GAZDASÁGI MATEMATIKA Gyakorlat
|
|
- Géza Tóth
- 8 évvel ezelőtt
- Látták:
Átírás
1 GAZDASÁGI MATEMATIKA Gyakorlat
2 Bemutatkozás Chmelik Gábor óraadó BGF-KKK Módszertani Intézeti Tanszéki Osztály chmelik Fogadóóra: ben egyeztetett időpontban Szoba: D.II.12.
3 Általános információk A tantárggyal kapcsolatos minden fontos információ elérhető lesz a félév folyamán a honlapomon, a Coospace rendszerben, vagy a Neptunban. Folyamatosan figyeljék az online felületeket! A tantárgy heti 1 sáv előadásból és 1 sáv gyakorlatból áll. Kreditértéke: 4. Ez 120 tanulmányi munkaórát jelent. A tárgy kizárólag a gimnáziumi érettségi tananyagának ismeretére épít.
4 A tantárgy teljesítése Az aláírás feltételei: Max. 2 hiányzás a félév során. (TVSZ) A szintfelmérő dolgozat megfelelt minősítése. A minimumfeladatok megoldására kapható 30 pontból minimum 20 pont elérése. A számonkérés rendje: 1. ZH: 4. tanítási hét, 7 feladat, 60 perc, 10 pont (4 + 6) 2. ZH: I. ZH hét, 10 feladat, 80 perc, 35 pont ( ) 3. ZH: II. ZH hét, 12 feladat, 100 perc, 55 pont ( ) A félévközi ZH dolgozatok nem pótolhatók vagy javíthatók.
5 Az értékelés Az aláírást szerzett hallgatók értékelésére a pontszámaik alapján az alábbi táblázatot használjuk: pont jeles (5) pont jó (4) pont közepes (3) pont elégséges (2) 0 49 pont elégtelen (1) Elégtelen gyakorlati jegy esetén a vizsgaidőszakban 100 pontos, 90 perces ismétlővizsga tehető a TVSZ szerint.
6 Irodalom Kötelező irodalom: Az előadásokon és gyakorlatokon elhangzottak Dr. Csernyák László: Analízis Nemzeti Tankönykiadó, Budapest, Szentelekiné Dr. Páles Ilona: Analízis példatár Nemzeti Tankönykiadó, Budapest, Ajánlott irodalom: Bárczy Barnabás: Differenciálszámítás (Bolyai-könyvek), Műszaki Könyvkiadó, Bárczy Barnabás: Integrálszámítás (Bolyai-könyvek), Műszaki Könyvkiadó, 2006.
7 A félév témakörei 1. 1 Alapfogalmak, jelölések Számhalmazok, logikai alapok, kvantorok, matematikai eszköztár 2 Számsorozatok, függvények és alkalmazásaik N R függvények, sorozat monotonitása, korlátossága, határértéke, konvergenciája, küszöbindex számítás, R R függvények, inverz függvény, összetett függvény, folytonosság, monotonitás, függvényhatárérték
8 A félév témakörei 2. 3 Differenciálszámítás és alkalmazásai Deriválási szabályok, módszerek, szélsőértékek, elaszticitás, érintő egyenes egyenlete, határköltség, határhaszon, teljes függvényvizsgálat, többváltozós függvények vizsgálata 4 Integrálszámítás és alkalmazásai Határozatlan integrál, határozott integrál, integrálási szabályok, módszerek, improprius integrál, területszámítás, gazdasági alkalmazások
9 Számhalmazok
10 Jelölések, alapfogalmak A legfeljebb n-ed fokú polinom: P n (x) = a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0 x-et a fenti polinom gyökének nevezzük, ha a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0 = 0. A matematikai logika eszköztára: létezik:, nem létezik:, minden:, tagadás:, részhalmazok:, üreshalmaz: /0, eleme:, nem eleme: /, következtetés: =, akkor és csak akkor:.
