉ É É É ű ú Ó Ö ú Ó Ö ú Ó ú ú Ü Ü ú É É É Ö Ö Ö Ó Ü Ú Ó É É É É Ü Ú Ó Ő Ó ú

Részletesebben

11. Matematikai statisztika

11. Matematikai statisztika 11. Matematikai statisztika 11.1. Alapfogalmak A statisztikai minta valamely valószínűségi változóra vonatkozó véges számú független kisérlet eredménye. Ez véges sok, azonos eloszlású valószínűségi változó

Részletesebben

Ö É ű Ú ő Ú ő ű ő ő ő ű Ü ő Ú Ú Ú Ú Ú ű Ü É ű ő ő Ú Ú É Ú ő Ú ő Ú ő É ő Ó É ő ű ű ő ő ő Ó Ú Ó ő ő Ü ő ő ű Ü Ú Ú Ü Ú Ó Ú Ú Ü Ü Ü ő Ö Ö É É É É É É Ó ő ő ű ő ű ű ű ő ő Ú É Ú É Ü űé É Ú ő ő É ő Ü ő ű É É

Részletesebben

Ú É ő ő ő ő ő Ú É ő ő ő ő ű ű ő ő ő ő ő ű ű ő ő ő Ú ő Ú É É Ú Ú ű ű ő ő É ő Ó ű ű ő ő ű ő É Ó Ü ő ű ő ő ű ő ű Ó É É Ó Ü Ü ő Ú Ü É É Ú É É ő É Ú É Ó É Ü ő ő Ú É ő ő ű ő ű Ú ő Ü É Ú É ő ő É É ű ő Ú É Ü ű

Részletesebben

Á ö ö ö ö ö ű ö ű ö ö ú ö ö ö ö ö ö ö ú ü ö ö ü ü ö ü ö ú ö ö ú ű Á Ú ű Á ö ö ú ű Á ú ű Á ö ö ú ü ö ú ö ú ú ú ú ú ú ú ö ö ö ú Á Á Á Á ú Á ö ö Á ö Á ö Á ú Á Á ö Á ű Á ú Á Á ö Á Á ú ö ü ö ö ö ö ű ö ü Í ö

Részletesebben

ú ü Ü Ö ü ő ő ő Ú Ú Ö Ú

ú ü Ü Ö ü ő ő ő Ú Ú Ö Ú Ö Ö Ö Ö Ö Ö Ö Ö ő Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö Ö ő Ö Ö ú ü Ü Ö ü ő ő ő Ú Ú Ö Ú Ű ú ő ő Ó ő Ó Ő ú Ü Ü ő ű ű Ö ű ű ú Ú ű ő ű ő Ö ő Ö Ü ü ő ü ő ü ü ű ú ü ű ú Ö Ó ű ú ű ű ú ű Ö ő ő ő ő ű Ó ü ű Ö Ö Ö Ö ü Ú ú ő ü ő

Részletesebben

Ö Ü Ú Ö ű ű Ö ű ű ű ű Ú

Ö Ü Ú Ö ű ű Ö ű ű ű ű Ú Ö ű ű Ö ű Ó Ó Ö Ü Ú Ö ű ű Ö ű ű ű ű Ú ű Ó ű ű ű ű ű ű ű ű ű ű ű Ó Ó ű ű ű ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ö Ó ű ű Ü ű ű Ü ű Ö ű Ú Ü Ú ű ű Ü ű ű ű ű ű ű ű Ö Ö ű ű ű Ó ű Ö Ö Ü ű Ö ű ű ű ű ű ű ű ű Ö ű ű ű

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIM Elektronikai alapismeretek

Részletesebben

É ü ü ű ü Ü ü É É ü Ó Ú É É Ö É Ó ű ű ű ű ü ű ü ü Ú ü ű ü ü ű ü Ó ü ü ü ű ü ü ü ü ü ü Ö Ü ű ü ü ü ü ű ü ü É ű ü ü ü ü ű Ü Ö É ü ü ü ü É ü ü ü É ü ű ű ü ü ü ü ü ű ü ü ü Ó ü ü ű ű ü ü ü ü ü ü É ű ü É Ó ü

Részletesebben

Í ű ű ő ő Á Ü Ü Ü Ü Í ü Í Í ő ü ü Ü ő ő Ü ő Ü ő ű ö ő Ü ő ö ő ő ú ö ő ű ö ű ü ű ö ö ő ő ö ő ú ő ö ö ő Ü ő ö ö ő Á Ü Ú Ü Ü ÍÍ Ü ú ú ü Ü ü ő Ü ő Ü ö ő ö ő ü ö ő ő ú ö ő ő ű ö ö ű ö ü ű ö ö ő ő ö ő ú ő Í

Részletesebben

ő ü Ú ö ő ü ö ü Ó ú ő ő Ú ő Ú ő ü ü ő ő ö ö ő ü ő ő ő ő Ü Ö ü ő Ú ő ü ü ő ö ü ö ö ő ö ö ő ö ő ú ő ő ú ü Ú Ó ű ö ő Ü Ő ö ő ő ö ö ü ő ő ü ő ő ö ö Ö ü ü Ő ő ü ő ú ő ő ö ő ö ú ö ő ö ő ü ú ő ő ő ő ő ő ü Ú ö

Részletesebben

É É ö ű ő ő ü ö ü ö Í ú ö ö ö ö ú ö ü ö ö ö ö ö ü ö ö ő ö ö ö ő ő ú ö ö ő ő ő ő ü ő ő ö ő ö ö ö ő ú ő ö ö ü ö ö ö ő ú ö ö ő ő ő ő ű ú ő ö ő ő ő ő ü ő ő ö ú Ü ő Í ö ö ö ö ő ő ő ö ö ö ö ö ü Í ö ő ő ő ő ö

Részletesebben

Ü ű í í Í ű í í í ű í Í í í í ú Ü Ü í É í ű í Í Ö Í ú ű Ö í ú ű í Ö í É í í í í É Ö É É Ö í í Í É í Ö í í í í ú ú ú í ú í ú É í í í í í Ö í í É í í Ö í í í í í í í í í í í í í Ö Ö Ö í í ú Í Ö Ö í í í

Részletesebben