Javítóvizsga témakörei matematika tantárgyból
|
|
- Kinga Borbélyné
- 8 évvel ezelőtt
- Látták:
Átírás
1 9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő műveleteket: egyesítés, metszet, különbség - tudjon számegyenesen ábrázolni - tudjon alapműveleteket biztonságosan elvégezni (zsebszámológéppel is). Ismerje és használja feladatokban az alapműveletek műveleti azonosságait - ismerje, tudja definiálni és alkalmazni az oszthatósági alapfogalmakat (osztó, többszörös, prímszám, összetett szám). - tudjon természetes számokat prímtényezőkre bontani, tudja adott számok legnagyobb közös osztóját és legkisebb közös többszörösét kiszámítani; tudja mindezeket egyszerű szöveges (gyakorlati) feladatok megoldásában alkalmazni - relatív prímek fogalma - ismerje és tudja alkalmazni az oszthatósági szabályokat - tudja az abszolútérték definícióját. Ismerje adott szám normálalakjának felírási módját, tudjon számolni a normálalakkal. - ismerje és tudja használni a hatványozás tulajdonságait - tudja alkalmazni feladatokon belül a nevezetes azonosságokat - tudjon szorzattá alakítani, egyszerűsíteni - tudjon elsőfokú egyenleteket megoldani. Szöveges feladatok megoldása egyenletek segítségével - Tudjon ax + b = c típusú egyenleteket algebrai és grafikus módon, valamint ax + b = cx +d típusú egyenleteket megoldani. - tudjon függvényt ábrázolni - ismerje a térelemeket és a szög fogalmát. - ismerje a szögek nagyság szerinti osztályozását és a nevezetes szögpárokat - ismerje a kört és annak tulajdonságait - ismerje a négyszögek fajtáit (trapéz,paralelogramma, deltoid) és tulajdonságaikat, alkalmazza ismereteit egyszerű feladatokban. - konvex síknégyszög belső és külső szögeinek összege, alkalmazásuk egyszerű feladatokban. - ismerje és alkalmazza konvex sokszögeknél az átlók számára, a belső és külső szögösszegre vonatkozó tételeket. - Thalész tétele, Pitagorasz tétele és annak alkalmazásai Javasolt a tankönyvben található feladatok megoldása mellett a matematikai feladatgyűjtemény I. (a fent említett témakörök figyelembe vételével) a feladatainak a megoldása.
2 10.osztály - Ismerje és használja a hatványozás azonosságait. - Ismerje és alkalmazza a négyzetgyökvonás azonosságait. - Tudjon másodfokú egyenletet és egyenlőtlenséget megoldani. Ismerje a megoldóképletet, ismerje és tudja alkalmazni a gyöktényezős alakot. - Tudjon másodfokú egyenletre visszavezethető magasabb fokszámú egyenleteket is megoldani. - Ismerje és tudja alkalmazni a számtani és mértani középértékeket. - Középponti és kerületi szögek tétele. A tételek alkalmazása feladaton belül. -Hasonlósági transzformációk. A hasonlóság alkalmazása feladatokon belül. - Hegyesszögek szögfüggvényeinek ismerete és alkalmazása. Összefüggések a hegyesszögek szögfüggvényei között. - Nevezetes szögek szögfüggvényei és azok alkalmazása feladatokon belül. - Háromszögek különböző adatainak meghatározása szögfüggvények segítségével. - Szögfüggvények értelmezése, tulajdonságai és ábrázolása néhány feladatának megoldása is.
3 11. osztály - Tudjon egyszerű sorbarendezési, kiválasztási és egyéb kombinatorikai feladatokat megoldani. - Ismerje és alkalmazza a permutációk, variációk (ismétlés nélkül és ismétléssel), kombinációk (ismétlés nélkül)kiszámítására vonatkozó képleteket. - Tudjon konkrét szituációkat szemléltetni, és egyszerű feladatokat megoldani gráfok segítségével. - Ismerje és tudja használni a hatványozás, gyökvonás és logaritmus azonosságait, tulajdonságait. - Tudjon megoldani exponenciális és logaritmikus egyenleteket, egyenletrendszereket. - Szinusztétel és koszinusztétel gyakorlati alkalmazása. - Tudja felírni az egyenes egyenletét különböző adatokból. - Két pont távolságának meghatározása, felezőpont koordinátáinak kiszámítása, súlypont koordinátáinak kiszámítását tudja elvégezni feladatokon belül. - Kör egyenlete. - A kör és egyenes kölcsönös helyzetének kiszámítási módja. 11. néhány feladatának megoldása is.
4 11. osztály - Tudjon egyszerű sorbarendezési, kiválasztási és egyéb kombinatorikai feladatokat megoldani. - Ismerje és alkalmazza a permutációk, variációk (ismétlés nélkül és ismétléssel), kombinációk (ismétlés nélkül)kiszámítására vonatkozó képleteket. - Tudjon konkrét szituációkat szemléltetni, és egyszerű feladatokat megoldani gráfok segítségével. - Ismerje és tudja használni a hatványozás, gyökvonás és logaritmus azonosságait, tulajdonságait. - Tudjon megoldani exponenciális és logaritmikus egyenleteket, egyenletrendszereket. - Szinusztétel és koszinusztétel gyakorlati alkalmazása. - Tudja felírni az egyenes egyenletét különböző adatokból. - Két pont távolságának meghatározása, felezőpont koordinátáinak kiszámítása, súlypont koordinátáinak kiszámítását tudja elvégezni feladatokon belül. - Kör egyenlete. - A kör és egyenes kölcsönös helyzetének kiszámítási módja. 11. néhány feladatának megoldása is.
5 12. osztály Tudja a számtani és mértani sorozatokat értelmezni. Tudjon olyan feladatokat megoldani a számtani és mértani sorozatok témaköréből, ahol a számtani, illetve mértani sorozat fogalmát és az a n -re, illetve az S n -re vonatkozó összefüggéseket kell használni. Tudja a kamatos kamatra vonatkozó képletet használni, s abból bármelyik ismeretlen adatot kiszámolni. Tudja a kör, gömb, szakaszfelező merőleges,szögfelező fogalmát. Tudja hegyesszögek szögfüggvényeit derékszögű háromszög oldalarányaival definiálni, ismereteit alkalmazza feladatokban. Tudja a szögfüggvények általános definícióját. Ismerje a felszín és a térfogat szemléletes fogalmát. Hasáb, gúla, forgáshenger, forgáskúp, gömb,csonkagúla és csonkakúp felszínének és térfogatának kiszámítása feladatokon belül.
1. Gondolkodási módszerek, halmazok, logika, kombinatorika, gráfok
1. Gondolkodási módszerek, halmazok, logika, kombinatorika, gráfok 1.1. Halmazok Ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát. Definiálja és alkalmazza gyakorlati
RészletesebbenOsztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
RészletesebbenMATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.C ÉS 13.B OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség kezdete: 2013.09. 01. Oldal/összes: 1/6 Fájlnév:ME-III.1.1. Tanmenetborító SZK-DC- 2013 MATEMATIKA
RészletesebbenMAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Másodfokú egyenletek. Ismétlés 1. óra: Másodfokú egyenletek,
RészletesebbenMatematika házivizsga 11. évfolyamon részletes követelmények
Matematika házivizsga on részletes követelmények A vizsga időpontja: 016. április 11. típusa: írásbeli időtartama:180 perc (45 perc + 135 perc) Tankönyv: Sokszínű matematika 11. és a hozzá tartozó feladatgyűjtemény
RészletesebbenAz áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!
Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április
RészletesebbenMATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
RészletesebbenA MEDGYESSY FERENC GIMNÁZIUM ÉS MŰVÉSZETI SZAKKÖZÉPISKOLA. Matematika I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY II.
A MEDGYESSY FERENC GIMNÁZIUM ÉS MŰVÉSZETI SZAKKÖZÉPISKOLA Matematika I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY II. A VIZSGA LEÍRÁSA OM azonosító: 031202 MATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY
RészletesebbenSzámsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás
12. évfolyam Osztályozó vizsga 2013. augusztus Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás Ismerje a számsorozat
RészletesebbenTanmenetjavaslat az NT-00880 raktári számú Matematika 8. tankönyvhöz
Tanmenetjavaslat az NT-00880 raktári számú Matematika 8. tankönyvhöz Oktatáskutató és Fejlesztő Intézet, Budapest A tanmenetjavaslat 111 órára lebontva dolgozza fel a tananyagot. Amennyiben ennél több
RészletesebbenHalmazok és függvények
Halmazok és függvények Óraszám: 2+2 Kreditszám: 6 Meghirdető tanszék: Analízis Debrecen, 2005. A tárgy neve: Halmazok és függvények (előadás) A tárgy oktatója: Dr. Gilányi Attila Óraszám/hét: 2 Kreditszám:
RészletesebbenMATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ
MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a
RészletesebbenFÜGGVÉNYEK, SOROZATOK
FÜGGVÉNYEK, SOROZATOK A FÜGGVÉNYFOGALOM ELŐKÉSZÍTÉSE 1-6. OSZTÁLY Adott szabály követése Szabályfelismerés és szabálykövetés Szabályfelismerés és szabály megadása szöveggel, képlettel EGYENES ÉS FORDÍTOTT
RészletesebbenNT-17112 Az érthető matematika 9. Tanmenetjavaslat
NT-17112 Az érthető matematika 9. Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Juhász István
RészletesebbenNT-17102/1 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102/1 Matematika 9. (Heuréka) Tanmenetjavaslat A Dr. Fried Katalin Dr. Gerőcs László Számadó László Matematika 9. tankönyvben (Heuréka-sorozat) a középszintű érettségihez találjuk meg a tananyagot,
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenA SZÁMFOGALOM KIALAKÍTÁSA
A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése
RészletesebbenMATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények
MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,
RészletesebbenHalmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma
Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,
RészletesebbenHelyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam
Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az
RészletesebbenA továbbhaladás feltételei fizikából és matematikából
A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban
RészletesebbenHELYI TANTERV / MATEMATIKA 9-13. ÉVFOLYAM / ANGOL NYELVI ELŐKÉSZÍTŐ
MATEMATIKA Iskolánkban a 2004 szeptemberétől indítandó nyelvi előkészítő évfolyamokon a képességfejlesztésre szánt időkeretből évi 74 (azaz heti 2) órát matematikaoktatásra szánunk. Kedvező lehetőségnek
RészletesebbenKombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/
Kombinatorika 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kombinatorika p. 1/ Permutáció Definíció. Adott n különböző elem. Az elemek egy meghatározott sorrendjét az adott
Részletesebben9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.
9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok
RészletesebbenTrigonometria és koordináta geometria
Tantárgy neve Trigonometria és koordináta geometria Tantárgy kódja MTB1001 Meghirdetés féléve I. Kreditpont 4k Összóraszám (elm+gyak) 30+30 Számonkérés módja Gyakorlati jegy (2 zárthelyi dolgozat) Előfeltétel
RészletesebbenPRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok
RészletesebbenMATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenMeghirdetés féléve 1 Kreditpont 4 Összóraszám (elm+gyak) 2+2
Tantárgy neve Algebrai alapismeretek Tantárgy kódja MTB1003 Meghirdetés féléve 1 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja Gyakorlati jegy Előfeltétel (tantárgyi kód) Tantárgyfelelős neve
RészletesebbenSzámelmélet I. 1. A tantárgy általános célja és specifikus célkitűzései
Számelmélet I. Tantárgy neve Számelmélet I. Tantárgy kódja MTB 1011 Meghirdetés féléve 3. félév Kreditpont 3 Összóraszám (elm+gyak) 2+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) MTB 1003
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot
RészletesebbenÁltalános érettségi tantárgyi vizsgakatalógus. Matematika
Általános érettségi tantárgyi vizsgakatalógus Matematika SPLOŠNA MATURA A tantárgyi vizsgakatalógus a 2009. évi tavaszi vizsgaidőszaktól érvényes az új megjelenéséig. A katalógus érvényességéről az adott
RészletesebbenMATEMATIKA 5-8. évfolyam
MATEMATIKA 5-8. évfolyam A tantárgy óraszáma: 481 A tanterv NAT Matematika műveltségterület 5.-8.évfolyamok követelményét fedi le. A NAT-ban megfogalmazott Fejlesztési feladatok fejezetet a helyi tantervben
RészletesebbenNT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin
RészletesebbenKoordináta - geometria I.
Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor
RészletesebbenHa a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.
Síkidomok Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos
RészletesebbenMatematika 9-12. (10-13.)- középszintű (K)
K Matematika 9-12. (10-13.)- középszintű (K) Ez a tanterv az Országos Közoktatási Intézet tantervi adatbankjában az OKI96PÁLMAT1-12 változat alatt szereplő minősített tanterv 9-12. osztályokra lebontott
RészletesebbenMinta 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló gimnáziuma) Térgeometria III.
Térgeometria III. 1. Szabályos háromoldalú gúla alapéle 1 cm, oldaléle 1 cm. Milyen magas a gúla? Tekintsük a következő ábrát: Az alaplap szabályos ABC, így a D csúcs merőleges vetülete a háromszög S súlypontja.
RészletesebbenI. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)
MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,
RészletesebbenMATEMATIKA 5-8. évfolyam
MATEMATIKA 5-8. évfolyam MATEMATIKA 5-8. évfolyam A tanterv a NAT Matematika műveltségterület 5-8. évfolyamok követelményét fedi le. A NAT-ban megfogalmazott Fejlesztési feladatok fejezetet szervesen beépítettük
RészletesebbenMATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI
A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja
RészletesebbenHelyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február
Helyi tanterv Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február 1 A TANTERV SZERKEZETE Bevezető Célok és feladatok Fejlesztési célok és kompetenciák Helyes
RészletesebbenBudapesti Műszaki és Gazdaságtudományi Egyetem Matematika Intézet
Budapesti Műszaki és Gazdaságtudományi Egyetem Matematika Intézet Példatár a Bevezető matematika tárgyhoz Amit tudni kell a BSC képzés előtt Összeállította: Kádasné dr. V. Nagy Éva egyetemi docens Szerkesztette:
RészletesebbenEmelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
RészletesebbenF E L V É T E L I K Ö V E T E L M É N Y E K T A G O Z A T O N K É N T KLASSZIKUS HUMÁN TAGOZAT
F E L V É T E L I K Ö V E T E L M É N Y E K T A G O Z A T O N K É N T KLASSZIKUS HUMÁN TAGOZAT Szóbeli vizsga: magyar nyelv- és irodalomból, valamint történelemből A. Követelmények magyar nyelv- és irodalomból:
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.
MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 10 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten RACIONÁLIS TÖRTFÜGGVÉNYEK INTEGRÁLJA Készítette: Gábor Szakmai felel s: Gábor Vázlat
Részletesebben1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!
1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Térgeometria V.
Térgeometria V. 1. Egy 4, 6 dm átmérőjű, 5 dm magasságú, 7, dm sűrűségű hengerből a lehető legnagyobb szabályos nyolcoldalú oszlopot kell készíteni. Mekkora lesz a tömege? Az oszlop magassága a henger
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály
5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,
RészletesebbenTanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató
RészletesebbenMATEMATIKA EMELT 9-12. évfolyam
MATEMATIKA EMELT 9-12. évfolyam Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.
RészletesebbenA döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
RészletesebbenSz ekelyhidi L aszl o Val osz ın us egsz am ıt as es matematikai statisztika *************** Budapest, 1998
Székelyhidi László Valószínűségszámítás és matematikai statisztika *************** Budapest, 1998 Előszó Ez a jegyzet a valószínűségszámításnak és a matematikai statisztikának azokat a fejezeteit tárgyalja,
Részletesebben3. KÖRGEOMETRIA. 3.1. Körrel kapcsolatos alapismeretek
3. KÖRGEOMETRIA Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest, 89 109. és 121. oldal. Pelle Béla: Geometria, Tankönyvkiadó, Budapest, 86 97. és 117 121. oldal. Kovács Zoltán: Geometria,
RészletesebbenAz osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból
Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.
RészletesebbenMATEMATIKA. Általános érettségi tantárgyi vizsgakatalógus Splošna matura
Ljubljana 2015 MATEMATIKA Általános érettségi tantárgyi vizsgakatalógus Splošna matura A tantárgyi vizsgakatalógus a 2017. évi tavaszi vizsgaidőszaktól érvényes az új megjelenéséig. A katalógus érvényességéről
RészletesebbenElektronikus tananyag MATEMATIKA 10. osztály II. félév
Elektronikus tananyag MATEMATIKA 0. osztály II. félév A hasonlósági transzformáció és alkalmazásai. Párhuzamos szelők és szelőszakaszok A párhuzamos szelők tétele TÉTEL: Ha egy szög szárait párhuzamos
RészletesebbenAzonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
RészletesebbenMarkó Zoltán GIMNÁZIUMI MATEMATIKA
Markó Zoltán GIMNÁZIUMI MATEMATIKA Írta: Markó Zoltán E-mail: marzol89@gmail.com TARTALOM Tartalom... 5 Fontosabb matematikai jelek, jelölések... 18 A görög ábécé beti... 21 Eltagok (prefixumok)... 21
RészletesebbenMATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok
MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve
RészletesebbenTérgeometria feladatok. 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504 cm 2. Mekkora a testátlója és a térfogata?
Térgeometria feladatok Téglatest 1. Egy téglatest éleinek aránya 2 : 3 : 5, felszíne 992 cm 2. Mekkora a testátlója és a 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT ) dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből
RészletesebbenMatematika emelt szint a 11-12.évfolyam számára
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka
RészletesebbenAnalízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
RészletesebbenArany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
RészletesebbenA skatulya-elv alkalmazásai
1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely
RészletesebbenÉrettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél
Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,
RészletesebbenMatematika 9-12. (10-13.)- középszint (K) - PÁLMAT1-12 - Kidolgozandó B vített
Matematika Matematika 9-12. (10-13.)- középszint (K) - PÁLMAT1-12 - Kidolgozandó B vített Ez a tanterv az Országos Közoktatási Intézet tantervi adatbankjában az OKI96PÁLMAT1-12 változat alatt szerepl min
RészletesebbenA parabola és az egyenes, a parabola és kör kölcsönös helyzete
66 A paraola 00 egyen a keresett kör középpontja Az pont koordinátái: ( y) Ekkor felírhatjuk a következô egyenletet: ( - ) + ( y- ) = mert a kör sugara > 0 Innen rendezéssel: ( y- ) = 6 - A mértani hely
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. Január 21. EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2012. Január 21. Az írásbeli vizsga időtartama: 240 perc Név Tanárok neve Email Pontszám STUDIUM GENERALE MATEMATIKA
RészletesebbenMatematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára
Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási
RészletesebbenÉv végi összefoglalás
. évfolyam I. témakör: Hatvány, gyök, aritmus Tört kitevőjű hatványok eponenciális függvények eponenciális egyenletek, egyenlőtlenségek, egyenletrendszerek aritmus fogalma aritmus függvények aritmus azonosságai
RészletesebbenA Szekszárdi I. Béla Gimnázium Helyi Tanterve
A Szekszárdi I. Béla Gimnázium Helyi Tanterve Matematika Készítette: a gimnázium reál szakmai munkaközössége 2015. Tartalom Emelt szintű matematika képzés... 3 Matematika alapóraszámú képzés... 47 Matematika
Részletesebben2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
RészletesebbenA lineáris programozás 1 A geometriai megoldás
A lineáris programozás A geometriai megoldás Készítette: Dr. Ábrahám István A döntési, gazdasági problémák optimalizálásának jelentős részét lineáris programozással oldjuk meg. A módszer lényege: Az adott
RészletesebbenMatematika tanterv. A matematikai gondolkodás fejlesztése segíti a gondolkodás általános kultúrájának kiteljesedését.
Matematika tanterv A matematika tanítás célja, feladatai: Hiteles képet nyújtani a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. Formálni,
RészletesebbenOrszágos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 011/01 Matematika I. kategória (SZKKÖZÉPISKOL) Döntő 1. Határozza meg az összes olyan egész számot, amely eleget tesz az egyenlőtlenségnek! log
RészletesebbenMatematika POKLICNA MATURA
Szakmai érettségi tantárgyi vizsgakatalógus Matematika POKLICNA MATURA A tantárgyi vizsgakatalógus a 0-es tavaszi vizsgaidőszaktól kezdve alkalmazható mindaddig, amíg új nem készül. A katalógus érvényességét
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A
RészletesebbenMatematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti
Matematika 9. nyelvi előkészítő évfolyam Témakörök Gondolkodási és megismerési módszerek Számtan, algebra Összefüggések, függvények, sorozatok Geometria, mérés Statisztika, valószínűség Év végi összefoglaló
RészletesebbenReál osztály, angol- német nyelvi előkészítővel. 9. évfolyam+ előkészítő év. Célok és feladatok
Reál osztály, angol- német nyelvi előkészítővel 9. évfolyam+ előkészítő év Célok és feladatok A 9. évfolyamon fontos cél az alapképességek továbbfejlesztése. El kell érni, hogy a szemléletes fogalmak többsége
RészletesebbenMATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam
BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag
RészletesebbenMatematika 11-12. (12-13.)- emelt szintű (F)
Matematika 11-12. (12-13.)- emelt szintű (F) Ez a tanterv az Országos Közoktatási Intézet tantervi adatbankjában az OKI96PÁLMAT1-12 változat alatt szereplő minősített tanterv 9-12. osztályokra lebontott
RészletesebbenLineáris algebra gyakorlat
Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek
RészletesebbenI. rész. Pótlapok száma Tisztázati Piszkozati. Név:...osztály:... Matematika kisérettségi. 2012. május 15. Fontos tudnivalók
Matematika kisérettségi 2012. május 15. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az id elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetsz leges. 3. A
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika emelt szint írásbeli
RészletesebbenA tanulók rendszeresen oldjanak meg önállóan feladatokat, aktívan vegyenek részt a tanítási, tanulási folyamatban. A feladatmegoldáson keresztül a
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
RészletesebbenHELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam
HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam Készült az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet alapján. Érvényesség kezdete: 2013.09.01. Utoljára indítható:.. Dunaújváros,
RészletesebbenMatematika III. 1. Kombinatorika Prof. Dr. Závoti, József
Matematika III. 1. Kombinatorika Prof. Dr. Závoti, József Matematika III. 1. : Kombinatorika Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
RészletesebbenMatematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
RészletesebbenJelek tanulmányozása
Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás
RészletesebbenMatematika 8. PROGRAM. általános iskola 8. osztály nyolcosztályos gimnázium 4. osztály hatosztályos gimnázium 2. osztály. Átdolgozott kiadás
Dr. Czeglédy István fôiskolai tanár Dr. Czeglédy Istvánné vezetôtanár Dr. Hajdu Sándor fôiskolai docens Novák Lászlóné tanár Dr. Sümegi Lászlóné szaktanácsadó Zankó Istvánné tanár Matematika 8. PROGRAM
RészletesebbenMATEMATIKA (4+4+3+4 óra)
MATEMATIKA (4+4+3+4 óra) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.
RészletesebbenMATEMATIKA ÉRETTSÉGI 2012. május 8. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 01. május 8. KÖZÉPSZINT 1) Egy mértani sorozat első tagja 3, hányadosa első hat tagjának összegét! n n 1 Sn na1 d, ebből: S I.. Adja meg a sorozat ( pont) 6 63.( pont) ) Írja fel annak
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.
Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk
RészletesebbenJAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
EMIR azonosító: TÁMOP-3..8-09/-00-0004 MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA 4 ÍRÁSBELI VIZSGA Ideje: 04. április 4. JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatási Hivatal Cím: H 055 Budapest, Szalay u.
Részletesebben