Jelek tanulmányozása
|
|
- Rudolf Halász
- 8 évvel ezelőtt
- Látták:
Átírás
1 Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás skálázással Adott egy folytonos jel, x(t): R R. Ha egy amplitúdó skálázást alkalmazunk, akkor egy újabb valós változójú, valós függvényt kapunk vagyis y(t) = c x(t) jelet. Az alkalmazott c együttható eleme a valós számoknak. Egy függvény valós számmal való szorzása minden tulajdonsága igaz ebben az esetben is. Egy példa látható a következő ábrán. Ha most egy diszkrét x [ n] : Z R jel esetében alkalmazzuk, és egy y[n] = c x[n] jelet kapunk. Ha c egy valós szám akkor a következő ábrán láthatunk egy esetet diszkrét amplitudó skálázásra. Jelek összeadása, szorzása A következő ábra két folytonos jel összeadását és szorzását mutatja. 1
2 A jelek értelmezési tartományát módosító műveletek Időintervallum-skálázás Legyen x(t): R R folytonos jel, akkor az időintervallum-skálázással kapott y(t) jel felírható mint: Legyen a > 0 és y(t) = x(a t) ha a > 1 akkor időintervallum sürítésről beszélünk ha 0 < a < 1 időintervallum dilatációról beszélünk Erre a két esetre láthatunk példát a következő ábrán: Mindkét esetben láthatjuk, hogy a transzformáció során nem változik a jel amplitudó-ja. Legyen most egy x [ n] : Z R egy diszkrét jel. A diszkrét időintervallum-skálázás legyen y[n] = x[k n] anikor k egy egész paraméter vagyis k { ± 1, ± 2, ± 3, } 2
3 Ebből látható, hogy ez a művelet a diszkrét jelek esetében információvesztéssel jár. Most ugyanazt a skálázási műveletet láthatjuk egy másik jel esetében. n ha n páratlan Legyen ez a jel x[n] = és ez látható a következő ábra bal felében. 0 ha n páros Az eredményből láthatjuk, hogy a skálázás teljes információvesztéssel jár. Időtükrözés (reflexió) Legyen x(t): R R folytonos jel. Ekkor az időtükrözés (az idő-tengely tükrözése a vonatkoztatási rendszer origójára nézve) felírható mint : y(t) = x( t); Ha a jel páros, akkor az időtükröző művelet nem változtatja meg a jelet, mert x ( t) = x(t), míg egy páratlan jel esetében mikor x( t) = x(t), a transzformált az Oxre nézve szimetrikus jel lesz. A következő ábra az időtükrözést mutat. x(t) = 0 ha t < T y(t) = 0 ha t < T 1 2 és t > T 2 és t > T 1 3
4 Legyen egy x [ n] : Z R egy diszkrét jel. Az időtükrözés művelete legyen y[n] = x[ n]. 1 ha n = 1 A diszkrét jel x[n] = 1 ha n = 1 és számítsuk ki y[n] = x[n] + x[ n] értékét. 0 ha n = 0 és n > 1 A következő ábrán láthatjuk az y [n] jel két kompenensét: Nem nehéz kiszámítani, hogy a két jel összege: y [n] = 0. Idő-eltolás Adott egy x(t): R R folytonos jel. Az idő-eltolás műveletet (t) = x(t t ); t 0; y 0 0 és t 0 egy véges valós szám. Ha t 0 > 0 akkor az időtengelyen jobbra toljuk (transzláció) az x(t) grafikonját, ha meg t 0 < 0 akkor meg az eltolás (transzláció) balra történik. Példa: Legyen egy x [ n] : Z R egy diszkrét jel. Az idő-eltolást y[n] = x[n M] alakban írhatjuk fel, ahol M egy egész szám. Legyen adott a következő diszkrét jel. 1 ha n = 1,2 1 ha n = 1, 2 x[n] = 1 ha n = 1, 2 akkor x [n + 3] = 1 ha n = 4, 5 0 ha n = 0 és n > 2 0 ha n = 3 és n > 1 Grafikus abrázolásuk: 4
5 Vegyük most a következő, nagyon fontos transzformációt: y(t) = x(a t b) ahol x,y : R R, vagyis valós függvények és a,b szigorúan pozitív valós számok. Alapvető az idő-eltolás és az időtükrözés műveletének a sorrendje. Ez a következő: Első lépés: elvégezzük az idő-eltolás műveletét ( t t b x(t) v(t) ) Második lépés: ezután elvégezzük az időtükrözés műveletét ( v(t) y(t) ) A következő ábrán láthatjk a helyes és a helytelen sorrendben végrehajtott műveleteket mutatja. Látható, hogy ez a transzformáció műveleti sorrendfüggő. Ez érvényes a diszkrét műveleti sorrend esetében is. Egy diszkrét jel esetében következik a helyes sorrendben végrehajtott műveletsor az y [n] = x[2 n + 3] kiszámítására ha a jel: x [n] = 1 ha 1 ha 0 ha n = 1,2 n = 1, 2 n = 0 és n > 2 Ezt a következő ábrán láthatjuk. 5
6 Feladatok: 1. Hozzátok létre a következő jeleket: 2. Származtassátok a következő jeleket: a. u(t)=x(t-t x ) b. v(t)=y(t+t y ) c. w(t)=y(2t+3) d. p(t)=z(-t+2) e. r[nt]=x[2nt-1] A folytonos jelek ábrázolására használjátok a plot függvényt, a diszkrétekére pedik a stem függvényt. A jelek(x,y,z) létrehozását legalább két módszerrel kérem! Kérdések: 1. Jeleken végzett összetett műveleteknél számít a sorrend? 2. Periodikus folytonos jelet mintavételezve az eredő diszkrét jel is periodikus lesz? Indokoljátok meg a választ példákkal. 3. Soroljatok fel általatok ismert öt jellegzetes jelet! 6
Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
RészletesebbenAnalízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk
RészletesebbenMATEMATIKA HETI 3 ÓRA
EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A
RészletesebbenA döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
RészletesebbenA SZÁMFOGALOM KIALAKÍTÁSA
A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése
Részletesebben1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!
1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.
RészletesebbenFeladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat) f(x) = 2x 2 x 4. 2x 2 x 4 = 0, x 2 (2 x 2 ) = 0.
Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat). Feladat. Végezzük el az f(x) = x x 4 ) Értelmezési tartomány: x R. ) A zérushelyet az f(x) = 0 egyenlet megoldásával kapjuk: amiből
RészletesebbenLineáris algebra gyakorlat
Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek
Részletesebben2004. december 1. Irodalom
LINEÁRIS LEKÉPEZÉSEK I. 2004. december 1. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenMBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla
MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális
RészletesebbenKombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/
Kombinatorika 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kombinatorika p. 1/ Permutáció Definíció. Adott n különböző elem. Az elemek egy meghatározott sorrendjét az adott
RészletesebbenAlgebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Relációk Waldhauser Tamás 2014 őszi félév Relációk reláció lat. 1. kapcsolat, viszony; összefüggés vmivel 2. viszonylat, vonatkozás reláció lat. 3. mat halmazok elemei
RészletesebbenEgységes jelátalakítók
6. Laboratóriumi gyakorlat Egységes jelátalakítók 1. A gyakorlat célja Egységes feszültség és egységes áram jelformáló áramkörök tanulmányozása, átviteli karakterisztikák felvétele, terhelésfüggőségük
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten RACIONÁLIS TÖRTFÜGGVÉNYEK INTEGRÁLJA Készítette: Gábor Szakmai felel s: Gábor Vázlat
RészletesebbenArany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
RészletesebbenOsztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
RészletesebbenPárhuzamos programozás
Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák
RészletesebbenAnalízis előadások. Vajda István. 2013. február 10. Neumann János Informatika Kar Óbudai Egyetem
Analízis előadások Vajda István Neumann János Informatika Kar Óbudai Egyetem 013. február 10. Vajda István (Óbudai Egyetem) Analízis előadások 013. február 10. 1 / 3 Az elemi függvények csoportosítása
RészletesebbenJátékok (domináns stratégia, alkalmazása. 2016.03.30.
Játékok (domináns stratégia, Nash-egyensúly). A Nashegyensúly koncepciójának alkalmazása. 2016.03.30. Játékelmélet és közgazdaságtan 1914: Zermelo (sakk) 1944. Neumann-Morgenstern: Game Theory and Economic
RészletesebbenJavítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
RészletesebbenOrszágos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 011/01 Matematika I. kategória (SZKKÖZÉPISKOL) Döntő 1. Határozza meg az összes olyan egész számot, amely eleget tesz az egyenlőtlenségnek! log
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.
MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály
3. osztály Két szám összege 33. Mennyi ennek a két számnak a különbsége, ha az egyik kétszerese a másiknak? Hány olyan háromjegyű szám van, amelyben a számjegyek összege legalább 25? 4. osztály A Zimrili
RészletesebbenDiszkrét matematika I., 11. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach 2005. november 22.
1 Diszkrét matematika I, 11 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 22 Permutációk Definíció Permutáción n különböző elem valamely sorrendjét
RészletesebbenProlog 1. Készítette: Szabó Éva
Prolog 1. Készítette: Szabó Éva Prolog Logikai, deklaratív nyelv. Egy logikai program egy modellre vonatkoztatott állítások halmaza, melyek a modell tulajdonságait, és az azok között fellépő kapcsolatokat
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 12 XII. STATIsZTIKA ellenőrző feladatsorok 1. FELADATsOR Megoldások: láthatók nem láthatók 1. minta: 6.10, 0.01, 6.97, 6.03, 3.85, 1.11,
RészletesebbenÉpületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának
Részletesebben[MECHANIKA- HAJLÍTÁS]
2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás
RészletesebbenMATLAB. 4. gyakorlat. Lineáris egyenletrendszerek, leképezések
MATLAB 4. gyakorlat Lineáris egyenletrendszerek, leképezések Menetrend Kis ZH MATLAB függvények Lineáris egyenletrendszerek Lineáris leképezések Kis ZH pdf MATLAB függvények a szkriptekhez hasonlóan az
RészletesebbenÉT: x R ÉK: y R ZH: x = 0 SZÉ: - SZMN páratlan fv. n a
A htváyozás iverz műveletei. (Htváy, gyök, logritmus) Ismétlés: Htváyozás egész kitevő eseté De.: :... Oly téyezős szorzt, melyek mide téyezője. : htváyl : kitevő : htváyérték A htváyozás zoossági egész
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály
5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,
RészletesebbenSzámrendszerek közötti átváltások
Számrendszerek közötti átváltások 10-es számrendszerből tetszőleges számrendszerbe Legyen az átváltani kívánt szám: 723, 10-es számrendszerben. Ha 10-esből bármilyen számrendszerbe kívánunk átváltani,
RészletesebbenADATBÁZIS-KEZELÉS. Funkcionális függés, normál formák
ADATBÁZIS-KEZELÉS Funkcionális függés, normál formák KARBANTARTÁSI ANOMÁLIÁK beszúrási anomáliák törlési anomáliák módosítási anomáliák DOLG_PROJ(Dszsz, Pszám, Dnév, Pnév, Órák) 2 MÓDOSÍTÁSI ANOMÁLIÁK
RészletesebbenFüggvényvizsgálat. Végezzük el az alábbi függvények teljes függvényvizsgálatát:
Végezzük el az alábbi függvények teljes függvényvizsgálatát: Függvényvizsgálat. f HL := 4-4. f HL := - 4 + 8. f HL := 5 + 5 4 4. f HL := 5. f HL := 6. f HL := - 9. f HL := + + 0. f HL := - 7. f HL :=.
RészletesebbenMágneses szuszceptibilitás vizsgálata
Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség
Részletesebben31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Részletesebben1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév
MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
RészletesebbenEPER E-KATA integráció
EPER E-KATA integráció 1. Összhang a Hivatalban A hivatalban használt szoftverek összekapcsolása, integrálása révén az egyes osztályok, nyilvántartások között egyezőség jön létre. Mit is jelent az integráció?
RészletesebbenBár a digitális technológia nagyon sokat fejlődött, van még olyan dolog, amit a digitális fényképezőgépek nem tudnak: minden körülmények között
Dr. Nyári Tibor Bár a digitális technológia nagyon sokat fejlődött, van még olyan dolog, amit a digitális fényképezőgépek nem tudnak: minden körülmények között tökéletes színeket visszaadni. A digitális
RészletesebbenEmelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
RészletesebbenKérdések és feladatok
Kérdések és feladatok 1. A mesében több szám is szerepel. Próbáld meg felidézni ezeket, majd töltsd ki a táblázatot! Ügyelj, hogy a páros és a páratlan számok külön oszlopba kerüljenek! Hány napos volt
RészletesebbenGAZDASÁGI MATEMATIKA 1. 1. Gyakorlat
GAZDASÁGI MATEMATIKA 1. 1. Gyakorlat Bemutatkozás Chmelik Gábor óraadó BGF-KKK Módszertani Intézeti Tanszéki Osztály chmelik.gabor@kkk.bgf.hu http://www.cs.elte.hu/ chmelik Fogadóóra: e-mailben egyeztetett
RészletesebbenMATEMATIKA VERSENY --------------------
Vonyarcvashegyi Eötvös Károly Általános Iskola 2014. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket
RészletesebbenÁramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot
RészletesebbenElektronikus tananyag MATEMATIKA 10. osztály II. félév
Elektronikus tananyag MATEMATIKA 0. osztály II. félév A hasonlósági transzformáció és alkalmazásai. Párhuzamos szelők és szelőszakaszok A párhuzamos szelők tétele TÉTEL: Ha egy szög szárait párhuzamos
RészletesebbenLineáris algebra jegyzet
Lineáris algebra jegyzet Készítette: Jezsoviczki Ádám Forrás: Az előadások és a gyakorlatok anyaga Legutóbbi módosítás dátuma: 2011-12-04 A jegyzet nyomokban hibát tartalmazhat, így fentartásokkal olvasandó!
RészletesebbenHázi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve)
Házi dolgozat Minta a házi dolgozat formai és tartalmi követelményeihez Készítette: (név+osztály) Iskola: (az iskola teljes neve) Dátum: (aktuális dátum) Tartalom Itt kezdődik a címbeli anyag érdemi kifejtése...
RészletesebbenHatározatlan integrál
. fejezet Határozatlan integrál Határozatlan integrál D. Azt mondjuk, hogy az egyváltozós valós f függvénynek a H halmazon primitív függvénye az F függvény, ha a H halmazon f és F értelmezve van, továá
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.
Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk
Részletesebben3. KÖRGEOMETRIA. 3.1. Körrel kapcsolatos alapismeretek
3. KÖRGEOMETRIA Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest, 89 109. és 121. oldal. Pelle Béla: Geometria, Tankönyvkiadó, Budapest, 86 97. és 117 121. oldal. Kovács Zoltán: Geometria,
RészletesebbenA skatulya-elv alkalmazásai
1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy
Részletesebbenö ú ö ő ő ü ö ö ű ö ő ö ű ö ő ő ö ü ö ő ö ő ő ü ö ű ú ö ő ü ö ú ú ú ő ő Ő ö ű
ö ő ü ö ö ő ö ö ö ö ő ő ő ö ő ő ő ö ő ö ő ő ö ö ő ő ö ö ő ö ö ő ö ö ö ő ő ü ö ő ü ű ö ú ő ú ú ú ő ü ő ü ö ö ú ö ö ö ő ü ö ö ö ő ö ő ö ú ö ő ő ü ö ö ű ö ő ö ű ö ő ő ö ü ö ő ö ő ő ü ö ű ú ö ő ü ö ú ú ú ő
RészletesebbenFÜGGVÉNYEK, SOROZATOK
FÜGGVÉNYEK, SOROZATOK A FÜGGVÉNYFOGALOM ELŐKÉSZÍTÉSE 1-6. OSZTÁLY Adott szabály követése Szabályfelismerés és szabálykövetés Szabályfelismerés és szabály megadása szöveggel, képlettel EGYENES ÉS FORDÍTOTT
RészletesebbenSzámelmélet I. 1. A tantárgy általános célja és specifikus célkitűzései
Számelmélet I. Tantárgy neve Számelmélet I. Tantárgy kódja MTB 1011 Meghirdetés féléve 3. félév Kreditpont 3 Összóraszám (elm+gyak) 2+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) MTB 1003
RészletesebbenVII. Gyermekszív Központ
VII. Gyermekszív Központ Dr. Szatmári András Magyarországon évente kb. 75-8 gyermek születik szívhibával, mely adat teljesen megegyezik az európai országok statisztikáival, nevezetesen, hogy 1 millió lakosra
RészletesebbenProgramozás. A programkészítés lépései. Program = egy feladat megoldására szolgáló, a számítógép számára értelmezhető utasítássorozat.
Programozás Programozás # 1 Program = egy feladat megoldására szolgáló, a számítógép számára értelmezhető utasítássorozat. ADATOK A programkészítés lépései 1. A feladat meghatározása PROGRAM EREDMÉNY A
Részletesebben1. Metrótörténet. A feladat folytatása a következő oldalon található. Informatika emelt szint. m2_blaha.jpg, m3_nagyvaradter.jpg és m4_furopajzs.jpg.
1. Metrótörténet A fővárosi metróhálózat a tömegközlekedés gerincét adja. A vonalak építésének története egészen a XIX. század végéig nyúlik vissza. Feladata, hogy készítse el a négy metróvonal történetét
RészletesebbenAWP 4.4.4 TELEPÍTÉSE- WINDOWS7 64 OPERÁCIÓS RENDSZEREN
Hatályos: 2014. február 13. napjától AWP 4.4.4 TELEPÍTÉSE- WINDOWS7 64 OPERÁCIÓS RENDSZEREN Telepítési segédlet 1054 Budapest, Vadász utca 31. Telefon: (1) 428-5600, (1) 269-2270 Fax: (1) 269-5458 www.giro.hu
RészletesebbenTRANZISZTOROS KAPCSOLÁSOK KÉZI SZÁMÍTÁSA
TRNZSZTOROS KPSOLÁSOK KÉZ SZÁMÍTÁS 1. gyenáramú számítás kézi számításokhoz az ábrán látható egyszerű közelítést használjuk: = Normál aktív tartományban a tranzisztort bázis-emitter diódáját az feszültségforrással
Részletesebbenészbontó ördöglakat Megoldófüzet a szétszedéshez Egyszemélyes játék 8 éves kortól
észbontó ördöglakat Megoldófüzet a szétszedéshez Egyszemélyes játék 8 éves kortól Importálja: Gém Klub Kft. 1092 Budapest, Ráday u. 30./B www.gemklub.hu 3 éven aluli gyerme keknek nem adható, mert az apró
RészletesebbenBoldva és Vidéke Taka r ékszövetkezet
A Takarékszövetkezet jelen ben szereplő, változó kamatozású i termékei esetében i kamatváltozást tesz közzé, az állandó (fix) kamatozású i termékek esetében pedig a 2014.06.15-től lekötésre kerülő ekre
RészletesebbenBoldva és Vidéke Taka r ékszövetkezet
A Takarékszövetkezet jelen ben szereplő, változó kamatozású i termékei esetében i kamatváltozást tesz közzé, az állandó (fix) kamatozású i termékek esetében pedig a 2014.08.13-tól lekötésre kerülő ekre
RészletesebbenELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra
ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:
RészletesebbenMAGYAR KÜZDELMEK HARMADIK GYAKORLAT ELINDULÁS NYERS SZÖVEG RENDBETÉTELE (ISMÉTLÉS) ÜZLETI INFORMATIKAI ESZKÖZÖK Kiadványszerkesztés
1 HARMADIK GYAKORLAT MAGYAR KÜZDELMEK A feladat megoldása során a Word 2010 használata a javasolt. Ebben a feladatban a következőket fogjuk gyakorolni: Kötetegyesítés. Címsorok előléptetése. Vázlat nézet
RészletesebbenAz informatika oktatás téveszméi
Az informatika oktatás Az informatika definíciója Definíció-1: az informatika az információ keletkezésével, továbbításával, tárolásával, feldolgozásával foglalkozó tudomány. Definíció-2: informatika =
RészletesebbenVasúti menetrendek optimalizálása
Vasúti menetrendek optimalizálása Jüttner Alpár ELTE TTK Operációkutatási Tsz. Jüttner Alpár (ELTE TTK) Vasúti menetrendek optimalizálása 1 / 10 Vasúti menetrendek tervezése Bemenet A vasúthálózat leírása
RészletesebbenAz aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek!
1 Mindannyiunk életében előfordulnak jelentős évek, amikor is egy-egy esemény hatására a sorsunk új irányt vesz. Bár ezen események többségének ott és akkor kevésbé tulajdonítunk jelentőséget, csak idővel,
RészletesebbenA mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban.
E II. 6. mérés Műveleti erősítők alkalmazása A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. A mérésre való felkészülés
Részletesebbenhttp://www.olcsoweboldal.hu ingyenes tanulmány GOOGLE INSIGHTS FOR SEARCH
2008. augusztus 5-én elindult a Google Insights for Search, ami betekintést nyújt a keresőt használók tömegeinek lelkivilágába, és időben-térben szemlélteti is, amit tud róluk. Az alapja a Google Trends,
RészletesebbenAzonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
RészletesebbenShared IMAP beállítása magyar nyelvű webmailes felületen
Shared IMAP beállítása magyar nyelvű webmailes felületen A következő ismertető segítséget nyújt a szervezeti cím küldőként való beállításában a caesar Webmailes felületén. Ahhoz, hogy a Shared Imaphoz
RészletesebbenMesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók
Részletesebben3. Matematikai logika (megoldások)
(megoldások) 1. Hamis, ugyanis P, Q és R logikai értékét behelyettesítve kapjuk: (P Q) R = (1 0) 0 = 0 0 = 0. (Ebben és a további feladatok megoldásában alkalmazzuk a D 3.1 denícióit. A megoldást célszer
RészletesebbenMatematika III. 1. Kombinatorika Prof. Dr. Závoti, József
Matematika III. 1. Kombinatorika Prof. Dr. Závoti, József Matematika III. 1. : Kombinatorika Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
RészletesebbenProgramozás I. - 9. gyakorlat
Programozás I. - 9. gyakorlat Mutatók, dinamikus memóriakezelés Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer- és Számítástudományi Tanszék Utolsó frissítés: November 9, 2009 1 tar@dcs.vein.hu
RészletesebbenSz ekelyhidi L aszl o Val osz ın us egsz am ıt as es matematikai statisztika *************** Budapest, 1998
Székelyhidi László Valószínűségszámítás és matematikai statisztika *************** Budapest, 1998 Előszó Ez a jegyzet a valószínűségszámításnak és a matematikai statisztikának azokat a fejezeteit tárgyalja,
RészletesebbenI. rész. Pótlapok száma Tisztázati Piszkozati. Név:...osztály:... Matematika kisérettségi. 2012. május 15. Fontos tudnivalók
Matematika kisérettségi 2012. május 15. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az id elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetsz leges. 3. A
RészletesebbenÉrettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6. Alapműveletek
Érettségi feladatok Algoritmusok egydimenziós tömbökkel (vektorokkal) 1/6 A tömbök deklarálásakor Pascal és C/C++ nyelvekben minden esetben meg kell adni az indexelést (Pascal) vagy az elemszámot (C/C++).
RészletesebbenMAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Másodfokú egyenletek. Ismétlés 1. óra: Másodfokú egyenletek,
RészletesebbenMÁTRIXOK SAJÁTÉRTÉKEINEK ÉS SAJÁTVEKTORAINAK KISZÁMÍTÁSA. 1. Definíció alkalmazásával megoldható feladatok
Bevezetés: MÁTRIXOK SAJÁTÉRTÉKEINEK ÉS SAJÁTVEKTORAINAK KISZÁMÍTÁSA Jelölés: A mátrix sajátértékeit λ 1, λ 2, λ 3,.stb. betűkkel, míg a különböző sajátvektorokat x 1, x 2, x 3 stb. módon jelöljük Definíció:
RészletesebbenDr. Schuster György. 2014. február 21. Real-time operációs rendszerek RTOS
Real-time operációs rendszerek RTOS 2014. február 21. Az ütemező (Scheduler) Az operációs rendszer azon része (kódszelete), mely valamilyen konkurens hozzáférés-elosztási problémát próbál implementálni.
RészletesebbenA fogyasztói elmélet központi kérdése
(C htt://kgt.be.hu/ /0 -. elıadás: A fogyasztó költségvetési korlátja, referenciái és hasznosság A fogyasztói elélet közonti kérdése Ait egfigyelhetünk: egy jószág ára és az adott ár ellett keresett ennyiség
RészletesebbenTöbbfelhasználós adatbázis környezetek, tranzakciók, internetes megoldások
Többfelhasználós adatbázis környezetek, tranzakciók, internetes megoldások Alkalmazás modellek Egy felhasználós környezet Több felhasználós környezet adatbázis Központi adatbázis adatbázis Osztott adatbázis
RészletesebbenLineáris algebra és a rang fogalma (el adásvázlat, 2008. május 29.) Maróti Miklós
Lineáris algebra és a rang fogalma (el adásvázlat, 2008. május 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest feletti
RészletesebbenVariációk egy témára - táblázatkezelő feladatok megoldása többféleképpen
Variációk egy témára - táblázatkezelő feladatok megoldása többféleképpen Fehérné Mázsár Gabriella (femaga@index.hu) A gondolkodás fejlesztésének a programozás mellett a másik nagyon hatékony lehetősége
RészletesebbenTANTÁRGYI ÚTMUTATÓ. Logisztika. tanulmányokhoz
IV. évfolyam Számvitel szakirány BA TANTÁRGYI ÚTMUTATÓ Logisztika tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Logisztika Tanszék: Vállalkozás és Emberi
RészletesebbenTART TECH KFT. 9611 Csénye, Sport u. 26. Tel.: 95/310-221 Fax: 95/310-222 Mobil: 30/9973-852 E-mail: tarttech@mail.globonet.hu www.tart-tech.
TART TECH KFT. 9611 Csénye, Sport u. 26. Tel.: 95/310-221 Fax: 95/310-222 Mobil: 30/9973-852 E-mail: tarttech@mail.globonet.hu www.tart-tech.hu HASZNÁLATI UTASÍTÁS S3000/L típusú silómérleg vezérlőegységhez
RészletesebbenGazdasági matematika II.
PÉNZÜGYI ÉS SZÁMVITELI KAR MESTERKÉPZÉSI ÉS TÁVOKTATÁSI KÖZPONT 1149 BUDAPEST, BUZOGÁNY U. 10-12. : 06-1-469-6600 I. évfolyam TANTÁRGYI ÚTMUTATÓ Gazdasági matematika II. 2013/2014. II. félév PÉNZÜGYI ÉS
RészletesebbenM A G Y A R K O N G R E S S Z U S I I R O D A
Magyar Turizmus Zártkörűen Működő Részvénytársaság Magyar Kongresszusi Iroda 1115 Budapest, Bartók Béla út 105-113. Tel.: (06-1) 488-8640 Fax: (06-1) 488-8641 E-mail: hcb@hungarytourism.hu www.hcb.hu A
Részletesebben(Gyakorló feladatok)
Differenciálszámítás (Gyakorló feladatok) Programtervező matematikus szakos hallgatóknak az Analízis 3. című tárgyhoz Összeállította: Szili László L-Sch -sel hivatkozunk a Leindler Schipp jegyzetre 2004.
RészletesebbenÁrverés kezelés ECP WEBSHOP BEÉPÜLŐ MODUL ÁRVERÉS KEZELŐ KIEGÉSZÍTÉS. v2.9.28 ECP WEBSHOP V1.8 WEBÁRUHÁZ MODULHOZ
v2.9.28 Árverés kezelés ECP WEBSHOP BEÉPÜLŐ MODUL ÁRVERÉS KEZELŐ KIEGÉSZÍTÉS ECP WEBSHOP V1.8 WEBÁRUHÁZ MODULHOZ AW STUDIO Nyíregyháza, Luther utca 5. 1/5, info@awstudio.hu Árverés létrehozása Az árverésre
RészletesebbenFelvételi 2013 Felvételi tájékoztató 2013
Felvételi 2013 A döntést segítő kiadványok Felsőoktatási felvételi tájékoztató 2013. szeptemberben induló képzésekre honlap : www.felvi.hu Felvételi tájoló 2013. (Felvi-rangsorokkal) Képzési szintek A:
RészletesebbenDiszkrét matematika I. gyakorlat
Diszkrét matematika I. gyakorlat 1. Gyakorlat Bogya Norbert Bolyai Intézet 2012. szeptember 4-5. Bogya Norbert (Bolyai Intézet) Diszkrét matematika I. gyakorlat 2012. szeptember 4-5. 1 / 21 Információk
RészletesebbenAdatok ábrázolása, adattípusok. Összefoglalás
Adatok ábrázolása, adattípusok Összefoglalás Adatok ábrázolása, adattípusok Számítógépes rendszerek működés: információfeldolgozás IPO: input-process-output modell információ tárolása adatok formájában
Részletesebben