11 Számsorozatok 1. Definíció A két halmaz elemei közötti egyértelmű hozzárendeléseket függvényeknek nevezzük és az alábbi módon jelöljük: f : A B Definíció Az (a n ) : N R függvényeket számsorozatoknak nevezzük. a n jelöli az (a n ) sorozat n-edik tagját. Példa Legyen a 1 = a 2 = 1, a n = a n 1 + a n 2. Ekkor a sorozat első néhány tagja: 1,1,2,3,5,8,13,21,34,55,89,... Ez az úgynevezett Fibonacci-sorozat.
12 Számsorozatok 2. Példa Legyen a n = 6n+1 2n 1. Ekkor a sorozat tagjai egy Descartes-féle koordinátarendszerben ábrázolhatók:
13 Sorozatok tulajdonságai 1. A sorozatok globális szintű, hosszú távú viselkedését a monotonitás, illetve annak hiánya (oszcilláció vagy véletlenszerű viselkedés) határozza meg. Erre vonatkozóan az alábbi definíciókat fogalmazzuk meg: Definíció (Monotonitás) Azt mondjuk, hogy az (a n ) sorozat szigorúan monoton növekedő, ha a n < a n+1 n N esetén. monoton növekedő, ha a n a n+1 n N esetén. monoton csökkenő, ha a n a n+1 n N esetén. szigorúan monoton csökkenő, ha a n > a n+1 n N esetén.
14 Sorozatok tulajdonságai 2. Az előbbi definícióval ekvivalens az alábbi: Definíció (Monotonitás) Ha az (a n ) sorozatra n N esetén igaz, hogy a n a n+1 < 0, akkor az (a n ) szigorúan monoton növekedő. a n a n+1 0, akkor az (a n ) monoton növekedő. a n a n+1 0, akkor az (a n ) monoton csökkenő. a n a n+1 > 0, akkor az (a n ) szigorúan monoton csökkenő. Egy sorozat monotonitását tehát legegyszerűbb módon az a n a n+1 különbség és a 0 relációjának megállapításával tudjuk bizonyítani.
15 Sorozatok tulajdonságai 3. Definíció (Korlátosság) Azt mondjuk, hogy az (a n ) sorozat alulról korlátos, ha létezik olyan k R szám, amelyre k a n minden n N esetén. Azt mondjuk, hogy az (a n ) sorozat felülről korlátos, ha létezik olyan K R szám, amelyre a n K minden n N esetén. Azt mondjuk, hogy az (a n ) sorozat korlátos, ha alulról és felülről is korlátos, azaz létezik olyan k,k R, amelyekre teljesül, hogy k a n K minden n N esetén.
16 Sorozatok tulajdonságai 4. Ha létezik az (a n ) sorozatnak egy alsó illetve egy felső korlátja, akkor könnyen látható, hogy végtelen sok alsó illetve felső korlát létezik. Ezért bevezetjük a következő két fogalmat: Definíció Az (a n ) sorozat legnagyobb alsó korlátját infimumnak nevezzük. Jelölése: infa n Az (a n ) sorozat legkisebb felső korlátját supremumnak nevezzük. Jelölése: supa n
17 Sorozatok tulajdonságai 5. Definíció (Határérték és konvergencia) Az (a n ) sorozat határértéke az A szám, ha minden ε>0 valós számhoz létezik olyan n 0 N küszöbindex, hogy minden n > n 0 (n N) esetén a n A < ε. Ha egy sorozatnak van véges határértéke, akkor konvergensnek, ha nincs, akkor divergensnek nevezzük, és az alábbi módon jelöljük: lim a n = A n
18 Feladat Vizsgáljuk meg monotonitás, korlátosság és konvergencia szempontjából az alábbi sorozatot, számoljuk ki a határértékét, majd határozzuk meg az n 0 N küszöbindexet ε = esetén! a n = 6n + 1 2n 1.
19 Köszönöm a figyelmet! Kérdések? Gyakorlófeladatok elérhetők a Coospace-n!
Gazdasági matematika I.
I. évfolyam TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. 2011/2012 I. félév Tantárgy megnevezése Tantárgyi útmutató Gazdasági Matematika I. (Analízis) Tantárgy kódja: Tantárgy jellege/típusa: Módszertani
TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2014/2015-ös tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani
Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
Diszkrét matematika I. gyakorlat
Diszkrét matematika I. gyakorlat 1. Gyakorlat Bogya Norbert Bolyai Intézet 2012. szeptember 4-5. Bogya Norbert (Bolyai Intézet) Diszkrét matematika I. gyakorlat 2012. szeptember 4-5. 1 / 21 Információk
Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk
Halmazok és függvények
Halmazok és függvények Óraszám: 2+2 Kreditszám: 6 Meghirdető tanszék: Analízis Debrecen, 2005. A tárgy neve: Halmazok és függvények (előadás) A tárgy oktatója: Dr. Gilányi Attila Óraszám/hét: 2 Kreditszám:
Kidolgozott. Dudás Katalin Mária
Dudás Katalin Mária Kidolgozott matematikatételek mérnökök számára Ez a könyv műfaját tekintve az összefoglaló kézikönyv és az egyetemi jegyzet közé helyezhető. Tömören összegyűjti a mérnöki tanulmányok
TANTÁRGYI ÚTMUTATÓ. Pénzügyi-számviteli informatika 2. tanulmányokhoz
IV. évfolyam Pénzügy és Számvitel Szak/Minden szakirány BA TANTÁRGYI ÚTMUTATÓ Pénzügyi-számviteli informatika 2. tanulmányokhoz TÁVOKTATÁS 2014/2015. I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Pénzügyi-számviteli
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
Matematika példatár 2.
Matematika példatár 2. Sorok, függvények határértéke és Csabina, Zoltánné Matematika példatár 2.: Sorok, függvények határértéke és Csabina, Zoltánné Lektor: PhD. Vigné dr Lencsés, Ágnes Ez a modul a TÁMOP
MATEMATIKA HETI 3 ÓRA
EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
A döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika II. tanulmányokhoz
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika II. tanulmányokhoz TÁVOKTATÁS 2014/2015-ös tanév II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika II. (Valószínűségszámítás)
TANTÁRGYI ÚTMUTATÓ. Prezentáció és íráskészségfejlesztés. tanulmányokhoz
I. évfolyam GM és PSZ szak BA TANTÁRGYI ÚTMUTATÓ Prezentáció és íráskészségfejlesztés tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Prezentáció és íráskészség
Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév
Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra
BEVEZETÉS AZ ANALÍZISBE
BEVEZETÉS AZ ANALÍZISBE Székelyhidi László A felsőbb matematika kapujában Jelen kiadvány a Palotadoktor Bt. kiadásában készült. A munkát lektorálta: Lovas Rezső (Debreceni Egyetem, Matematikai Intézet)
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten RACIONÁLIS TÖRTFÜGGVÉNYEK INTEGRÁLJA Készítette: Gábor Szakmai felel s: Gábor Vázlat
Analízis deníciók és tételek gy jteménye
Analízis deníciók és tételek gy jteménye Óbudai Egyetem Neumann János Informatikai Kar Ez a jegyzet az Analízis el adásokon a két félév alatt elhangzott legfontosabb deníciókat és tételeket tartalmazza,
Matematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
Matematika példatár 2.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Csabina Zoltánné Matematika példatár 2 MAT2 modul Sorok, függvények határértéke és folytonossága Aszimptoták SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Analízis előadás és gyakorlat vázlat
Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:
TANTÁRGYI ÚTMUTATÓ. Logisztika. tanulmányokhoz
IV. évfolyam Számvitel szakirány BA TANTÁRGYI ÚTMUTATÓ Logisztika tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Logisztika Tanszék: Vállalkozás és Emberi
1. Bevezető előadás. Schulcz Róbert schulcz@hit.bme.hu (1) 463 3284 (70) 366 51 19
Dokumentumszerkesztés Word kurzus előadás Schulcz Róbert schulcz@hit.bme.hu (1) 463 3284 (70) 366 51 19 A tananyagot kizárólag a BME hallgatói használhatják fel tanulási céllal. Minden egyéb felhasználáshoz
PONTSZÁMÍTÁSI KÉRELEM felsőfokú végzettség alapján (alap- és osztatlan képzésre jelentkezőknek)
PONTSZÁMÍTÁSI KÉRELEM felsőfokú végzettség alapján (alap- és osztatlan képzésre jelentkezőknek) PÉCSI TUDOMÁNYEGYETEM Jelentkezői adatok Jelentkező neve: Felvételi azonosító: Születési dátum: Anyja neve:
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek
MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI
A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja
Gazdasági matematika II.
PÉNZÜGYI ÉS SZÁMVITELI KAR MESTERKÉPZÉSI ÉS TÁVOKTATÁSI KÖZPONT 1149 BUDAPEST, BUZOGÁNY U. 10-12. : 06-1-469-6600 I. évfolyam TANTÁRGYI ÚTMUTATÓ Gazdasági matematika II. 2013/2014. II. félév PÉNZÜGYI ÉS
Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!
Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április
1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!
1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.
FÜGGVÉNYEK, SOROZATOK
FÜGGVÉNYEK, SOROZATOK A FÜGGVÉNYFOGALOM ELŐKÉSZÍTÉSE 1-6. OSZTÁLY Adott szabály követése Szabályfelismerés és szabálykövetés Szabályfelismerés és szabály megadása szöveggel, képlettel EGYENES ÉS FORDÍTOTT
2004. december 1. Irodalom
LINEÁRIS LEKÉPEZÉSEK I. 2004. december 1. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla
MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális
Energiagazdálkodás II. kommunikációs dosszié ENERGIAGAZDÁLKODÁS LEVELEZŐ ANYAGMÉRNÖK ALAPKÉPZÉS HŐENERGIA-GAZDÁLKODÁSI SZAKIRÁNY
ENERGIAGAZDÁLKODÁS LEVELEZŐ ANYAGMÉRNÖK ALAPKÉPZÉS HŐENERGIA-GAZDÁLKODÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR TÜZELÉSTANI ÉS HŐENERGIA INTÉZETI TANSZÉK
Energiahordozók I. kommunikációs dosszié ENERGIAHORDOZÓK I. ANYAGMÉRNÖK ALAPKÉPZÉS HŐENERGIA-GAZDÁLKODÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
ENERGIAHORDOZÓK I. ANYAGMÉRNÖK ALAPKÉPZÉS HŐENERGIA-GAZDÁLKODÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR TÜZELÉSTANI ÉS HŐENERGIA INTÉZETI TANSZÉK Miskolc,
Tantárgyi program 2015/2016. tanév, 1. félév
Budapesti Gazdasági Főiskola Pénzügyi és Számviteli Kar Vállalkozás és Emberi Erőforrás Intézeti Tanszék Tantárgyi program 2015/2016. tanév, 1. félév Gazdálkodási és Menedzsment Alapszak, III. év, Vállalkozásszervezés
Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Relációk Waldhauser Tamás 2014 őszi félév Relációk reláció lat. 1. kapcsolat, viszony; összefüggés vmivel 2. viszonylat, vonatkozás reláció lat. 3. mat halmazok elemei
Operációkutatás. 2. konzultáció: Lineáris programozás (2. rész) Feladattípusok
Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 00/003 tanév, II évf félév Előadó: Dr Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs u 9 GT fszt 3 (99) 58 640
KÖVETELMÉNYEK. a) A foglalkozásokon való részvétel: a TVSZ. előírásai az irányadóak
Szövegszerkesztés I. GP1004L. Kreditpont 2 Heti kontaktóraszám (elm.+gyak.) 0+2 Gyakorlati jegy Tantárgy oktatója és beosztása Veres Gabriella főiskolai docens a) A foglalkozásokon való részvétel: a TVSZ.
Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat) f(x) = 2x 2 x 4. 2x 2 x 4 = 0, x 2 (2 x 2 ) = 0.
Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat). Feladat. Végezzük el az f(x) = x x 4 ) Értelmezési tartomány: x R. ) A zérushelyet az f(x) = 0 egyenlet megoldásával kapjuk: amiből
JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok
JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet
2011. március 9. Dr. Vincze Szilvia
. márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer
KÖVETELMÉNYEK 2015/2016. 2. félév. Informatika II.
2015/2016. 2. félév Tantárgy neve Informatika II. Tantárgy kódja TAB1110 Meghirdetés féléve 4. Kreditpont 1 Heti kontakt óraszám (gyak.) 0 + 1 Előfeltétel (tantárgyi kód) TAB1109 Tantárgyfelelős neve és
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás
MATEMATIKA 1-12. ÉVFOLYAM
MATEMATIKA 1-12. ÉVFOLYAM SZERZŐK: Veppert Károlyné, Ádám Imréné, Heibl Sándorné, Rimainé Sz. Julianna, Kelemen Ildikó, Antalfiné Kutyifa Zsuzsanna, Grószné Havasi Rózsa 1 1-2. ÉVFOLYAM Gondolkodási, megismerési
felsőfokú szakképzések szakirányú továbbképzések informatikai alapszakok informatikai mesterszakok informatikai doktori iskola
felsőfokú szakképzések szakirányú továbbképzések informatikai alapszakok informatikai mesterszakok informatikai doktori iskola Általános rendszergazda WEB - programozó Informatika tanár Társadalom-informatikai
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
Tantárgyi program. 9. A tantárgy hallgatásának előfeltétele, előképzettségi szint: 10. A tantárgy tartalma:
Tantárgyi program 1. A tantárgy neve, kódja: AVM_VFLB111-K5 Marketing menedzsment 2. A neve, beosztása: 3. Szakcsoport (szakirány) megnevezése: Vállalkozásfejlesztés MSc szak, levelező tagozat 4. A tantárgy
A SZÁMFOGALOM KIALAKÍTÁSA
A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése
Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás
12. évfolyam Osztályozó vizsga 2013. augusztus Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás Ismerje a számsorozat
KÖVETELMÉNYEK. Anyanyelvi tantárgy-pedagógia III. Tantárgy kódja TAB 1312 Meghirdetés féléve 4. Kreditpont 2 Heti kontaktóraszám (elm. + gyak.
Anyanyelvi tantárgy-pedagógia III. Tantárgy kódja TAB 1312 Meghirdetés féléve 4. Heti kontaktóraszám (elm. + gyak.) 0+2 Előfeltétel (tantárgyi kód) TAB1310, TAB 1311 2 óra szeminárium a részvétel kötelező.
(Gyakorló feladatok)
Differenciálszámítás (Gyakorló feladatok) Programtervező matematikus szakos hallgatóknak az Analízis 3. című tárgyhoz Összeállította: Szili László L-Sch -sel hivatkozunk a Leindler Schipp jegyzetre 2004.
Javítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS
Függvényvizsgálat. Végezzük el az alábbi függvények teljes függvényvizsgálatát:
Végezzük el az alábbi függvények teljes függvényvizsgálatát: Függvényvizsgálat. f HL := 4-4. f HL := - 4 + 8. f HL := 5 + 5 4 4. f HL := 5. f HL := 6. f HL := - 9. f HL := + + 0. f HL := - 7. f HL :=.
Az informatika oktatás téveszméi
Az informatika oktatás Az informatika definíciója Definíció-1: az informatika az információ keletkezésével, továbbításával, tárolásával, feldolgozásával foglalkozó tudomány. Definíció-2: informatika =
Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék
III 1. Aritmetika 1 1.1. Elemi számolási szabályok............................... 1 1.1.1. Számok..................................... 1 1.1.1.1. Természetes, egész és racionális számok.............. 1
Oktatói munka hallgatói véleményezése. Oktatók
Oktatói munka hallgatói véleményezése Oktatók Eredmények 1. A diákok órákon való részvételi hajlandósága eltérő attitűdöket mutat. A hallgatók négyötöde (80%) gyakori látogatója az előadásoknak, szemináriumoknak.
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók
Matematika emelt szint a 11-12.évfolyam számára
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka
A zárthelyik időpontja: 1. zh: 2013. október 10. A1/128.(manuális és számítógépes) 2. zh: 2013. december 05. A1/128. (manuális és számítógépes)
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Pénzügyi Intézeti Tanszék Tájékoztató PÉNZÜGYI SZÁMÍTÁSOK ÉS PÉNZÜGYI PIACOK (105B) tantárgyból II. éves nappali
TANTÁRGYI ÚTMUTATÓ EMBERI ERŐFORRÁS SZAK NAPPALI TAGOZAT
Számvitel Intézeti Tanszék /fax: 383-8480 Budapest 72. Pf.: 35. 1426 II. ÉVFOLYAM TANTÁRGYI ÚTMUTATÓ EMBERI ERŐFORRÁS SZAK NAPPALI TAGOZAT Kontrolling alapjai c. tárgy tanulmányozásához 2014/2015.tanév
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
FIT-jelentés :: 2013. Zoltánfy István Általános Iskola 6772 Deszk, Móra F. u. 2. OM azonosító: 200909 Telephely kódja: 005. Telephelyi jelentés
FIT-jelentés :: 2013 6. évfolyam :: Általános iskola Zoltánfy István Általános Iskola 6772 Deszk, Móra F. u. 2. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon
Felvételi 2013 Felvételi tájékoztató 2013
Felvételi 2013 A döntést segítő kiadványok Felsőoktatási felvételi tájékoztató 2013. szeptemberben induló képzésekre honlap : www.felvi.hu Felvételi tájoló 2013. (Felvi-rangsorokkal) Képzési szintek A:
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 2 II TÖbbVÁLTOZÓS FÜGGVÉNYEk INTEGRÁLÁSA 1 Kettős INTEGRÁL Legyen f(x,y) a T tartományon nemnegatív kétváltozós függvény Jelölje V azt a hengerszerű testet, amelyet alulról a
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2010. május 1. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 1. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
Analízisfeladat-gyűjtemény IV.
Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította
Analízis lépésről - lépésre
Analízis lépésről - lépésre interaktív tananyag Dr. Stettner Eleonóra Klingné Takács Anna Analízis lépésről - lépésre: interaktív tananyag írta Dr. Stettner Eleonóra és Klingné Takács Anna Tartalom Előszó...
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok
MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve
MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.
MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik
Helyi önkormányzatok. Tárgy jellege: előadás Kreditértéke: 3
Helyi önkormányzatok Tárgy neve: Helyi önkormányzatok Szak: igazgatásszervező Neptun kódja: I 403 E Helye a mintatantervben: 3. szemeszter Meghirdetés: őszi Tárgy besorolása: kötelező Tárgy jellege: előadás
matematikai statisztika 2006. október 24.
Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................
DUÁLIS KÉPZÉSI MÓDSZERTAN
DUÁLIS KÉPZÉSI MÓDSZERTAN KIALAKÍTÁSA A SZOLNOKI FŐISKOLÁN DR KÓRÓDI MÁRTA OKTATÁSI ÉS TUDOMÁNYOS REKTORHELYETTES TURIZMUS-VENDÉGLÁTÁS SZAK SZAKFELELŐS INTÉZMÉNYI SAJÁTOSSÁGOK MÉRET SZERVEZETI TAGOLTSÁG
Jelek tanulmányozása
Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás
Dinamikus geometriai programok
2011 október 22. Eszköz és médium (fotó: http://sliderulemuseum.com) Enter MTM1007L információ: zeus.nyf.hu/ kovacsz feladatok: moodle.nyf.hu Reform mozgalmak A formális matematikát az életkori sajátosságoknak
Testnevelés tantárgyból felvehető modulok Érvényes: 2012. szeptembertől. I-IV. félév 1.Tanórai sport (hetente egy óra, vagy 2 hetente 1 dupla óra)
I-IV. félév 1.Tanórai sport (hetente egy óra, vagy 2 hetente 1 dupla óra) DFAN-DSE 101. 201. DFAN-DSE 102. 202. DFAN-DSE 103. 203. DFAN-DSE 104. 204. DFAN-DSE 105. 205. DFAN-DSE 106. 206. DFAN-DSE 107.
Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.
Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)
Sorozatok és Sorozatok és / 18
Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle
Modern analízis I. Mértékelmélet
Modern analízis I. Mértékelmélet Halmazalgebrák 1. Feladat. Az (X n ) n N halmazsorozat limes superiorán a lim sup X n = X k halmazt értjük, míg az (X n ) n N halmazsorozat limes inferiorán a lim inf X
Az indukció. Azáltal, hogy ezt az összefüggést felírtuk, ezúttal nem bizonyítottuk, ez csak sejtés!
Az indukció A logikában indukciónak nevezzük azt a következtetési módot, amelyek segítségével valamely osztályon belül az egyes esetekb l az általánosra következtetünk. Például: 0,, 804, 76, 48 mind oszthatóak
Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból
Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.
Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam
Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az
Homlokzati tűzterjedés vizsgálati módszere
Homlokzati tűzterjedés vizsgálati módszere Siófok 2008. április 17. Dr. Bánky Tamás Nyílásos homlokzatok esetén a tűzterjedési gát kritériumait nem kielégítő homlokzati megoldásoknál továbbá nyílásos homlokzatokon
TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT
Számvitel Intézeti Tanszék /fax: 383-8480 Budapest 72. Pf.: 35. 1426 (I.) ÉVFOLYAM TANTÁRGYI ÚTMUTATÓ NAPPALI TAGOZAT Pénzügyi számvitel 1 c. tárgy tanulmányozásához 2013/2014.tanév II. félév 1 A tantárgy
Kétegyházi Márki Sándor Általános Iskola 028327. Különös közzétételi lista
Kétegyházi Márki Sándor Általános 028327 Különös közzétételi lista 2015/2016 1. A pedagógusok iskolai végzettsége és szakképzettsége hozzárendelve a helyi tanterv tantárgyfelosztásához Szak Szakvizsga
Áramlás- és zárószelepek Logikai szelep Logikai szelepek (ÉS / VAGY) Katalógus füzetek
Áramlás- és zárószelepek Logikai szelep Katalógus füzetek 2 Áramlás- és zárószelepek Logikai szelep Váltószelep (VAGY) Qn = 80 l/min Alaplapos szelep csőcsatlakozással Sűrített levegő csatlakozás bemenet:
Kombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/
Kombinatorika 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kombinatorika p. 1/ Permutáció Definíció. Adott n különböző elem. Az elemek egy meghatározott sorrendjét az adott
Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép és készülékszerelő
Analízis előadások. Vajda István. 2013. február 10. Neumann János Informatika Kar Óbudai Egyetem
Analízis előadások Vajda István Neumann János Informatika Kar Óbudai Egyetem 013. február 10. Vajda István (Óbudai Egyetem) Analízis előadások 013. február 10. 1 / 3 Az elemi függvények csoportosítása
Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ
MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a
Számelmélet I. 1. A tantárgy általános célja és specifikus célkitűzései
Számelmélet I. Tantárgy neve Számelmélet I. Tantárgy kódja MTB 1011 Meghirdetés féléve 3. félév Kreditpont 3 Összóraszám (elm+gyak) 2+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) MTB 1003
KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN)
0801 ÉRETTSÉGI VIZSGA 009. május. KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM JAVÍTÁSI ÚTMUTATÓ
MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2008. május 6. 2008. május 6. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc
I. rész II. rész a feladat sorszáma maximális pontszám 1. 13 2. 10 3. 14 4. 14 16 16 16 16 elért pontszám maximális pontszám 51 64 8 nem választott feladat MINDÖSSZESEN 115 elért pontszám dátum javító
PANNON EGYETEM OKTATÁSSZERVEZÉSI FELADATOK ÜTEMEZÉSE A 2010/2011. 2. FÉLÉV
Január FEBRUÁR 29 Szo 30 V Regisztrációs idıszak 31 H kezdete Határidı: Tárgytematika, kurzusaláírási feltételek közzététele Oktatási Egység TVSZ.15. (7) 1 K Határidı: Jelentkezés részismeretek megszerzésére
MATEMATIKA Emelt szint 9-12. évfolyam
MATEMATIKA Emelt szint 9-12. évfolyam évfolyam 9. 10. 11. 12. óra/tanév 216 216 216 224 óra/hét 6 6 6 7 Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről