Számrendszerek közötti átváltások
|
|
- Ilona Fodor
- 8 évvel ezelőtt
- Látták:
Átírás
1 Számrendszerek közötti átváltások 10-es számrendszerből tetszőleges számrendszerbe Legyen az átváltani kívánt szám: 723, 10-es számrendszerben. Ha 10-esből bármilyen számrendszerbe kívánunk átváltani, az alábbi algoritmust kell követnünk: Osszuk az eredeti számot a cél számrendszer alapszámával (2-es számrendszerben ez 2, stb.). A maradékot jegyezzük fel jobb oldalra. Az osztás eredményét írjuk le a szám alá. Ha az nem 0, osszuk újra az alapszámmal. Folytassuk mindezt addig, míg nem jutunk el 0-ig. 2-esbe: 8-asba: 16-osba: Ezek után a számot alulról-felfelé olvassuk. Így az eredmények: 2-esben: asban: osban: 2D3
2 Tetszőleges számrendszerből 10-es számrendszerbe: Bármely számrendszerben is vagyunk, ha 10-es számrendszerbe szeretnénk vissza váltani, a szám egyes számjegyeit megszorozzuk a számrendszer alapszámának megfelelő hatványával. Szemléltetésképp kezdjük azzal, hogy egy 10-es számrendszerbeli számot váltunk át 10-es számrendszerbe Tehát a szám jobbról első számjegye fogja jelenteni a 0. hatványt. Mellette balról az 1., stb Most váltsuk vissza az előzőleg kapott 2-es, 8-as, 16-os számrendszerbeli számokat 10-essé: 2-esből: 8-asból: 16-osból: Nem 10-esből egy másik nem 10-esbe Ha ilyen feladatot kapunk (pl. 2-esből 8-asba), akkor követhetjük azt a módszert, hogy először átváltunk 10-es számrendszerbe, majd átváltunk a kívánt számrendszerbe. Ez azonban időigényes. 2-es, 8-as, 16-os számrendszerek között (mivel 2 hatványai), gyorsabban is át lehet váltani.
3 2-esből 8-asba: Mivel 2^3 = 8, ezért az eredeti kettes számrendszerbeli szám számjegyeit 3-asával (jobbról balra) csoportokba fogjuk. Ezután kiszámoljuk, az egyes csoportok értékét, ezek fogják adni a 8-as számrendszerbeli szám számjegyeit. 2-esből 16-osba: Előző módszerhez hasonló, de mivel 2^4 = 16, ezért itt 4-esével fogjuk csoportba a számjegyeket. 8-asból 2-esbe: A 2-esből 8-asba módszer fordítottja. Fogjuk a 8-as számrendszerbeli szám számjegyeit, majd azokat egyenként visszaváltjuk 3 jegyből álló, kettes számrendszerbeli megfelelőjükre. (Ehhez kell, hogy kettő hatványait gyorsan tudjuk fejben számolni, azonban itt még elég kis számokról van szó, így nem túl nehéz a feladat). (Kettes számrendszerben a szám elején lévő 0-kat elhagyhatjuk, így az eredeti számot kapjuk) 16-osból 2-esbe: Hasonló az előzőhöz, de nem 3 jegyet, hanem 4-et kell alkotnunk a 16-os számrendszerbeli szám egyes jegyeiből
4 Igazságtáblák NOT (tagadás) Eredeti érték ellentettje. A NOT A AND (és) Igaz, ha mindkét érték igaz. Különben hamis. bemenet kimenet A B A AND B OR (vagy) Igaz, ha legalább az egyik érték igaz. Különben hamis. A B A OR B XOR (kizáró vagy) Igaz, ha pontosan egy feltétel igaz. Ha kettő igaz, vagy egy sem, akkor hamisat ad vissza. A B A XOR B
5 NAND (NOT AND) Az AND művelet ellenkezője (tagadása). A B A NAND B NOR (NOT OR) Az OR művelet tagadása. A B A NOR B XNOR (X NOT OR) A kizáró vagy tagadása. A B A XNOR B
6 Bitenkénti műveletek Negálás Jelölése: ~ Az eredeti szám minden bitjét az ellenkezőjére módosítjuk. Ha nem 2-es számrendszerbeli számot kapunk, először váltsuk át kettesre, majd negálhatjuk. Például: ~ = Bitenkénti AND Jelölése: & Két számot bitenként és-elünk, azaz végrehajtjuk rajtuk bitenként az AND igazságtáblában látott műveleteket. (Ha nem 2-es számrendszerben vannak, alakítsuk át őket először). Egyik szám: Másik: & Bitenkénti OR Jelölése: Két számot bitenként vagy-olunk, azaz végrehajtjuk rajtuk bitenként az OR igazságtáblában látott műveleteket. (Ha nem 2-es számrendszerben vannak, alakítsuk át őket először). Egyik szám: Másik:
7 Negatív számok ábrázolása kettes komplemens képzés Ha egy változónak nem adjuk meg, hogy az unsigned legyen, ha negatív értéket adunk, a számítógépes számábrázolásban valahogyan jelölni kell ezt. Erre vezették be először az előjelbitet. 0 jelenti a pozitív, 1 a negatív számot. Így azonban a 0 értéket kétféleképpen is ábrázolhatjuk (pozitív 0, negatív 0). Ezért a negatív számok ábrázolására a kettes komplemenst használják. Ez elég egyszerű: Az eredeti szám minden bitjét negáljuk (egyes komplemens) Adjunk hozzá 1-et az eredményhez (kettes komplemens) Ábrázoljuk kettes komplemens módszerrel a (-723) értéket! A korábbiakban már kiszámoltuk, hogy 723 bináris értéke: Ha ezt 32 biten tároljuk, így néz ki: Ezt negáljuk (egyes komplemenst képzünk): Ehhez adjunk hozzá egyet (kettes komplemenst képzünk): A negatív szám tehát így fog kinézni gépi ábrázolásban. (Ha ebből vissza szeretnénk nyerni a szám abszolút értékét (723), akkor először kivonunk belőle 1-et, majd negáljuk minden bitjét, és megkapjuk az eredeti számot. Lényegében az eredeti műveletet végezzük el, csak fordítva ) Bitléptetés előjeltelen számok A biteket léptethetjük jobbra vagy balra. A jobbra léptetés 2-vel való osztásnak, a balra léptetés 2-vel való szorzásnak felel meg. (Gondoljuk kicsit végig a hátterét, miért is van ez ) Balra léptetés: szám << x Assembly-ben: SHL (Shift Left) Jobbra léptetés: szám >> x Assembly-ben: SHR (Shift Right) (Az adott számot x lépéssel balra, vagy jobbra toljuk) Ha előjeltelen szám bitjeit szeretnénk léptetgetni, az viszonylag triviális. Feladat: 723 << 2 (léptessük el a 723 decimális szám bitjeit 2-vel balra) 723 decimális szám bináris értékét már kiszámoltuk. Ez 32 biten ábrázolva: Ezt 2-vel balra léptetve az eredmény:
8 (Az egészet eltoltuk kettővel balra. Az eredetileg a szám bal oldalán lévő két darab 0 elveszett, jobbról pedig bejött két darab 0). Így 723 << 2 = 2892 (Az eredmény ugyanaz, mint 723 * 2 * 2) Feladat: 723 >> 3 (léptessük el a 723 decimális szám bitjeit 3-al jobbra) 723 decimális szám bináris értékét már kiszámoltuk. Ez 32 biten ábrázolva: Ezt 3-al jobbra léptetve az eredmény: (Jobb oldalról elveszik 3 darab bit. Bal oldalról viszont bejön 3 darab 0) Így 723 >> 3 = 90 (Az eredmény ugyanaz, mint 723 / 2 / 2 / 2, természetesen tizedes jegyek nélkül számolva) Bitléptetés előjeles számok A bitléptetés lényege hasonló az előjeltelen számokkal való léptetéshez. Azonban, ha pusztán az előző módszereket használnánk, az eredeti előjel jobbra léptetésnél elveszne. Ennek kiküszöbölésére az előjeles számok bitléptetéséhez külön gépi utasítások léteznek. C / C++ szintjén ezt nem érzékeljük, azonban más Assembly utasításnak felelnek meg az alábbiak, mint az előzőleg látottak: Balra léptetés: negatív szám << x Assembly-ben: SAL (Shift Arithmetic Left) Jobbra léptetés: negatív szám >> x Assembly-ben: SAR (Shift Arithmetic Right) (Az adott negatív számot x lépéssel balra, vagy jobbra toljuk) A balra léptetés előjeles szám esetén pontosan ugyanúgy működik, mint előjeltelennél! Feladat: -723 << 2 (léptessük el a -723 decimális szám bitjeit 2-vel balra) 723 decimális szám bináris értékét már kiszámoltuk. Ez 32 biten ábrázolva: Ennek kell vennünk a kettes komplemensét, hiszen negatív szám. A korábbiakban már ezt is kiszámoltuk: Ezt 2-vel balra léptetve az eredmény: A balra léptetés előjeles szám esetén pontosan ugyanúgy működik, mint előjeltelennél! Így -723 << 2 = (Az eredmény ugyanaz, mint (-723) * 2 * 2)
9 Feladat: -723 >> 3 (léptessük el a -723 decimális szám bitjeit 3-al jobbra) A negatív szám binárisan így nézett ki: Ha ezt szimplán eltolnánk jobbra, 0 jönne be balról, így az előjel információk elvesznének. Ezért, ha előjeles számról van szó, gépi szinten a SAR utasítás hívódik, mely balról 1-est fog behozni. Így a 3-al jobbra tolás eredménye: Jobbról elveszítettünk 3 bitet, balról pedig csupa egyes jött be. Így -723 >> 3 = -91 (Látható, hogy előjeltelen 723 esetén a jobbra 3-al eltolás eredménye 90 volt. Itt azonban -91, tehát abszolút értékben 1 az eltérés. Ezt a kettes komplemens számábrázolás okozza. Az eredmény ugyanaz, mint 723 / 2 / 2 / 2, azonban az előjeltelen példához képest itt nem lefelé kerekítődött a szám értéke, hanem felfelé, így 91 lett.) Logikai műveletek Példák Logikai műveleteknél csupán az igazságtáblákat kell ismernünk. Egy példán keresztül megnézünk néhány if szerkezetet, melyekkel kiderül, a teljes feltétel igaz, vagy hamis értéket ad vissza. C-ben nincs bool típus (C++-ban már van), ezért most legyen: #define true 1 #define false 0 (true-nak 1 az értéke, false-nak 0 ) Az ilyen feladatokat próbáljuk meg a belső zárójelektől indulva, mindig egyszerre csak két feltételt nézve végrehajtani az igazságtáblák segítségével. Példa1: Ez tehát hamis lesz.
10 Példa2: Ez igaz lesz. Példa3: Ez is igaz lesz.
Programozás II. Segédlet az első dolgozathoz
Programozás II. Segédlet az első dolgozathoz 1 Tartalomjegyzék 1. Bevezető 4 2. Számrendszerek közötti átváltások 5 2.1 Tízes számrendszerből tetszőleges számrendszerbe................. 5 2.1.1 Példa.....................................
Jelek tanulmányozása
Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A
Párhuzamos programozás
Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák
Digitális technika (VIMIAA01) Laboratórium 1
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 1 Fehér Béla Raikovich Tamás,
Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek!
1 Mindannyiunk életében előfordulnak jelentős évek, amikor is egy-egy esemény hatására a sorsunk új irányt vesz. Bár ezen események többségének ott és akkor kevésbé tulajdonítunk jelentőséget, csak idővel,
1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév
MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Mágneses szuszceptibilitás vizsgálata
Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség
Mikrokontrollerek. Tihanyi Attila 2007. május 8
Mikrokontrollerek Tihanyi Attila 2007. május 8 !!! ZH!!! Pótlási lehetőség külön egyeztetve Feladatok: 2007. május 15. Megoldási idő 45 perc! Feladatok: Első ZH is itt pótolható Munkapont számítás Munkapont
A Hozzárendelési feladat megoldása Magyar-módszerrel
A Hozzárendelési feladat megoldása Magyar-módszerrel Virtuális vállalat 2013-2014/1. félév 3. gyakorlat Dr. Kulcsár Gyula A Hozzárendelési feladat Adott meghatározott számú gép és ugyanannyi független
Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Relációk Waldhauser Tamás 2014 őszi félév Relációk reláció lat. 1. kapcsolat, viszony; összefüggés vmivel 2. viszonylat, vonatkozás reláció lat. 3. mat halmazok elemei
Számítógépes vírusok
A vírus fogalma A számítógépes vírus olyan szoftver, mely képes önmaga megsokszorozására és terjesztésére. A vírus célja általában a számítógép rendeltetésszerű működésének megzavarása, esetleg a gép tönkretétele,
Digitális hálózatok: Digitális hálózati elemek struktúrális felépítése, CMOS alkalmazástechnika. Somogyi Miklós
Digitális hálózatok: Digitális hálózati elemek struktúrális felépítése, CMOS alkalmazástechnika Somogyi Miklós Kombinációs hálózatok tervezése A logikai értékek és műveletek Két-értékes rendszerek: Állítások:
Programozás I. - 9. gyakorlat
Programozás I. - 9. gyakorlat Mutatók, dinamikus memóriakezelés Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer- és Számítástudományi Tanszék Utolsó frissítés: November 9, 2009 1 tar@dcs.vein.hu
Adatok ábrázolása, adattípusok. Összefoglalás
Adatok ábrázolása, adattípusok Összefoglalás Adatok ábrázolása, adattípusok Számítógépes rendszerek működés: információfeldolgozás IPO: input-process-output modell információ tárolása adatok formájában
ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra
ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:
Bár a digitális technológia nagyon sokat fejlődött, van még olyan dolog, amit a digitális fényképezőgépek nem tudnak: minden körülmények között
Dr. Nyári Tibor Bár a digitális technológia nagyon sokat fejlődött, van még olyan dolog, amit a digitális fényképezőgépek nem tudnak: minden körülmények között tökéletes színeket visszaadni. A digitális
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek
BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály
5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,
MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla
MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális
Fordítóprogramok Készítette: Nagy Krisztián
Fordítóprogramok Készítette: Nagy Krisztián Reguláris kifejezések (FLEX) Alapelemek kiválasztása az x karakter. tetszőleges karakter (kivéve újsor) [xyz] karakterhalmaz; vagy egy x, vagy egy y vagy egy
Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten RACIONÁLIS TÖRTFÜGGVÉNYEK INTEGRÁLJA Készítette: Gábor Szakmai felel s: Gábor Vázlat
7.2.2. A TMS320C50 és TMS320C24x assembly programozására példák
7.2.2. A TMS320C50 és TMS320C24x assembly programozására példák A TMS320C50 processzor Ez a DSP processzor az 1.3. fejezetben lett bemutatva. A TMS320C50 ##LINK: http://www.ti.com/product/tms320c50## egy
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály
3. osztály Két szám összege 33. Mennyi ennek a két számnak a különbsége, ha az egyik kétszerese a másiknak? Hány olyan háromjegyű szám van, amelyben a számjegyek összege legalább 25? 4. osztály A Zimrili
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 12 KRISTÁLYkÉMIA XII. KÖTÉsTÍPUsOK A KRIsTÁLYOKBAN 1. KÉMIAI KÖTÉsEK Valamennyi kötéstípus az atommag és az elektronok, illetve az elektronok egymás közötti
Programozás C- és Matlab nyelven C programozás kurzus BMEKOKAM603 Console I/O, Operátorok. Dr. Bécsi Tamás 2. Előadás
Programozás C- és Matlab nyelven C programozás kurzus BMEKOKAM603 Console I/O, Operátorok Dr. Bécsi Tamás 2. Előadás Számábrázolás Egész számok Számrendszerek Kettes számrendszer Számábrázolás hossza Negatív
A SZÁMFOGALOM KIALAKÍTÁSA
A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése
Amit a Hőátbocsátási tényezőről tudni kell
Amit a Hőátbocsátási tényezőről tudni kell Úton-útfélen mindenki róla beszél, már amikor épületekről van szó. A tervezéskor találkozunk vele először, majd az építkezéstől az épület lakhatási engedélyének
Az informatika oktatás téveszméi
Az informatika oktatás Az informatika definíciója Definíció-1: az informatika az információ keletkezésével, továbbításával, tárolásával, feldolgozásával foglalkozó tudomány. Definíció-2: informatika =
SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA
1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.
HWDEV-02A GSM TERMOSZTÁT
HWDEV-02A GSM TERMOSZTÁT 2010 HASZNÁLATI ÚTMUTATÓ A termosztát egy beépített mobiltelefonnal rendelkezik. Ez fogadja az Ön hívását ha felhívja a termosztát telefonszámát. Érdemes ezt a telefonszámot felírni
Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk
Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Elméleti anyag: Processzoros vezérlés általános tulajdonságai o z induló készletben
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)
Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Kombinációs LABOR feladatok Laborfeladat: egyszerű logikai kapuk vizsgálata Logikai műveletek Tervezz egy egyszerű logikai kapukat
Korszerű geodéziai adatfeldolgozás Kulcsár Attila
Korszerű geodéziai adatfeldolgozás Kulcsár Attila Nyugat-Magyarországi Egyetem Geoinformatikai Főiskolai Kar Térinformatika Tanszék 8000 Székesfehérvár, Pirosalma -3 Tel/fax: (22) 348 27 E-mail: a.kulcsar@geo.info.hu.
3. Gyakorlat Ismerkedés a Java nyelvvel
3. Gyakorlat Ismerkedés a Java nyelvvel Parancssori argumentumok Minden Java programnak adhatunk indításkor paraméterek, ezeket a program egy tömbben tárolja. public static void main( String[] args ) Az
A táblázatkezelő felépítése
A táblázatkezelés A táblázatkezelő felépítése A táblázatkezelő felépítése Címsor: A munkafüzet címét mutatja, és a program nevét, amivel megnyitottam. Menüszalag: A menüsor segítségével használhatjuk az
Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk
Programozás 3. Dr. Iványi Péter
Programozás 3. Dr. Iványi Péter 1 Egy operandus művelet operandus operandus művelet Operátorok Két operandus operandus1 művelet operandus2 2 Aritmetikai műveletek + : összeadás -: kivonás * : szorzás /
3. Matematikai logika (megoldások)
(megoldások) 1. Hamis, ugyanis P, Q és R logikai értékét behelyettesítve kapjuk: (P Q) R = (1 0) 0 = 0 0 = 0. (Ebben és a további feladatok megoldásában alkalmazzuk a D 3.1 denícióit. A megoldást célszer
Kérdések és feladatok
Kérdések és feladatok 1. A mesében több szám is szerepel. Próbáld meg felidézni ezeket, majd töltsd ki a táblázatot! Ügyelj, hogy a páros és a páratlan számok külön oszlopba kerüljenek! Hány napos volt
A döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton
Digitális technika 1 Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés Készítette: Dudás Márton 1 Bevezető: A jegyzet a BME VIK első éves villamosmérnök hallgatóinak készült a Digitális technika
Útmutató a vízumkérő lap kitöltéséhez
Útmutató a vízumkérő lap kitöltéséhez A vízumkérő lap ( Visa application form of the People s Republic of China, Form V. 2013 ) az egyik legfontosabb dokumentum, amit a kínai vízumra való jelentkezésnél
Nagy András. Számelméleti feladatgyűjtemény 2009.
Nagy András Számelméleti feladatgyűjtemény 2009. Tartalomjegyzék Tartalomjegyzék... 1 Bevezetés... 2 1. Feladatok... 3 1.1. Természetes számok... 3 1.2. Oszthatóság... 5 1.3. Legnagyobb közös osztó, legkisebb
4. Fejezet : Az egész számok (integer) ábrázolása
4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson
Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 011/01 Matematika I. kategória (SZKKÖZÉPISKOL) Döntő 1. Határozza meg az összes olyan egész számot, amely eleget tesz az egyenlőtlenségnek! log
ADATBÁZIS-KEZELÉS. Funkcionális függés, normál formák
ADATBÁZIS-KEZELÉS Funkcionális függés, normál formák KARBANTARTÁSI ANOMÁLIÁK beszúrási anomáliák törlési anomáliák módosítási anomáliák DOLG_PROJ(Dszsz, Pszám, Dnév, Pnév, Órák) 2 MÓDOSÍTÁSI ANOMÁLIÁK
Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
BOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy
Ablakok használata. 1. ábra Programablak
Ha elindítunk egy programot, az egy Ablakban jelenik meg. A program az üzeneteit szintén egy újabb ablakban írja ki számunkra. Mindig ablakokban dolgozunk. Az ismertetett operációs rendszer is az Ablakok
Programozás. A programkészítés lépései. Program = egy feladat megoldására szolgáló, a számítógép számára értelmezhető utasítássorozat.
Programozás Programozás # 1 Program = egy feladat megoldására szolgáló, a számítógép számára értelmezhető utasítássorozat. ADATOK A programkészítés lépései 1. A feladat meghatározása PROGRAM EREDMÉNY A
VHDL szimuláció. Tervezés. Labor II. Dr. Hidvégi Timót
VHDL szimuláció Labor II. Dr. Hidvégi Timót Tervezés 1 Lefoglalt szavak abs access after alias all and architecture array assert attribute block body buffer bus case component configuration constant disconnect
Készítsen négy oldalas prezentációt egy vállalat bemutatására!
1. feladat Készítsen négy oldalas prezentációt egy vállalat bemutatására! 1. A prezentáció háttere világoskék színű legyen, átlósan le árnyékolással. 2. Az első dia bal oldalán, felül a cég neve olvasható:
Segítünk online ügyféllé válni Kisokos
Segítünk online ügyféllé válni Kisokos Kedves Ügyfelünk! Szeretnénk, ha Ön is megismerkedne Online ügyfélszolgálatunkkal, melyen keresztül kényelmesen, könnyedén, sorban állás nélkül intézheti energiaszolgáltatással
Linux fájlrendszerek.
Mérési Utasítás Linux/UNIX jogosultságok, szövegfájlok létrehozása Linux fájlrendszerek. Előző gyakorlaton, már volt szó a fájlrendszerekről, mikor a mount parancs -t kapcsolójáról volt szó. Linux alatt,
Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának
FORTE MAP 5.0 Felhasználói tájékoztató
FORTE MAP 5.0 Felhasználói tájékoztató InterMap Kft 2010 Tartalom FORTE MAP 5.0 Felhasználói tájékoztató... 0 A kezelőfelület ismertetése... 1 Navigálás a térképen... 1 Objektum kijelölése... 3 Jelmagyarázat...
Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6. Alapműveletek
Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6 A tömbök deklarálásakor Pascal és C/C++ nyelvekben minden esetben meg kell adni az indexelést (Pascal) vagy az elemszámot (C/C++).
Házi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve)
Házi dolgozat Minta a házi dolgozat formai és tartalmi követelményeihez Készítette: (név+osztály) Iskola: (az iskola teljes neve) Dátum: (aktuális dátum) Tartalom Itt kezdődik a címbeli anyag érdemi kifejtése...
Kombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/
Kombinatorika 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kombinatorika p. 1/ Permutáció Definíció. Adott n különböző elem. Az elemek egy meghatározott sorrendjét az adott
Előre is köszönjük munkádat és izgatottan várjuk válaszaidat! A Helleresek
A Heller Farkas Szakkollégium 2016-os felvételi kérdőívét tartod a kezedben, amely által megteheted az első lépést a Helleres úton. Az írásbeli kérdőív kitöltése után a felvételi következő lépése egy szóbeli
Programozás alapjai C nyelv 3. gyakorlat. Előző óra összefoglalása. Karakter típus (char) Algoritmus leírása. C nyelv tulajdonságai
Programozás alapja C yelv 3. gyakorlat Szeberéy Imre BME IIT Programozás alapja I. (C yelv, gyakorlat) BME-IIT Sz.I. 25..3.. -- Előző óra összefoglalása Algortmus leírása Sztaxs leírása
Játékok (domináns stratégia, alkalmazása. 2016.03.30.
Játékok (domináns stratégia, Nash-egyensúly). A Nashegyensúly koncepciójának alkalmazása. 2016.03.30. Játékelmélet és közgazdaságtan 1914: Zermelo (sakk) 1944. Neumann-Morgenstern: Game Theory and Economic
31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Országos kompetenciamérés 2006
Országos kompetenciamérés 2006 A SULINOVA Kht. jelentései alapján összeállította: Kovács Károly A tesztek alapvetı statisztikai jellemzıi, valamint a tesztfüzetek feladatai és azok jellemzıit bemutató
Harmadik gyakorlat. Számrendszerek
Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes
[MECHANIKA- HAJLÍTÁS]
2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás
http://www.olcsoweboldal.hu ingyenes tanulmány GOOGLE INSIGHTS FOR SEARCH
2008. augusztus 5-én elindult a Google Insights for Search, ami betekintést nyújt a keresőt használók tömegeinek lelkivilágába, és időben-térben szemlélteti is, amit tud róluk. Az alapja a Google Trends,
Digitális technika VIMIAA01
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
Az első lépések. A Start menüből válasszuk ki a Minden program parancsot. A megjelenő listában kattintsunk rá az indítandó program nevére.
A számítógép elindítása A számítógépet felépítő eszközöket (hardver elemeket) a számítógépház foglalja magába. A ház különböző méretű, kialakítású lehet. A hátoldalán a beépített elemek csatlakozói, előlapján
A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban.
E II. 6. mérés Műveleti erősítők alkalmazása A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. A mérésre való felkészülés
MINTA. Fizetendô összeg: 62 136,00 HUF. Telefonon: 06 40 / 20 99 20 ben: Interneten:
Részszámla Számla. eredeti példány / oldal Elszámolási idôszak: 00.0. - 00.09.. Partnerszám: 000009 Fizetési határidô: 00.09.0. Vevô neve, címe: Minta út. Fizetendô összeg:, Minta út. Szerzôdéses folyószámla
Számítógépek felépítése, alapfogalmak
2. előadás Számítógépek felépítése, alapfogalmak Lovas Szilárd SZE MTK MSZT lovas.szilard@sze.hu B607 szoba Nem reprezentatív felmérés kinek van ilyen számítógépe? Nem reprezentatív felmérés kinek van
Prolog 1. Készítette: Szabó Éva
Prolog 1. Készítette: Szabó Éva Prolog Logikai, deklaratív nyelv. Egy logikai program egy modellre vonatkoztatott állítások halmaza, melyek a modell tulajdonságait, és az azok között fellépő kapcsolatokat
Azonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
Árverés kezelés ECP WEBSHOP BEÉPÜLŐ MODUL ÁRVERÉS KEZELŐ KIEGÉSZÍTÉS. v2.9.28 ECP WEBSHOP V1.8 WEBÁRUHÁZ MODULHOZ
v2.9.28 Árverés kezelés ECP WEBSHOP BEÉPÜLŐ MODUL ÁRVERÉS KEZELŐ KIEGÉSZÍTÉS ECP WEBSHOP V1.8 WEBÁRUHÁZ MODULHOZ AW STUDIO Nyíregyháza, Luther utca 5. 1/5, info@awstudio.hu Árverés létrehozása Az árverésre
FIT-jelentés :: 2012. Intézményi jelentés. Összefoglalás
FIT-jelentés :: 2012 Összefoglalás Német Nemzetiségi Gimnázium és Kollégium, Deutsches Nationalitätengymnasium und Schülerwohnheim 1203 Budapest, Serény u. 1. Összefoglalás Az intézmény létszámadatai Tanulók
Vegyes tételek könyvelése felhasználói dokumentum Lezárva: 2015.10.27.
Vegyes tételek könyvelése felhasználói dokumentum Lezárva: 2015.10.27. Griffsoft Informatikai Zrt. 6723 Szeged, Felső-Tisza part 31-34 M lph. fszt.2. Telefon: (62) 549-100 Telefax: (62) 401-417 TARTALOM
2011. március 9. Dr. Vincze Szilvia
. márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer
Bevezetés a C++ programozásba
Bevezetés a C++ programozásba A program fogalma: A program nem más, mint számítógép által végrehajtható utasítások sorozata. A számítógépes programokat különféle programnyelveken írhatjuk. Ilyen nyelvek
Számítógép architektúrák
Számítógép architektúrák Fazekas Gábor Debreceni Egyetem Károly Róbert Főiskola fazekas.gabor@inf.unideb.hu gfazekas@karolyrobert.hu Architektúra = szerkezet, felépítés Funkcionális szemlélet Nem vagyunk
Diszkrét matematika I. gyakorlat
Diszkrét matematika I. gyakorlat 1. Gyakorlat Bogya Norbert Bolyai Intézet 2012. szeptember 4-5. Bogya Norbert (Bolyai Intézet) Diszkrét matematika I. gyakorlat 2012. szeptember 4-5. 1 / 21 Információk
Időzített rendszerek és az UPPAAL
Időzített rendszerek és az UPPAAL Dr. Németh L. Zoltán (zlnemeth@inf.u-szeged.hu) SZTE, Informatikai Tanszékcsoport 2008/2009 I. félév 2008.11.14 MODELL 10 1 Időzített rendszerek Real Time Systems = valós
5 pontot, ha az alap-ábrához nem kapcsolódó, azt körülvevő végtag-kezdemények vannak.
Melléklet Vizuális Narratív Teszt - Értékelési segédlet az 1. sz. itemhez: A figura szerkezete szintek és pontszámok Az értékelés elején keresse meg, hogy a narratív rajzon található emberábrázolások közül
IDE64 dokumentáció. A merevlemez előkészítése az első használatra. 1. Előkészítés. 2. Csatlakoztatás. 3. Segédprogram másolás
IDE64 dokumentáció A merevlemez előkészítése az első használatra 1. Előkészítés Első lépésben a szükséges segédprogramokat kell előkészíteni hogy át tudjuk rakni az 1541-es floppylemezre. Ha nincs jól
Egyszerű áramkörök vizsgálata
A kísérlet célkitűzései: Egyszerű áramkörök összeállításának gyakorlása, a mérőműszerek helyes használatának elsajátítása. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek)
EPER E-KATA integráció
EPER E-KATA integráció 1. Összhang a Hivatalban A hivatalban használt szoftverek összekapcsolása, integrálása révén az egyes osztályok, nyilvántartások között egyezőség jön létre. Mit is jelent az integráció?
Beállítások CLASSBOOK-óratervező. Első belépés
Beállítások CLASSBOOK-óratervező Első belépés 1, Kattintsunk az asztalon lévő óratervező program ikonjára! A következő képernyőkép jelenik meg: 2, Olvassuk el az instrukciót figyelmesen! 3, Az Azonosítót
Matematikai alapok. Dr. Iványi Péter
Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: 0 és 1 Byte: 8 bit 128 64 32 16 8 4 2 1 1 1 1 1
4. elıadás KRISTÁLYTANI ALAPOK
4. elıadás KRISTÁLYTANI ALAPOK SZTEREOGRAFIKUS VETÜLET Cél: a térbeli kristályt síkban tudjuk ábrázolni. Más szóval: a háromdimenziós poliédert két dimenzióban ábrázoljuk. Lépések: 1. A kristályt egy gömb
MATLAB. 4. gyakorlat. Lineáris egyenletrendszerek, leképezések
MATLAB 4. gyakorlat Lineáris egyenletrendszerek, leképezések Menetrend Kis ZH MATLAB függvények Lineáris egyenletrendszerek Lineáris leképezések Kis ZH pdf MATLAB függvények a szkriptekhez hasonlóan az
A skatulya-elv alkalmazásai
1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely
észbontó ördöglakat Megoldófüzet a szétszedéshez Egyszemélyes játék 8 éves kortól
észbontó ördöglakat Megoldófüzet a szétszedéshez Egyszemélyes játék 8 éves kortól Importálja: Gém Klub Kft. 1092 Budapest, Ráday u. 30./B www.gemklub.hu 3 éven aluli gyerme keknek nem adható, mert az apró
Felvételi előkészítő tájékoztató 2012.
Felvételi előkészítő tájékoztató 2012. Néhány gondolat a központi felvételiről! A központi Matematika felvételi az elmúlt években sok 8. osztályos diák számára igen csak komoly megmérettetésnek bizonyult.