Feladatok diszkriminancia anaĺızisre

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Feladatok diszkriminancia anaĺızisre"

Átírás

1 Feladatok diszkriminancia anaĺızisre. A normált Fisher-féle lineáris diszkriminancia függvény a osztály esetén használatos alakja: az osztályozási kritérium: Lx c µ µ T Σ x µ ahol c µ T Σ µ µ ha Lx > Lµ ha Lx Lµ akkor az x megfigyelést az. osztályba soroljuk akkor az x megfigyelést a. osztályba soroljuk; b k osztály esetén használatos általános alakja: Lx L T x 3 ahol L l... l s a Σ B pozitív sajátértékeihez tartozó l T i Σl i -re normált jobboldali sajátvektoraiból álló mátrix k B a csoportok közötti négyzetösszeg mátrix : B µ i µ µ i µ T i az osztályozási kritérium: ha Lx L µ j min i...k Lx L µ i akkor az x megfigyelést az i. osztályba soroljuk feltesszük hogy az egyes osztályokban folytonosak az eloszlásfüggvények így valószínűséggel egyértelmű a minimumot adó index. Mutassuk meg hogy k esetén a diszkriminancia függvény két alakja előjeltől eltekintve ugyanazt a függvényt adja! Mutassuk meg hogy a két osztályozási kritérium is ugyanaz! Megoldás : Σ Σ p p a két osztálybeli eloszlás közös szórásnégyzet mátrixa µ és µ a két várhatóérték vektor µ µ + µ a teljes eloszlás várhatóérték vektora. A B definíciójába behelyettesítve µ-t: B µ µ µ µ T + µ µ µ µ T µ µ µ µ T. A teljes eloszlás itt az egyes osztálybeli eloszlások azonos tehát /k... /k súlyokkal vett keveréke azaz az a priori eloszlás most diszkrét egyenletes.

2 Mivel rangσ B rangb a Σ B-nek egy pozitív sajátértéke van tehát s azaz az L mátrix most egy oszlopvektor. Azt kell megmutatni hogy k -re a 3-beli L vektor és az -beli c Σ µ µ oszlopvektor ± tényezőtől eltekintve ugyanaz. Mivel Σ B cσ µ µ µ µ T Σ µ µ Σ µ µ µ µ T Σ µ µ λ c Σ µ µ ahol λ /c továbbá c Σ µ µ T Σ c Σ µ µ c µ µ T Σ µ µ az -beli l. c Σ µ µ tényleg az l T Σl módon normált jobboldali sajátvektora Σ B-nek így előjeltől eltekintve meg kell hogy egyezzen a a 3-beli L vektorral. Az osztályozási kritérium a b-beli diszkrimiminancia függvény használata azaz általános k esetén de most speciálisan k -re leírva: ha Lx L µ < Lx L µ ha Lx L µ Lx L µ akkor az x megfigyelést az. osztályba soroljuk akkor az x megfigyelést a. osztályba soroljuk. Mivel most az L függvény értéke a számegyenesen van Lx L µ < Lx L µ µ + µ Lx > L Lµ tehát az a-beli és a b-beli osztályozási kritérium k -re ugyanaz. Megjegyzés : Az előző feladatbeli ekvivalencia triviális ha azt is tanultuk hogy az a -beli és a b -beli diszkriminancia függvény is az osztály várhatóértékeket legjobban elkülönítő szórásnégyzetű lineáris függvény azaz mindkettő előjeltől eltekintve az ami maximalizálja a i E i l T ξ El T ξ E i l T ξ El T ξ T i l T T l T µ i l T µ l T µ i l T µ i T µ i µ µ i µ l l T B l kvadratikus formát a D l T ξ l T Σ l feltétel mellett.

3 . Fisher-féle lineáris diszkriminancia anaĺızis két osztály esetén Két azonos szórásnégyzet mátrixú kétdimenziós eloszlásból származó adatmátrix: X 3 X a Számoljuk ki a normált Fisher-féle tapasztalati lineáris diszkriminancia függvényt! b Az x 0 7 T megfigyelés melyik osztályba tartozik a Fisher-féle diszkriminancia kritérium szerint? c Normális eloszlásokat és azonos a priori osztályvalószínűségeket feltételezve az x 0 7 T megfigyelés esetén becsüljük az a poszteriori osztályvalószínűségeket! d Normális eloszlásokat és azonos a priori osztályvalószínűségeket feltételezve becsüljük a hibás osztályba sorolás valószínűségét! e Generáljunk SPSS-sel egy-egy n n 999 elemű mintát N µ Σ ill. N µ Σ eloszlásból ahol µ µ és Σ a fenti X és X mintákból becsült várhatóérték vektorok és közös szórásnégyzetmátrix! Az Analyze. Classify. Discriminant eljárással ellenőrizzük hogy jó eredményt adtunk-e az a b c d részekre! Segítség: tananyagnak adjuk meg a generált két osztálybeli megfigyelést egy oszlopba egy másik oszlopba pedig a osztályt mutató változót. Az x 0 -t az. sorba írjuk be de természetesen osztályt ne adjunk meg hozzá! Megoldás : Az előző feladatbeli a módszert használjuk ez ui. valamivel egyszerűbb a b-nél. a Σ x 3 6 T x 5 8 T x 7 T n Sn 3 n Sn 3 6 n S n + n S n n + n x ĉ x T Σ x x Σ T A normált Fisher-féle tapasztalati lineáris diszkriminancia függvény: Lx l T x ĉ x x T Σ x x 0x x. b Mivel Lx L 7 T < L 7 T Lx 0 a osztályozási kritérium szerint az x 0 7 T megfigyelés az. osztályba tartozik. 3

4 c Vezessük be a következő eseményeket: Az a priori osztályvalószínűségek egyenlők azaz Az. ill. a. osztályban az eloszlások: A i. { x0 az i-edik osztályba tartozik } i. P A P A. x N µ Σ ill. x N µ Σ így az Lx l T x lineáris diszkriminancia függvény x-beli értékének eloszlásai az. ill. a. osztályba tartozó x esetén: Lx l T x N l T µ l T Σl N l T µ ill. Lx l T x N l T µ l T Σl N l T µ. A Bayes-tétel szerint az a poszteriori osztályvalószínűségek : P A Lx 0 f Nl T µ lt x 0 P A f Nl T µ i lt x 0 P A i i e l T x 0 µ e l T x 0 µ i i e l T x 0 µ e l T x 0 µ i i + e l T x 0 µ l T x 0 µ. A paraméterek helyére a becslésüket helyettesítve megkapjuk az a poszteriori osztályvalószínűségek becsléseit: P A Lx0 + e l T x 0 x P A Lx l Tx 0 x + e e d Legyen A i. { x az. osztályba tartozik } i. A hibás osztályba sorolás feltételes valószínűsége egy. osztálybeli x esetén: P x -et a. osztályba soroljuk A P Lx Lµ A P Lx L µ Lµ L µ A miatt Φ Lµ L µ Φ c µ µ T Σ µ µ Φ c

5 és szimmetria okok miatt ugyanennyi annak a valószínűsége hogy x -et az. osztályba soroljuk feltéve hogy a. osztályba tartozik. Így a teljes valószínűség tétellel a hibás osztályba sorolás valószínűsége: Φ /c. A paraméterek helyére beírva a becsléseiket a hibás osztályba sorolás az adott 3 3 megfigyelésből becsült valószínűségére a következőt kapjuk: Φ e Az SPSS program: c Φ ĉ Φ Φ get file c:\temp\spssinput.sav /renamevar0000x. n compute x rv.normal0. compute x rv.normal0. matrix. get X /variablesx x. compute Sigma ;. call eigensigmavlambdav. compute AV*sqrtmdiaglambdav. compute XX*transposA. save X /outfile c:\temp\xmatrix. end matrix. get file c:\temp\xmatrix /renamecol colx x. /* A tananyag:. osztály a megfigyelesekbol all; /*. osztály az utana kovetkezo 999 megfigyeles; /* az. helyet szabadon hagyjuk a besorolando megfigyelesnek: do if <$casenum & $casenum<5000. compute osztaly. compute xx+3. compute xx+6. else if $casenum>5000. compute osztaly. compute xx+5. compute xx+8. end if. /* A besorolando megfigyeles: do if $casenum. /* az osztaly valtozo erteke a hianyzo ertek compute x. compute x7. end if. /* A kovetkezo parancsban a /statisticsraw ekvivalens a /*... Statistics. Function Coefficients. Unstandardized /* menu beallitassal ui. a masik lehetoseg a Fisher s az eredeti /* valtozokat standardizalja a diszkriminancia analizis elott: discriminant /groupsosztaly /variablesx x /analysis all /priors equal /statisticsraw crossvalid /plotcases0 /classifynonmissing pooled. 5

6 Az output vonatkozó részei: Canonical Discriminant Function Coefficients Function X.03 X -.08 Constant Unstandardized coefficients az l nekünk l 0 jött ki de az előjelnek itt nincs értelme Casewise Statistics Original Case Number Actual Group Highest Group Predicted PD>d Gg PGg Group p df Dd Squared Mahalanobi s Distance to Centroid ungrouped Az x 0 7 T megfigyelés az osztályozási kritérium szerint az. osztályba kerül. Az. osztályba tartozás az. osztály a poszteriori valószínűségének becslése az x 0 7 T megfigyelés esetén: Classification Results bc Original Cross-validated a Count % Count % CSOPORT Ungrouped cases Ungrouped cases Predicted Group Membership Total a. Cross validation is done only for those cases in the analysis. In cross validation each case is classified by the functions derived from all cases other than that case. b. 8.% of original grouped cases correctly classified. c. 8.% of cross-validated grouped cases correctly classified. a jó osztályba sorolás valószínűsége Házi feladat : Az előző feladat megoldásában nem pontosan a maximum likelihood-becsléseket kaptuk. Mi ennek az oka? Hogy lehetne a maximum likelihood-becsléseket megkapni? Segítség: Mi a Σ maximum likelihood-becslése [normális eloszlás esetén ahogy a feladatban feltettük]? Használjuk a maximum likelihood-becslés invarianciáját! 6

7 3. Fisher-féle lineáris diszkriminancia anaĺızis több osztály esetén Három azonos szórásnégyzet mátrixú kétdimenziós eloszlásból származó adatmátrix: X 0 X 0 X a Számoljuk ki a Fisher-féle tapasztalati lineáris diszkriminancia függvényt! b Az x 0 3 T megfigyelés melyik osztályba tartozik a Fisher-féle diszkriminancia kritérium szerint? c Normális eloszlásokat és azonos a priori osztályvalószínűségeket feltételezve becsüljük az a poszteriori osztályvalószínűségeket az x 0 3 T megfigyelés esetén! d Generáljunk SPSS-sel három egyenként n n n elemű mintát N µ Σ N µ Σ ill. N µ 3 Σ eloszlásból ahol µ µ µ 3 és Σ a fenti X X és X 3 mintákból becsült várhatóérték vektorok és közös szórásnégyzet mátrix! Az Analyze. Classify. Discriminant eljárással ellenőrizzük hogy jó eredményt adtunk-e az a b c részekre! Segítség: tananyagnak adjuk meg a generált három osztálybeli megfigyelést egy oszlopba egy másik oszlopba pedig az osztályt mutató változót. Az x 0 -t az. sorba írjuk be de természetesen osztályt ne adjunk meg hozzá! e Ábrázoljuk a generált megfigyelést és a diszkriminancia kritériumok által meghatározott tartományokat! Megoldás : A Fisher-módszer k osztály esetén az. feladat b-beli módszer. x x x x 3 n Sn n Sn 8 n 3 Sn Σ n S n + n S n + n 3 S n3 3 n + n + n Σ B 3 i Σ B 35 x i x x i x T

8 A Σ B sajátértékei: Σ 75 det B λi 35 det λ λ λ 6 35 λ a hozzájuk tartozó l T Σ l -re normált jobboldali sajátvektorok: l l λ 5.73 λ.809 Az ezekből álló mátrix adja a Fisher-féle tapasztalati lineáris diszkriminancia függvényt: Lx L T x x azaz L x l T x 0.385x x L x l T x 0.938x 0.x az. lineáris diszkriminancia függvény a. lineáris diszkriminancia függvény. b Lx L x L x L x Lx 0 L x Lx 0 L x Lx 0 L x

9 Tehát Lx 0 L x -hez van a legközelebb így az x 0 3 T szerint a. osztályba tartozik. c Vezessük be a következő eseményeket: a Fisher-féle diszkriminancia kritérium Az a priori osztályvalószínűségek egyenlők azaz Az. a. ill. a 3. osztályban az eloszlások: A i. { x0 az i-edik osztályba tartozik } i 3. P A P A P A 3. x N µ Σ x N µ Σ ill. x N 3 µ 3 Σ. így az Lx L T x lineáris diszkriminancia függvény x-beli értékének eloszlásai az. a. ill. a 3. osztályba tartozó x esetén : Lx L T x N L T µ L T ΣL N L T µ I Lx L T x N L T µ L T ΣL N L T µ I Lx L T x N L T µ 3 L T ΣL N L T µ 3 I. A Bayes-tétel szerint az a poszteriori osztályvalószínűségek : P A Lx 0 f N L T µ IL T x 0 P A 3 f N L T µ i IL T x 0 P A i i P A Lx 0 f N L T µ IL T x 0 P A 3 f N L T µ i IL T x 0 P A i i e L T x 0 L T µ 3 e L T x 0 L T µ i i e L T x 0 L T µ 3 e L T x 0 L T µ i i P A 3 Lx 0 P A Lx 0 P A Lx 0. A paraméterek helyére a becslésüket helyettesítve: P A Lx0 L e T x 0 L T x 3 e.09 L T x 0 L T x i + e e 8.3 P A Lx 0 e i e 3 e i L T x 0 L T x e e L T x 0 L T x i + e e 8.3 e P A 3 Lx

10 d Az SPSS program: get file c:\temp\spssinput.sav /renamevar0000x. n compute x rv.normal0. compute x rv.normal0. matrix. get X /variablesx x. compute Sigma{ -/3; -/3 }. call eigensigmavlambdav. compute AV*sqrtmdiaglambdav. compute XX*transposA. save X /outfile c:\temp\xmatrix. end matrix. get file c:\temp\xmatrix /renamecol colx x. /* A tananyag: az. osztaly a megfigyelesekbol all; /* a. osztaly a megfigyelesekbol all; /* a 3. osztaly a megfigyelesekbol all. /* Az. helyet szabadon hagyjuk a besorolando megfigyelesnek: do if <$casenum & $casenum<333. compute osztaly. compute xx-. compute xx+3. else if 3335<$casenum & $casenum<6667. compute osztaly. compute xx+. compute xx+. else if 6668<$casenum. compute osztaly3. compute xx+0. compute xx-. end if. /* A besorolando megfigyeles: do if $casenum. /* Az osztaly valtozo erteke a hianyzo ertek compute x. compute x3. end if. /* A /statisticsraw ekvivalens a /*... Statistics. Function Coefficients. Unstandardized menu beal- /* litassal ui. a masik lehetoseg a Fisher s az eredeti val- /* tozokat standardizalja a diszkriminancia analizis elott: discriminant /groupsosztaly 3 /variablesx x /analysis all /priors equal /statisticsraw /plotcases0 /classifynonmissing pooled. 0

11 Az output vonatkozó részei: Canonical Discriminant Function Coefficients Function X X Constant Unstandardized coefficients L Casewise Statistics Highest Group Second Highest Group Discriminant Scores Original Case Number **. Misclassified case Actual Group Predicted PD>d Gg PGg Group p df Dd Squared Mahalanobi s Distance to Centroid ungrouped ** ** ** Group PGg Dd Squared Mahalanobi s Distance to Centroid Function Function Az x 0 3 T megfigyelés az osztályozási kritérium szerint a. osztályba kerül. A. ill. az. osztályba tartozás a. ill. az. osztály a poszteriori valószínűségeinek becslései az x 0 3 T megfigyelés esetén: ill e Mégegyszer futtassuk le a discriminant parancsot azzal a beálĺıtással amellyel ki lehet menteni a diszkriminancia anaĺızis által készített osztályozást. Az új osztályozást mutató változó neve legyen pl. becsoszt becsült osztály. Ezután ábrázoljuk a 9999 megfigyelést először az eredetileg megadott osztályokra bontva tehát a három normális eloszlású mintát majd a diszkriminancia anaĺızis által készített osztályokat! A program: discriminant /groupscsoport 3 /variablesx x /analysis all /saveclassbecscsop /priors equal /statisticsraw /plotcombined /plotcases0 /classifynonmissing pooled. graph /scatterplotbivarx with x by csoport. graph /scatterplotbivarx with x by becscsop.

12 Ilyen ábrákat kell kapni: CSOPORT 0 Predicted Group for X X X X Házi feladat : Lássuk be hogy az előző feladat megoldásában L T Σ L I azaz egységmátrix!

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 12 XII. STATIsZTIKA ellenőrző feladatsorok 1. FELADATsOR Megoldások: láthatók nem láthatók 1. minta: 6.10, 0.01, 6.97, 6.03, 3.85, 1.11,

Részletesebben

Lineáris algebra jegyzet

Lineáris algebra jegyzet Lineáris algebra jegyzet Készítette: Jezsoviczki Ádám Forrás: Az előadások és a gyakorlatok anyaga Legutóbbi módosítás dátuma: 2011-12-04 A jegyzet nyomokban hibát tartalmazhat, így fentartásokkal olvasandó!

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 5 V. BECsLÉsELMÉLET 1. STATIsZTIKAI becslés A becsléselméletben gyakran feltesszük, hogy a megfigyelt mennyiségek független valószínűségi

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Sz ekelyhidi L aszl o Val osz ın us egsz am ıt as es matematikai statisztika *************** Budapest, 1998

Sz ekelyhidi L aszl o Val osz ın us egsz am ıt as es matematikai statisztika *************** Budapest, 1998 Székelyhidi László Valószínűségszámítás és matematikai statisztika *************** Budapest, 1998 Előszó Ez a jegyzet a valószínűségszámításnak és a matematikai statisztikának azokat a fejezeteit tárgyalja,

Részletesebben

Operációkutatás. 2. konzultáció: Lineáris programozás (2. rész) Feladattípusok

Operációkutatás. 2. konzultáció: Lineáris programozás (2. rész) Feladattípusok Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 00/003 tanév, II évf félév Előadó: Dr Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs u 9 GT fszt 3 (99) 58 640

Részletesebben

2011. március 9. Dr. Vincze Szilvia

2011. március 9. Dr. Vincze Szilvia . márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer

Részletesebben

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége

Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége Dr. Balogh Albert: A statszta adatfeldolgozás éháy érdeessége Kérdése:. Hogya becsüljü a tapasztalat eloszlásfüggvéyt? 2. M az a redezett mta? 3. M az a medá rag és mlye becslése vaa?. Hogya becsüljü a

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu 1. oldal 7. előadás Becslések és minta elemszámok 7-1 Áttekintés 7-2 A populáció arány becslése 7-3 A populáció átlag

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A

Részletesebben

Diszkriminancia-analízis

Diszkriminancia-analízis Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független

Részletesebben

MATLAB. 4. gyakorlat. Lineáris egyenletrendszerek, leképezések

MATLAB. 4. gyakorlat. Lineáris egyenletrendszerek, leképezések MATLAB 4. gyakorlat Lineáris egyenletrendszerek, leképezések Menetrend Kis ZH MATLAB függvények Lineáris egyenletrendszerek Lineáris leképezések Kis ZH pdf MATLAB függvények a szkriptekhez hasonlóan az

Részletesebben

3. Egy szabályos dobókockát kétszer feldobva mennyi annak a valószínűsége, hogy a dobott számok különbségének abszolutértéke nagyobb mint 4?

3. Egy szabályos dobókockát kétszer feldobva mennyi annak a valószínűsége, hogy a dobott számok különbségének abszolutértéke nagyobb mint 4? 1. Kombinatorikus valószínűség 1. Egy dobókockát kétszer feldobunk. a) Írjuk le az eseményteret! b) Mennyi annak a valószínűsége, hogy az első dobás eredménye nagyobb, mint a másodiké?. Mennyi a valószínűsége

Részletesebben

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan

Részletesebben

A döntő feladatai. valós számok!

A döntő feladatai. valós számok! OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és

Részletesebben

MÁTRIXOK SAJÁTÉRTÉKEINEK ÉS SAJÁTVEKTORAINAK KISZÁMÍTÁSA. 1. Definíció alkalmazásával megoldható feladatok

MÁTRIXOK SAJÁTÉRTÉKEINEK ÉS SAJÁTVEKTORAINAK KISZÁMÍTÁSA. 1. Definíció alkalmazásával megoldható feladatok Bevezetés: MÁTRIXOK SAJÁTÉRTÉKEINEK ÉS SAJÁTVEKTORAINAK KISZÁMÍTÁSA Jelölés: A mátrix sajátértékeit λ 1, λ 2, λ 3,.stb. betűkkel, míg a különböző sajátvektorokat x 1, x 2, x 3 stb. módon jelöljük Definíció:

Részletesebben

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák Statisztikai hipotézisvizsgálatok Paraméteres statisztikai próbák 1. Magyarországon a lakosság élelmiszerre fordított kiadásainak 2000-ben átlagosan 140 ezer Ft/fő volt. Egy kérdőíves felmérés során Veszprém

Részletesebben

Illeszkedésvizsgálat

Illeszkedésvizsgálat Slide 1 Illeszkedésvizsgálat (kategória értékű változóra) Freedman: 28. fejezet 1-3. Egy képzeletbeli országban 10M ember lakik: 30% szőke, 10% barna, 60% fekete. Slide 2 N = 200 fős mintát vettünk, a

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria 005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Bevezetés A magas mérési szintű változók adataiból számolhatunk átlagot, szórást. Fontos módszerek alapulnak ezeknek a származtatott paramétereknek

Részletesebben

1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x.

1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x. . Sugár Szarvas fgy., 86. o. S3. feladat Egy antikvárium könyvaukcióján árverésre került 9 könyv licitálási adatai alapján vizsgáljuk a könyvek kikiáltási és ún. leütési ára ezerft közötti sztochasztikus

Részletesebben

Khi-négyzet próbák. Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Khi-négyzet próbák. Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Khi-négyzet próbák Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Khi-négyzet próba Példa Az elleni oltóanyagok különböző típusainak hatását vizsgálták abból a szempontból, hogy

Részletesebben

Esetelemzések az SPSS használatával

Esetelemzések az SPSS használatával Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e

Részletesebben

Mágneses szuszceptibilitás vizsgálata

Mágneses szuszceptibilitás vizsgálata Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x

Részletesebben

Correlation & Linear Regression in SPSS

Correlation & Linear Regression in SPSS Petra Petrovics Correlation & Linear Regression in SPSS 4 th seminar Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Correlation

Részletesebben

Koordináta - geometria I.

Koordináta - geometria I. Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Factor Analysis Factor Analysis Factor analysis is a multiple statistical method, which analyzes the correlation relation between data, and it is for data reduction, dimension reduction and to explore the structure. Aim

Részletesebben

Kooperáció és intelligencia

Kooperáció és intelligencia Kooperáció és intelligencia Tanulás többágenses szervezetekben/2 Tanulás több ágensből álló környezetben -a mozgó cél tanulás problémája (alapvetően megerősítéses tanulás) Legyen az ágens közösség formalizált

Részletesebben

MELLÉKLET. A parancsikonok használata: Fıkomponens- és faktorelemzés. I.1. 2.1.: A fıkomponens- és a faktorelemzés indítása.

MELLÉKLET. A parancsikonok használata: Fıkomponens- és faktorelemzés. I.1. 2.1.: A fıkomponens- és a faktorelemzés indítása. MELLÉKLET A parancsikonok használata: Fıkomponens- és faktorelemzés I.1. 2.1.: A fıkomponens- és a faktorelemzés indítása 426 Túlélıkészlet az SPSS-hez I.1. 2.2.: Fıkomponens- és faktorelemzés fımenü elsı

Részletesebben

ÉS TESZTEK A DEFINITSÉG

ÉS TESZTEK A DEFINITSÉG MÁTRIX DEFINITSÉGÉNEK FOGALMA ÉS TESZTEK A DEFINITSÉG ELDÖNTÉSÉRE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-..1.B-10//KONV-010-0001

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. PÉNZÜGYI ÉS SZÁMVITELI KAR MESTERKÉPZÉSI ÉS TÁVOKTATÁSI KÖZPONT 1149 BUDAPEST, BUZOGÁNY U. 10-12. : 06-1-469-6600 I. évfolyam TANTÁRGYI ÚTMUTATÓ Gazdasági matematika II. 2013/2014. II. félév PÉNZÜGYI ÉS

Részletesebben

- mit, hogyan, miért?

- mit, hogyan, miért? - mit, hogyan, miért? Dr. Bélavári Csilla VITUKI Nonprofit Kft., Minőségbiztosítási és Ellenőrzési Csoport c.belavari@vituki.hu 2011.02.10. 2010. évi záróértekezlet - VITUKI, MECS 1 I. Elfogadott érték

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu 1. oldal 6. Előadás A normális eloszlás 6-3 A normális eloszlás alkalmazásai 6-4 Statisztikák eloszlása és becslő függvények

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Programozás I. - 9. gyakorlat

Programozás I. - 9. gyakorlat Programozás I. - 9. gyakorlat Mutatók, dinamikus memóriakezelés Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer- és Számítástudományi Tanszék Utolsó frissítés: November 9, 2009 1 tar@dcs.vein.hu

Részletesebben

Paraméteres-, összesítı- és módosító lekérdezések

Paraméteres-, összesítı- és módosító lekérdezések Paraméteres-, összesítı- és módosító lekérdezések Kifejezések lekérdezésekben mezıként és feltételként is megadhatjuk. A kifejezés tartalmazhat: adatot - állandót (pl. városlátogatás, 5000, Igen, 2002.07.31.)

Részletesebben

A kvantummechanika általános formalizmusa

A kvantummechanika általános formalizmusa A kvantummechanika általános formalizmusa October 4, 2006 Jelen fejezetünk célja bevezetni egy általános matematikai formalizmust amelynek segítségével a végtelen dimenziós vektorterek elegánsan tárgyalhatók.

Részletesebben

Reiz Beáta. 2006 április

Reiz Beáta. 2006 április Babes - Bolyai Tudomány Egyetem Matematika Informatika Kar Informatika Szak 2006 április 1 2 (GM) Definíció: olyan gráf, melynek csomópontjai valószínűségi változók élei ezen változók közti függőségi viszonyokat

Részletesebben

Jelek tanulmányozása

Jelek tanulmányozása Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás

Részletesebben

ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra

ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:

Részletesebben

MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla

MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális

Részletesebben

Lineáris algebra és a rang fogalma (el adásvázlat, 2008. május 29.) Maróti Miklós

Lineáris algebra és a rang fogalma (el adásvázlat, 2008. május 29.) Maróti Miklós Lineáris algebra és a rang fogalma (el adásvázlat, 2008. május 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest feletti

Részletesebben

Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata

Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának

Részletesebben

TRANZISZTOROS KAPCSOLÁSOK KÉZI SZÁMÍTÁSA

TRANZISZTOROS KAPCSOLÁSOK KÉZI SZÁMÍTÁSA TRNZSZTOROS KPSOLÁSOK KÉZ SZÁMÍTÁS 1. gyenáramú számítás kézi számításokhoz az ábrán látható egyszerű közelítést használjuk: = Normál aktív tartományban a tranzisztort bázis-emitter diódáját az feszültségforrással

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.

MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3. MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik

Részletesebben

MATEMATIKA HETI 3 ÓRA

MATEMATIKA HETI 3 ÓRA EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev

Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev Algebra és számelmélet 3 előadás Relációk Waldhauser Tamás 2014 őszi félév Relációk reláció lat. 1. kapcsolat, viszony; összefüggés vmivel 2. viszonylat, vonatkozás reláció lat. 3. mat halmazok elemei

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Csoportosított adatok megjelenítése sorhalmaz függvények használatával

Csoportosított adatok megjelenítése sorhalmaz függvények használatával Csoportosított adatok megjelenítése sorhalmaz függvények használatával Célkitűzés A használható sorhalmaz függvények azonosítása A sorhalmaz függvények használatának leírása Adatok csoportosítása a GROUP

Részletesebben

Mátrixaritmetika. Tartalom:

Mátrixaritmetika. Tartalom: Mátrixaritmetika Tartalom: A vektor és mátrix fogalma Speciális mátrixok Relációk és műveletek mátrixokkal A mátrixok szorzása A diadikus szorzat. Hatványozás Gyakorlati alkalmazások Készítette: Dr. Ábrahám

Részletesebben

MATEMATIKA FELADATGYŰJTEMÉNY

MATEMATIKA FELADATGYŰJTEMÉNY Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály 5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 080 ÉETTSÉGI VIZSG 009. május. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTÁLIS MINISZTÉIM Egyszerű, rövid feladatok

Részletesebben

Beszámoló: a kompetenciamérés eredményének javítását célzó intézkedési tervben foglaltak megvalósításáról. Őcsény, 2015. november 20.

Beszámoló: a kompetenciamérés eredményének javítását célzó intézkedési tervben foglaltak megvalósításáról. Őcsény, 2015. november 20. Őcsényi Perczel Mór Általános Iskola székhelye: 7143 Őcsény, Perczel Mór utca 1. Tel: 74/496-782 e-mail: amk.ocseny@altisk-ocseny.sulinet.hu Ikt.sz.: /2015. OM: 036345 Ügyintéző: Ősze Józsefné Ügyintézés

Részletesebben

A Hozzárendelési feladat megoldása Magyar-módszerrel

A Hozzárendelési feladat megoldása Magyar-módszerrel A Hozzárendelési feladat megoldása Magyar-módszerrel Virtuális vállalat 2013-2014/1. félév 3. gyakorlat Dr. Kulcsár Gyula A Hozzárendelési feladat Adott meghatározott számú gép és ugyanannyi független

Részletesebben

A MATLAB R programcsomag alkalmazása valószínűségszámítási és statisztikai feladatokhoz. Tóth László

A MATLAB R programcsomag alkalmazása valószínűségszámítási és statisztikai feladatokhoz. Tóth László A MATLAB R programcsomag alkalmazása valószínűségszámítási és statisztikai feladatokhoz Tóth László MATLAB R bevezető 1. MATLAB R bevezető 2. Mátrix létrehozása és invertálása: >> A=[1 2; 3 4] A = 1 2

Részletesebben

1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!

1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! 1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.

Részletesebben

A lineáris tér. Készítette: Dr. Ábrahám István

A lineáris tér. Készítette: Dr. Ábrahám István A lineáris tér Készítette: Dr. Ábrahám István A lineáris tér fogalma A fejezetben a gyakorlati alkalmazásokban használt legfontosabb fogalmakat, összefüggéseket tárgyaljuk. Adott egy L halmaz, amiben azonos

Részletesebben

Funkcionálanalízis az alkalmazott matematikában

Funkcionálanalízis az alkalmazott matematikában EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Simon Péter Funkcionálanalízis az alkalmazott matematikában egyetemi jegyzet A jegyzet az ELTE IK 2010. évi Jegyzettámogatási pályázat támogatásával készült

Részletesebben

Csoport(Cluster) analízis SPSS-el: K-alapú csoport Analízis

Csoport(Cluster) analízis SPSS-el: K-alapú csoport Analízis Csoport(Cluster) analízis SPSS-el: K-alapú csoport Analízis A Cluster(csoport) analízis egy adat osztályozási eljárás amivel adatokat csoportokba lehet elkülöníteni. A cluster analízis célja hogy n számú

Részletesebben

EPER E-KATA integráció

EPER E-KATA integráció EPER E-KATA integráció 1. Összhang a Hivatalban A hivatalban használt szoftverek összekapcsolása, integrálása révén az egyes osztályok, nyilvántartások között egyezőség jön létre. Mit is jelent az integráció?

Részletesebben

E B D C C DD E E g e 112 D 0 e B A B B A e D B25 B B K H K Fejhallgató Antenna A B P C D E 123 456 789 *0# Kijelzés g B A P D C E 0 9* # # g B B 52 Y t ] [ N O S T \ T H H G ? > < p B E E D 0 e B D

Részletesebben

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét!

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! 5. gyakorlat Lineáris leképezések Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! f : IR IR, f(x) 5x Mit rendel hozzá ez a függvény két szám összegéhez? x, x IR, f(x +

Részletesebben

Radon, Toron és Aeroszol koncentráció viszonyok a Tapolcai Tavas-barlangban

Radon, Toron és Aeroszol koncentráció viszonyok a Tapolcai Tavas-barlangban Radon, Toron és Aeroszol koncentráció viszonyok a Tapolcai Tavas-barlangban Kutatási jelentés Veszprém 29. november 16. Dr. Kávási Norbert ügyvezetı elnök Mérési módszerek, eszközök Légtéri radon és toron

Részletesebben

19. Hasításos technikák (hash-elés)

19. Hasításos technikák (hash-elés) 19. Hasításos technikák (hash-elés) Példák: 1. Ha egy telefon előfizetőket a telefonszámaikkal azonosítjuk, mint kulcsokkal, akkor egy ritkán kitöltött kulcstartományhoz jutunk. A telefonszám tehát nem

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc

Parciális differenciálegyenletek numerikus módszerei számítógépes alkalmazásokkal Karátson, János Horváth, Róbert Izsák, Ferenc Karátson, János Horváth, Róbert Izsák, Ferenc numerikus módszerei számítógépes írta Karátson, János, Horváth, Róbert, és Izsák, Ferenc Publication date 2013 Szerzői jog 2013 Karátson János, Horváth Róbert,

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

Programozható irányítóberendezések és szenzorrendszerek ZH. Távadók. Érdemjegy

Programozható irányítóberendezések és szenzorrendszerek ZH. Távadók. Érdemjegy Név Neptun-kód Hallgató aláírása 0-15 pont: elégtelen (1) 16-21 pont: elégséges (2) 22-27 pont: közepes (3) 28-33 pont: jó (4) 34-40 pont: jeles (5) Érzékelők jellemzése Hőmérsékletérzékelés Erő- és nyomásmérés

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics.

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet. Correlation & Linear. Petra Petrovics. Correlation & Linear Regression in SPSS Petra Petrovics PhD Student Types of dependence association between two nominal data mixed between a nominal and a ratio data correlation among ratio data Exercise

Részletesebben

A készülék használata elõtt kérjük olvassa el figyelmesen a használati utasítást.

A készülék használata elõtt kérjük olvassa el figyelmesen a használati utasítást. 7LC048A 7LC048A E B D C C DD E E g e P 112 D 0 e B A B B A e D B26 B B E B D C C DD E E g e P 112 D 0 e B A B B A e D B26 B B K H K K H K A B P C D E 123 456 789 *0# g B A P D C E : 0 9* # # A B P C

Részletesebben

Alkalmazott statisztika Feladatok

Alkalmazott statisztika Feladatok Alkalmazott statisztika Feladatok A feladatokhoz használt adatokat megtaláljátok itt: www.math.u-szeged.hu/ szakacs/oktatas/alkstat.html 1. óra (szept. 9.) Az óra anyaga: Követelmények ismertetése, az

Részletesebben

Digitális technika (VIMIAA01) Laboratórium 1

Digitális technika (VIMIAA01) Laboratórium 1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 1 Fehér Béla Raikovich Tamás,

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség

Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,

Részletesebben

Komputer statisztika gyakorlatok

Komputer statisztika gyakorlatok Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes

Részletesebben

Sztochasztikus kapcsolatok

Sztochasztikus kapcsolatok Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.

Részletesebben

G Szabályfelismerés 2.2. 2. feladatcsomag

G Szabályfelismerés 2.2. 2. feladatcsomag ÖSSZEFÜÉSEK Szabályfelismerés 2.2 Alapfeladat Szabályfelismerés 2. feladatcsomag összefüggés-felismerő képesség fejlesztése szabályfelismeréssel megkezdett sorozat folytatása a felismert szabály alapján

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIM Elektronikai alapismeretek

Részletesebben

PONTSZÁMÍTÁSI KÉRELEM felsőfokú végzettség alapján (alap- és osztatlan képzésre jelentkezőknek)

PONTSZÁMÍTÁSI KÉRELEM felsőfokú végzettség alapján (alap- és osztatlan képzésre jelentkezőknek) PONTSZÁMÍTÁSI KÉRELEM felsőfokú végzettség alapján (alap- és osztatlan képzésre jelentkezőknek) PÉCSI TUDOMÁNYEGYETEM Jelentkezői adatok Jelentkező neve: Felvételi azonosító: Születési dátum: Anyja neve:

Részletesebben

Bevezetés a lágy számítás módszereibe

Bevezetés a lágy számítás módszereibe BLSZM-07 p. 1/10 Bevezetés a lágy számítás módszereibe Nem fuzzy halmaz kimenetű fuzzy irányítási rendszerek Egy víztisztító berendezés szabályozását megvalósító modell Viselkedésijósló tervezési példa

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.

MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot

Részletesebben

Számrendszerek közötti átváltások

Számrendszerek közötti átváltások Számrendszerek közötti átváltások 10-es számrendszerből tetszőleges számrendszerbe Legyen az átváltani kívánt szám: 723, 10-es számrendszerben. Ha 10-esből bármilyen számrendszerbe kívánunk átváltani,

Részletesebben

Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat) f(x) = 2x 2 x 4. 2x 2 x 4 = 0, x 2 (2 x 2 ) = 0.

Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat) f(x) = 2x 2 x 4. 2x 2 x 4 = 0, x 2 (2 x 2 ) = 0. Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat). Feladat. Végezzük el az f(x) = x x 4 ) Értelmezési tartomány: x R. ) A zérushelyet az f(x) = 0 egyenlet megoldásával kapjuk: amiből

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Diszkrét matematika I. gyakorlat 1. Gyakorlat Bogya Norbert Bolyai Intézet 2012. szeptember 4-5. Bogya Norbert (Bolyai Intézet) Diszkrét matematika I. gyakorlat 2012. szeptember 4-5. 1 / 21 Információk

Részletesebben

Bemenet modellezése II.

Bemenet modellezése II. Bemenet modellezése II. Vidács Attila 2005. november 3. Hálózati szimulációs technikák, 2005/11/3 1 Kiszolgálási id k modellezése Feladat: Egy bemeneti modell felállítása egy egy kiszolgálós sorbanállási

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Az idősorelemzés alapjai Gánics Gergely 1 gergely.ganics@freemail.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Tizedik előadas Tartalom 1 Alapfogalmak, determinisztikus és sztochasztikus megközelítés

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.

Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. Síkidomok Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos

Részletesebben

5. melléklet. A Duna Dunaföldvár-Hercegszántó közötti szakasza vízminőségének törzshálózati mérési adatai

5. melléklet. A Duna Dunaföldvár-Hercegszántó közötti szakasza vízminőségének törzshálózati mérési adatai 5. melléklet A Duna - közötti szakasza vízminőségének törzshálózati mérési adatai 5. melléklet 2006.02.20. TÁBLÁZATJEGYZÉK 1. táblázat: Mintavételi darabszámok az értékelt mintavételi helyeken (1968-2004)

Részletesebben

Milyen segítséget tud nyújtani a döntéshozatalban a nem-hagyományos jelfeldolgozás?

Milyen segítséget tud nyújtani a döntéshozatalban a nem-hagyományos jelfeldolgozás? Milyen segítséget tud nyújtani a döntéshozatalban a nem-hagyományos jelfeldolgozás? Vasmű Néhány tipikus feladat rendszermodellezés irányítás oxygen components (parameters) System Neural model temperature

Részletesebben

% % MATLAB alapozó % % 2009.12.16., Földváry Lóránt % 2014.01.29. Laky Piroska (kiegészítés)

% % MATLAB alapozó % % 2009.12.16., Földváry Lóránt % 2014.01.29. Laky Piroska (kiegészítés) % % MATLAB alapozó % % 2009.12.16., Földváry Lóránt % 2014.01.29. Laky Piroska (kiegészítés) %% mindennek a kulcsa: help és a lookfor utasítás (+doc) % MATLAB alatt help % help topics - témakörök help

Részletesebben

MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY

MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Másodfokú egyenletek. Ismétlés 1. óra: Másodfokú egyenletek,

Részletesebben

Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6. Alapműveletek

Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6. Alapműveletek Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6 A tömbök deklarálásakor Pascal és C/C++ nyelvekben minden esetben meg kell adni az indexelést (Pascal) vagy az elemszámot (C/C++).

Részletesebben

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június MIKROÖKONÓMIA I Készült a TÁMOP-412-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben