Meghirdetés féléve 1 Kreditpont 4 Összóraszám (elm+gyak) 2+2

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Meghirdetés féléve 1 Kreditpont 4 Összóraszám (elm+gyak) 2+2"

Átírás

1 Tantárgy neve Algebrai alapismeretek Tantárgy kódja MTB1003 Meghirdetés féléve 1 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja Gyakorlati jegy Előfeltétel (tantárgyi kód) Tantárgyfelelős neve Kurdics János Tantárgyfelelős beosztása Főiskolai tanár 1. A tantárgy általános célja és specifikus célkitűzései A hallgatók ismerjék meg az algebra alapfogalmait, legyenenk képesek ezek alkotó alkalmazására modern felsőbb matematika felépítésének megalapozásaként. Sajátítsák el az elemi számelmélet alapvető eredményeit, legfontosabb eljárásait. Ismerjék meg a polinomelmélet alapjait. Alakuljon ki bennük a szabatos matematikai fogalomalkotás készsége és a bizonyítás iránti igény. Legyenek képesek ezen a bázison a tárgyra épülö további kurzusok anyagának feldolgozására. 2. A tantárgy tartalma Előadás. Algebrai műveletek általános fogalma. Műveleti tulajdonságok: asszociativitás, kommutativitás, invertálhatóság, idempotencia, disztributivitás, abszorptivitás. Kitüntetett elemek: neutrális elem, inverzelem, zéruselem, zérusosztó, egység. Alapvető algebrai struktúrák: félcsoport, monoid, csoport, Abel-csoport, gyűrű, egységelemes gyűrű, kommutatív gyűrű, integritástartomány, ferdetest, test, félháló, háló, disztributív háló, komplementumos háló, Boole-algebra. Példák a fenti tulajdonságú műveletekre, a fenti struktúratípusokra, ezeknek alkalmazásaira. Elemi algebrai azonosságok. Az asszociativitás következményei: szorzat zárójelezése, a neutrális elem egyértelműsége, az iverz egyértelműsége (létezés esetén), az egységek csoportja. A racionális kitevőjű hatvány fogalma, a hatványozás azonosságai. A disztributivitás következményei. Az additív neutrális elem multiplikatív zérus. A de Morgan törvények. Elemi számelmélet. Egész számok oszthatósága: az oszthatóság reláció tulajdoságai, asszociáltság. A maradékos osztás tétele, az euklideszi algoritmus. A legnagyobb közös osztó fogalma, létezése és előállítása az euklideszi algoritmus alapján. A legnagyobb közös osztó képzésének tulajdonságai. A legkisebb közös többszörös fogalma, létezése. A legkisebb közös többszörös képzésének tulajdonságai. Számrendszerek. A prímszám és a törzsszám fogalma. A két fogalom közötti összefüggés. Az egyértelmű prímfaktorizáció tétele, a számelmélet alaptétele. Elemi polinomelmélet. A testfölötti polinomgyűrű. Testfölötti polinomok oszthatósága: az oszthatóság reláció tulajdoságai, asszociáltság. A maradékos osztás tétele testfölötti polinomokra, polinom osztása polinommal, az euklideszi algoritmus testfölötti polinomokra.

2 Testfölötti polinomok legnagyobb közös osztójának fogalma, létezése és előállítása az euklideszi algoritmus alapján. Testfölötti polinomok legnagyobb közös osztója képzésének tulajdonságai. Testfölötti polinomok legkisebb közös többszörösének fogalma, létezése. Testfölötti polinomok legkisebb közös többszöröse képzésének tulajdonságai. A prímpolinom és irreducibilis polinom fogalma. A két fogalom közötti összefüggés. Az egyértelmű prímfaktorizáció tétele testfölötti polinomokra, a polinomelmélet alaptétele. Irreducibilitási kritériumok. Polinomok és racionális törtfüggvények, a parciális törtekre bontás tétele. Algebrai egyenlet fogalma, algebrai egyenletek megoldásai. Bézout tétele. Többszörös gyökök, multiplicitás fogalma, gyöktényezős alak. Horner-elrendezés, Rolle tétele. Másodfokú egyenlet megoldása, gyöktényezős alakja. Viéte formulái. Speciális harmad-, negyed- és magasabbfokú egyenletek megoldása. Gyakorlat. Melyik hozzárendelés algebrai művelet és melyik nem. Annak ellenőrzése, hogy adott művelet milyen tulajdonságokkal rendelkezik és milyen tulajdonságokkal nem. Kitüntetett elemekek: neutrális elem, inverzelem, zéruselem, zérusosztók, egységek megkeresése speciális esetekben. Annak ellenőrzése, hogy adott struktúrák milyen típusúak (például, hogy félcsoport, monoid, csoport, Abel-csoport, gyűrű, egységelemes gyűrű, kommutatív gyűrű, integritástartomány, ferdetest, test, félháló, háló, disztributív háló, komplementumos háló, Boole-algebra-e). Algebrai azonosságok bizonyítása egyes konkrét algebrai műveletek esetén. Az elemi számelmélet legfontosabb eljárásai, oszthatósági szabályok. Oszthatósági feladatok megoldásának legfontosabb módszerei. Teljes indukciós bizonyítások. Az euklideszi algoritmus elvégzése adott számokon. A legnagyobb közös osztó és a legkisebb közös többszörös megkeresése az euklideszi algoritmus segítségével. A legnagyobb közös osztó előállítása a két szám többszöröseinek összegeként. Adott egész prímtényezős felbontásának megadása, legnagyobb közös osztó és a legkisebb közös többszörös megkeresése a felbontás alapján. Az alapműveletek elvégzése nemdecimális számrendszerekben. Áváltás számrendszerek között. Elemi polinomelmélet legfontosabb eljárásai. Adott polinom maradékos osztása adott polinommal, az euklideszi algoritmus elvégzése testfölötti polinomokon. Testfölötti polinomok legnagyobb közös osztójának és legkisebb közös többszörösének kiszámítása az euklideszi algoritmus alapján. Egyes polinomok irreducibilitásának ellenőrzése. Egyes polinomok irreducibilis faktorizációjának kiszámítása. Parciális törtekre való felbontás megadása. A Horner-elrendezés alkalmazásai. Racionális gyökök megkeresése. A polinom megadása új ismeretlen polinomjaként. Másodfokú egyenlet megoldása, gyöktényezős alakjának felírása. A Viéte formulák alkalmazásai. Speciális harmad-, negyed- és magasabbfokú egyenletek megoldása. Többszörös gyökök kiszűrésének módszere. Reciprok egyenletek visszavezetése alacsonyabb fokú egyenletekre.

3 3. Évközi ellenőrzés módja A gyakorlati jegy megszerzésének feltétele két zárthelyi dolgozatból ötven százalékos eredmény elérése. A gyakorlatvezetők az alábbi mintadolgozatokhoz hasonlót írassanak a hallgatókkal. 4. A tárgy előírt külső szakmai gyakorlatai 5. A kötelező ill. ajánlott irodalom Szendrei János: Algebra és számelmélet, Tankönyvkiadó, Budapest, 1984 Szendrei János: Matematikai feladatgyűjtemény tanárképző főiskolai matematika szakos hallgatók számára, Tankönyvkiadó, Budapest, 1986 Kuros, A.G.: Felsőbb algebra, Tankönyvkiadó, Budapest, A tantárgy tárgyi szükségletei és ellátása

4 Matematika szakosok első zárthelyi dolgozata MINTA Név: Műveletek, struktúrák. (a) Végezze el a kijelölt halmazműveletet! (A B C) A =... (b) Az egész számok halmazán legyen a b = a + b 2. Végezze el a kijelölt műveletet! (a b) (b a) =... (c) Legyenek az S struktúra elemei az ABC szabályos háromszög szimmetriái, a művelet a kompozíciószorzás, jelölje a a C ponton átmenő szimmetriatengelyre történő tükrözést, b a 120 -os elforgatást. Melyik szimmetria az (ab)(ba) :... (d) A racionális szmok halmazán legyen a b = a+b 2ab. A neutrális elem... Az 1 3 szám inverze erre a műveletre nézve 1 1 =... 3 (e) Igazolja (külön lapon), hogy az egészek halmazán az a b = a + b + ab művelet asszociatív! (f) Igazolja (külön lapon), hogy az a+b 2 (a, b racionális szám) alakú nemnulla valós számok halmazán a szokásos szorzás invertálható művelet! 2. Egész számok. (a) Legyen a = 136, b = 116. Végezzük el az euklideszi algoritmust az a, b számokon! A második osztás hányadosa..., maradéka.... A harmadik osztás hányadosa..., maradéka.... Mennyi a legnagyobb közös osztójuk? (a, b) =... Állítsuk elő a legnagyobb közös osztót (a, b) =...a+...b alakban, ahol a keresett együtthatók egész számok! (b) Az 5040 szám prímtényezős felbontása 5040 =.... A szám összes osztója.... (c) Az A = nyolcas számrendszerbeli szám kilences számrendszerbeli alakja A =... 9 (d) Az : 41 7 hetes számrendszerbeli maradékos osztás hányadosa Q =... 7 és maradéka R =... 7 a hetes számrendszerben.

5 Matematika szakosok második zárthelyi dolgozata MINTA Név:... Polinomok, egyenletek. (a) Legyen a(x) = x 4 + 2x 3 + x + 1, b(x) = x 4 + x 3 2x 2 + 2x 1 Végezzük el az euklideszi algoritmust az a(x), b(x) polinomokon! A második osztás maradéka (asszociáltságtól eltekintve) r 2 (x) =.... A harmadik osztás maradéka (asszociáltságtól eltekintve) r 3 (x) =.... Mennyi a legnagyobb közös osztójuk? (a(x), b(x)) =... (b) Legyen a(x) = x 4 + x 3 + 3x 2 x + 2, y = x 1.Írja fel f(x)-et y polinomjaként! f(x) = g(y) =.... (c) Keresse meg az x 5 + 2x 4 6x 3 19x 2 20x 12 = 0 egyenlet racionális gyökeit! (A nem racionális gyökök helyét húzza ki!): x 1 =... x 2 =... x 3 =... x 4 =... x 5 =... (d) Keresse meg az x 5 +7x x 3 18x 2 27x+27 = 0 egyenlet többszörös gyökeit: (A nem többszörös gyökök helyét húzza ki!) (f(x), f (x)) =... x 1 =... x 2 =... x 3 =... x 4 =... x 5 =... (e) Oldja meg az x 5 + 2x 4 27x 3 27x 2 + 2x + 1 = 0 reciprok egyenletet: Az ismert gyök: x 1 =... Az y = x+ 1 x új ismeretlen bevezetése utáni egyenlet:...y2 +...y +... = 0 x 2 =... x 3 =... x 4 =... x 5 =...

Számelmélet I. 1. A tantárgy általános célja és specifikus célkitűzései

Számelmélet I. 1. A tantárgy általános célja és specifikus célkitűzései Számelmélet I. Tantárgy neve Számelmélet I. Tantárgy kódja MTB 1011 Meghirdetés féléve 3. félév Kreditpont 3 Összóraszám (elm+gyak) 2+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) MTB 1003

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten RACIONÁLIS TÖRTFÜGGVÉNYEK INTEGRÁLJA Készítette: Gábor Szakmai felel s: Gábor Vázlat

Részletesebben

Javítóvizsga témakörei matematika tantárgyból

Javítóvizsga témakörei matematika tantárgyból 9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő

Részletesebben

Halmazok és függvények

Halmazok és függvények Halmazok és függvények Óraszám: 2+2 Kreditszám: 6 Meghirdető tanszék: Analízis Debrecen, 2005. A tárgy neve: Halmazok és függvények (előadás) A tárgy oktatója: Dr. Gilányi Attila Óraszám/hét: 2 Kreditszám:

Részletesebben

A SZÁMFOGALOM KIALAKÍTÁSA

A SZÁMFOGALOM KIALAKÍTÁSA A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése

Részletesebben

Kiss P eter M aty as Ferenc A SZ AMELM ELET ELEMEI EKF L ICEUM KIAD O, EGER 2005

Kiss P eter M aty as Ferenc A SZ AMELM ELET ELEMEI EKF L ICEUM KIAD O, EGER 2005 Kiss Péter Mátyás Ferenc A SZÁMELMÉLET ELEMEI EKF LÍCEUM KIADÓ, EGER 005 Lektor: Dr. Varecza Árpád a matematikai tudomány kandidátusa Megjelent az EKF Líceum Kiadó műszaki gondozásában A szedés a MiKTEX

Részletesebben

Analízis előadások. Vajda István. 2013. február 10. Neumann János Informatika Kar Óbudai Egyetem

Analízis előadások. Vajda István. 2013. február 10. Neumann János Informatika Kar Óbudai Egyetem Analízis előadások Vajda István Neumann János Informatika Kar Óbudai Egyetem 013. február 10. Vajda István (Óbudai Egyetem) Analízis előadások 013. február 10. 1 / 3 Az elemi függvények csoportosítása

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria 005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla

MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév

Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.

Részletesebben

Trigonometria és koordináta geometria

Trigonometria és koordináta geometria Tantárgy neve Trigonometria és koordináta geometria Tantárgy kódja MTB1001 Meghirdetés féléve I. Kreditpont 4k Összóraszám (elm+gyak) 30+30 Számonkérés módja Gyakorlati jegy (2 zárthelyi dolgozat) Előfeltétel

Részletesebben

Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev

Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev Algebra és számelmélet 3 előadás Relációk Waldhauser Tamás 2014 őszi félév Relációk reláció lat. 1. kapcsolat, viszony; összefüggés vmivel 2. viszonylat, vonatkozás reláció lat. 3. mat halmazok elemei

Részletesebben

Tanmenetjavaslat az NT-00880 raktári számú Matematika 8. tankönyvhöz

Tanmenetjavaslat az NT-00880 raktári számú Matematika 8. tankönyvhöz Tanmenetjavaslat az NT-00880 raktári számú Matematika 8. tankönyvhöz Oktatáskutató és Fejlesztő Intézet, Budapest A tanmenetjavaslat 111 órára lebontva dolgozza fel a tananyagot. Amennyiben ennél több

Részletesebben

A döntő feladatai. valós számok!

A döntő feladatai. valós számok! OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és

Részletesebben

Nagy András. Számelméleti feladatgyűjtemény 2009.

Nagy András. Számelméleti feladatgyűjtemény 2009. Nagy András Számelméleti feladatgyűjtemény 2009. Tartalomjegyzék Tartalomjegyzék... 1 Bevezetés... 2 1. Feladatok... 3 1.1. Természetes számok... 3 1.2. Oszthatóság... 5 1.3. Legnagyobb közös osztó, legkisebb

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.C ÉS 13.B OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.C ÉS 13.B OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség kezdete: 2013.09. 01. Oldal/összes: 1/6 Fájlnév:ME-III.1.1. Tanmenetborító SZK-DC- 2013 MATEMATIKA

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Pénzügyi-számviteli informatika 2. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Pénzügyi-számviteli informatika 2. tanulmányokhoz IV. évfolyam Pénzügy és Számvitel Szak/Minden szakirány BA TANTÁRGYI ÚTMUTATÓ Pénzügyi-számviteli informatika 2. tanulmányokhoz TÁVOKTATÁS 2014/2015. I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Pénzügyi-számviteli

Részletesebben

NT-17112 Az érthető matematika 9. Tanmenetjavaslat

NT-17112 Az érthető matematika 9. Tanmenetjavaslat NT-17112 Az érthető matematika 9. Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Juhász István

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,

Részletesebben

Matematika házivizsga 11. évfolyamon részletes követelmények

Matematika házivizsga 11. évfolyamon részletes követelmények Matematika házivizsga on részletes követelmények A vizsga időpontja: 016. április 11. típusa: írásbeli időtartama:180 perc (45 perc + 135 perc) Tankönyv: Sokszínű matematika 11. és a hozzá tartozó feladatgyűjtemény

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Prezentáció és íráskészségfejlesztés. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Prezentáció és íráskészségfejlesztés. tanulmányokhoz I. évfolyam GM és PSZ szak BA TANTÁRGYI ÚTMUTATÓ Prezentáció és íráskészségfejlesztés tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Prezentáció és íráskészség

Részletesebben

1. előadás Algebrai struktúrák: csoport, gyűrű, test

1. előadás Algebrai struktúrák: csoport, gyűrű, test 1. előadás Algebrai struktúrák: csoport, gyűrű, test Dr. Kallós Gábor 2012 2013 1 Tartalom Műveletek Félcsoport, monoid Csoport Részcsoportok Elem rendje Ciklikus csoportok Kis elemszámú csoportok megadása

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 7 VII. Gyűrűk 1. Gyűrű Definíció Egy a következő axiómákat: gyűrű alatt olyan halmazt értünk, amelyben definiálva van egy összeadás és egy szorzás, amelyek teljesítik (1) egy

Részletesebben

0642. MODUL SZÁMELMÉLET. A számok osztói, az oszthatósági szabályok KÉSZÍTETTE: PINTÉR KLÁRA

0642. MODUL SZÁMELMÉLET. A számok osztói, az oszthatósági szabályok KÉSZÍTETTE: PINTÉR KLÁRA 0642. MODUL SZÁMELMÉLET A számok osztói, az oszthatósági szabályok KÉSZÍTETTE: PINTÉR KLÁRA 0642. Számelmélet A számok osztói, az oszthatósági szabályok Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret

Részletesebben

KÖVETELMÉNYEK. Anyanyelvi tantárgy-pedagógia III. Tantárgy kódja TAB 1312 Meghirdetés féléve 4. Kreditpont 2 Heti kontaktóraszám (elm. + gyak.

KÖVETELMÉNYEK. Anyanyelvi tantárgy-pedagógia III. Tantárgy kódja TAB 1312 Meghirdetés féléve 4. Kreditpont 2 Heti kontaktóraszám (elm. + gyak. Anyanyelvi tantárgy-pedagógia III. Tantárgy kódja TAB 1312 Meghirdetés féléve 4. Heti kontaktóraszám (elm. + gyak.) 0+2 Előfeltétel (tantárgyi kód) TAB1310, TAB 1311 2 óra szeminárium a részvétel kötelező.

Részletesebben

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Diszkrét matematika I. gyakorlat 1. Gyakorlat Bogya Norbert Bolyai Intézet 2012. szeptember 4-5. Bogya Norbert (Bolyai Intézet) Diszkrét matematika I. gyakorlat 2012. szeptember 4-5. 1 / 21 Információk

Részletesebben

2004. december 1. Irodalom

2004. december 1. Irodalom LINEÁRIS LEKÉPEZÉSEK I. 2004. december 1. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:

Részletesebben

MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY

MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Másodfokú egyenletek. Ismétlés 1. óra: Másodfokú egyenletek,

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög

Részletesebben

NT-17102/1 Matematika 9. (Heuréka) Tanmenetjavaslat

NT-17102/1 Matematika 9. (Heuréka) Tanmenetjavaslat NT-17102/1 Matematika 9. (Heuréka) Tanmenetjavaslat A Dr. Fried Katalin Dr. Gerőcs László Számadó László Matematika 9. tankönyvben (Heuréka-sorozat) a középszintű érettségihez találjuk meg a tananyagot,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Véges testek és alkalmazásaik

Véges testek és alkalmazásaik Véges testek és alkalmazásaik Horváth Gábor Debreceni Egyetem 2016. március 4. Tartalomjegyzék Bevezetés 4 1. El zetes ismeretek 5 1.1. M veletek, algebrai struktúrák.................. 5 1.2. Csoportelmélet..........................

Részletesebben

Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február

Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február Helyi tanterv Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február 1 A TANTERV SZERKEZETE Bevezető Célok és feladatok Fejlesztési célok és kompetenciák Helyes

Részletesebben

Határozatlan integrál

Határozatlan integrál . fejezet Határozatlan integrál Határozatlan integrál D. Azt mondjuk, hogy az egyváltozós valós f függvénynek a H halmazon primitív függvénye az F függvény, ha a H halmazon f és F értelmezve van, továá

Részletesebben

Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás

Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás 12. évfolyam Osztályozó vizsga 2013. augusztus Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás Ismerje a számsorozat

Részletesebben

Az éves statisztikai összegezés STATISZTIKAI ÖSSZEGEZÉS AZ ÉVES KÖZBESZERZÉSEKRŐL A KLASSZIKUS AJÁNLATKÉRŐK VONATKOZÁSÁBAN

Az éves statisztikai összegezés STATISZTIKAI ÖSSZEGEZÉS AZ ÉVES KÖZBESZERZÉSEKRŐL A KLASSZIKUS AJÁNLATKÉRŐK VONATKOZÁSÁBAN 11. melléklet a 92/2011. (XII.30.) NFM rendelethez Az éves statisztikai összegezés STATISZTIKAI ÖSSZEGEZÉS AZ ÉVES KÖZBESZERZÉSEKRŐL A KLASSZIKUS AJÁNLATKÉRŐK VONATKOZÁSÁBAN I. SZAKASZ: AJÁNLATKÉRŐ I.1)

Részletesebben

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a

Részletesebben

FÜGGVÉNYEK, SOROZATOK

FÜGGVÉNYEK, SOROZATOK FÜGGVÉNYEK, SOROZATOK A FÜGGVÉNYFOGALOM ELŐKÉSZÍTÉSE 1-6. OSZTÁLY Adott szabály követése Szabályfelismerés és szabálykövetés Szabályfelismerés és szabály megadása szöveggel, képlettel EGYENES ÉS FORDÍTOTT

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. - Vizsga anyag 1 EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Diszkrét matematika I. Vizsgaanyag Diszkrét matematika I. - Vizsga anyag 2 1. Mondjon legalább 3 példát predikátumra

Részletesebben

Egy heti edzés leírása (5. sz. melléklet)

Egy heti edzés leírása (5. sz. melléklet) Egy heti edzés leírása (5. sz. melléklet) PÉCSI TUDOMÁNYEGYETEM Név:. EHA kód: Szak/Munkarend:.. Sportág:. Kiválasztott csapat/csoport/egyén:. A kiválasztott csoport/csapat/egyén minősítése:. Az edzés

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.

MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3. MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Logisztika. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Logisztika. tanulmányokhoz IV. évfolyam Számvitel szakirány BA TANTÁRGYI ÚTMUTATÓ Logisztika tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Logisztika Tanszék: Vállalkozás és Emberi

Részletesebben

Környezettani alapismeretek Tantárgy kódja

Környezettani alapismeretek Tantárgy kódja Tantárgy neve Környezettani alapismeretek AIB1004 Meghirdetés féléve 1. Kreditpont 2 Heti kontakt óraszám (elm.+gyak.) 2+0 Kollokvium - Dr. Kiss Ferenc, főisk. tanár KT A környezettudomány főbb területeinek

Részletesebben

Matematikai alapismeretek. Huszti Andrea

Matematikai alapismeretek. Huszti Andrea Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá

Részletesebben

Nyíregyházi Főiskola. a Közalkalmazottak jogállásáról szóló 1992. évi XXXIII. törvény 20/A alapján pályázatot hirdet

Nyíregyházi Főiskola. a Közalkalmazottak jogállásáról szóló 1992. évi XXXIII. törvény 20/A alapján pályázatot hirdet Nyíregyházi Főiskola a Közalkalmazottak jogállásáról szóló 1992. évi XXXIII. törvény 20/A alapján pályázatot hirdet A közalkalmazotti jogviszony időtartama: határozatlan idejű közalkalmazotti jogviszony

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Orvosi laboratóriumi technikai asszisztens szakképesítés. 2449-06 Mikrobiológiai vizsgálatok modul. 1.

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Orvosi laboratóriumi technikai asszisztens szakképesítés. 2449-06 Mikrobiológiai vizsgálatok modul. 1. Emberi Erőforrások Minisztériuma Korlátozott terjesztésű! Érvényességi idő: az írásbeli vizsgatevékenység befejezésének időpontjáig A minősítő neve: Rauh Edit A minősítő beosztása: mb. főigazgató-helyettes

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. I. évfolyam TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. 2011/2012 I. félév Tantárgy megnevezése Tantárgyi útmutató Gazdasági Matematika I. (Analízis) Tantárgy kódja: Tantárgy jellege/típusa: Módszertani

Részletesebben

Kongruenciák. Waldhauser Tamás

Kongruenciák. Waldhauser Tamás Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek

Részletesebben

A Szekszárdi I. Béla Gimnázium Helyi Tanterve

A Szekszárdi I. Béla Gimnázium Helyi Tanterve A Szekszárdi I. Béla Gimnázium Helyi Tanterve Matematika Készítette: a gimnázium reál szakmai munkaközössége 2015. Tartalom Emelt szintű matematika képzés... 3 Matematika alapóraszámú képzés... 47 Matematika

Részletesebben

Az éves statisztikai összegezés STATISZTIKAI ÖSSZEGEZÉS AZ ÉVES KÖZBESZERZÉSEKRŐL A KLASSZIKUS AJÁNLATKÉRŐK VONATKOZÁSÁBAN

Az éves statisztikai összegezés STATISZTIKAI ÖSSZEGEZÉS AZ ÉVES KÖZBESZERZÉSEKRŐL A KLASSZIKUS AJÁNLATKÉRŐK VONATKOZÁSÁBAN 1 11. melléklet a 92/2011. (XII. 30.) NFM rendelethez Az éves statisztikai összegezés STATISZTIKAI ÖSSZEGEZÉS AZ ÉVES KÖZBESZERZÉSEKRŐL A KLASSZIKUS AJÁNLATKÉRŐK VONATKOZÁSÁBAN I. SZAKASZ: AJÁNLATKÉRŐ

Részletesebben

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan

Részletesebben

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,

Részletesebben

Energiagazdálkodás II. kommunikációs dosszié ENERGIAGAZDÁLKODÁS LEVELEZŐ ANYAGMÉRNÖK ALAPKÉPZÉS HŐENERGIA-GAZDÁLKODÁSI SZAKIRÁNY

Energiagazdálkodás II. kommunikációs dosszié ENERGIAGAZDÁLKODÁS LEVELEZŐ ANYAGMÉRNÖK ALAPKÉPZÉS HŐENERGIA-GAZDÁLKODÁSI SZAKIRÁNY ENERGIAGAZDÁLKODÁS LEVELEZŐ ANYAGMÉRNÖK ALAPKÉPZÉS HŐENERGIA-GAZDÁLKODÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR TÜZELÉSTANI ÉS HŐENERGIA INTÉZETI TANSZÉK

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Sz ekelyhidi L aszl o Val osz ın us egsz am ıt as es matematikai statisztika *************** Budapest, 1998

Sz ekelyhidi L aszl o Val osz ın us egsz am ıt as es matematikai statisztika *************** Budapest, 1998 Székelyhidi László Valószínűségszámítás és matematikai statisztika *************** Budapest, 1998 Előszó Ez a jegyzet a valószínűségszámításnak és a matematikai statisztikának azokat a fejezeteit tárgyalja,

Részletesebben

KÖVETELMÉNYEK 2015-2016. II. félév

KÖVETELMÉNYEK 2015-2016. II. félév Összefüggő komplex szakmai gyakorlat CGB 1006 Meghirdetés féléve 6. Kreditpont: 14 Óraszám (elm.+gyak.) 0+180 Előfeltétel (tantárgyi kód) CGB 1005 Dr. Koi Balázs A gyakorlati órák a terepintézményekben

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

a matematika alapképzési (Bachelor) szak INDÍTÁSÁRA I. Adatlap

a matematika alapképzési (Bachelor) szak INDÍTÁSÁRA I. Adatlap I. Adatlap 3. Az indítandó alapszak megnevezése matematika alapképzési szak 4. Az oklevélben szereplő szakképzettség megnevezése alapokleveles matematikus 5. Az indítani tervezett szakirány(ok) megnevezése

Részletesebben

(Figyelem! A kurzusok meghirdetése a mindenkori személyi állománytól függ.)

(Figyelem! A kurzusok meghirdetése a mindenkori személyi állománytól függ.) Mintatanterv anglisztika BA mellékszakos (minor) végzettséggel rendelkező, illetve nem angol szakos diplomával rendelkező angoltanári mesterszakos hallgatók számára (4+1, illetve 2+2+1 félév; teljesítendő:

Részletesebben

MATEMATIKA EMELT 9-12. évfolyam

MATEMATIKA EMELT 9-12. évfolyam MATEMATIKA EMELT 9-12. évfolyam Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

Oktatói munka hallgatói véleményezése. Oktatók

Oktatói munka hallgatói véleményezése. Oktatók Oktatói munka hallgatói véleményezése Oktatók Eredmények 1. A diákok órákon való részvételi hajlandósága eltérő attitűdöket mutat. A hallgatók négyötöde (80%) gyakori látogatója az előadásoknak, szemináriumoknak.

Részletesebben

Párhuzamos programozás

Párhuzamos programozás Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák

Részletesebben

GAZDASÁGI MATEMATIKA 1. 1. Gyakorlat

GAZDASÁGI MATEMATIKA 1. 1. Gyakorlat GAZDASÁGI MATEMATIKA 1. 1. Gyakorlat Bemutatkozás Chmelik Gábor óraadó BGF-KKK Módszertani Intézeti Tanszéki Osztály chmelik.gabor@kkk.bgf.hu http://www.cs.elte.hu/ chmelik Fogadóóra: e-mailben egyeztetett

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra

Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató

Részletesebben

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék III 1. Aritmetika 1 1.1. Elemi számolási szabályok............................... 1 1.1.1. Számok..................................... 1 1.1.1.1. Természetes, egész és racionális számok.............. 1

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika II. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika II. tanulmányokhoz I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika II. tanulmányokhoz TÁVOKTATÁS 2014/2015-ös tanév II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika II. (Valószínűségszámítás)

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok

Részletesebben

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,

Részletesebben

2011. március 9. Dr. Vincze Szilvia

2011. március 9. Dr. Vincze Szilvia . márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer

Részletesebben

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja. 9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok

Részletesebben

Jelek tanulmányozása

Jelek tanulmányozása Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás

Részletesebben

Operációkutatás. 2. konzultáció: Lineáris programozás (2. rész) Feladattípusok

Operációkutatás. 2. konzultáció: Lineáris programozás (2. rész) Feladattípusok Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 00/003 tanév, II évf félév Előadó: Dr Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs u 9 GT fszt 3 (99) 58 640

Részletesebben

Feladatok és végeredmények a Bevezető fejezetek a matematikába tárgy II. félévéhez

Feladatok és végeredmények a Bevezető fejezetek a matematikába tárgy II. félévéhez Feladatok és végeredmények a Bevezető fejezetek a matematikába tárgy II. félévéhez Összeállította: Láng Csabáné Budapest, 2004. január Tartalomjegyzék 1. Feladatok... 2 1.1. Gráfelmélet... 2 1.1.1 Alapfogalmak...

Részletesebben

Kombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/

Kombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/ Kombinatorika 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kombinatorika p. 1/ Permutáció Definíció. Adott n különböző elem. Az elemek egy meghatározott sorrendjét az adott

Részletesebben

TANTÁRGYI ÚTMUTATÓ EMBERI ERŐFORRÁS SZAK NAPPALI TAGOZAT

TANTÁRGYI ÚTMUTATÓ EMBERI ERŐFORRÁS SZAK NAPPALI TAGOZAT Számvitel Intézeti Tanszék /fax: 383-8480 Budapest 72. Pf.: 35. 1426 II. ÉVFOLYAM TANTÁRGYI ÚTMUTATÓ EMBERI ERŐFORRÁS SZAK NAPPALI TAGOZAT Kontrolling alapjai c. tárgy tanulmányozásához 2014/2015.tanév

Részletesebben

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Fogászati asszisztens szakképesítés. 2398-06 Gyermekfogászati és fogszabályozási beavatkozások modul. 1.

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Fogászati asszisztens szakképesítés. 2398-06 Gyermekfogászati és fogszabályozási beavatkozások modul. 1. Nemzeti Erőforrás Minisztérium Érvényességi idő: az írásbeli vizsgatevékenység befejezésének időpontjáig A minősítő neve: Rauh Edit A minősítő beosztása: mb. főigazgató-helyettes JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Részletesebben

I. rész. Pótlapok száma Tisztázati Piszkozati. Név:...osztály:... Matematika kisérettségi. 2012. május 15. Fontos tudnivalók

I. rész. Pótlapok száma Tisztázati Piszkozati. Név:...osztály:... Matematika kisérettségi. 2012. május 15. Fontos tudnivalók Matematika kisérettségi 2012. május 15. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az id elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetsz leges. 3. A

Részletesebben

A MŰSZAKI MECHANIKA TANTÁRGY JAVÍTÓVIZSGA KÖVETELMÉNYEI 20150. AUGUSZTUS

A MŰSZAKI MECHANIKA TANTÁRGY JAVÍTÓVIZSGA KÖVETELMÉNYEI 20150. AUGUSZTUS A MŰSZAKI MECHANIKA TANTÁRGY JAVÍTÓVIZSGA KÖVETELMÉNYEI 20150. AUGUSZTUS 1., Merev testek általános statikája mértékegységek a mechanikában a számító- és szerkesztő eljárások parallel alkalmazása Statikai

Részletesebben

KÖVETELMÉNYEK. a) A foglalkozásokon való részvétel: a TVSZ. előírásai az irányadóak

KÖVETELMÉNYEK. a) A foglalkozásokon való részvétel: a TVSZ. előírásai az irányadóak Szövegszerkesztés I. GP1004L. Kreditpont 2 Heti kontaktóraszám (elm.+gyak.) 0+2 Gyakorlati jegy Tantárgy oktatója és beosztása Veres Gabriella főiskolai docens a) A foglalkozásokon való részvétel: a TVSZ.

Részletesebben

3. KÖRGEOMETRIA. 3.1. Körrel kapcsolatos alapismeretek

3. KÖRGEOMETRIA. 3.1. Körrel kapcsolatos alapismeretek 3. KÖRGEOMETRIA Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest, 89 109. és 121. oldal. Pelle Béla: Geometria, Tankönyvkiadó, Budapest, 86 97. és 117 121. oldal. Kovács Zoltán: Geometria,

Részletesebben

1. Gondolkodási módszerek, halmazok, logika, kombinatorika, gráfok

1. Gondolkodási módszerek, halmazok, logika, kombinatorika, gráfok 1. Gondolkodási módszerek, halmazok, logika, kombinatorika, gráfok 1.1. Halmazok Ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát. Definiálja és alkalmazza gyakorlati

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Foglalkozásegészségügyi szakápoló szakképesítés. 2379-06 Foglalkozásegészségügyi felmérés modul. 1.

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Foglalkozásegészségügyi szakápoló szakképesítés. 2379-06 Foglalkozásegészségügyi felmérés modul. 1. Emberi Erőforrások Minisztériuma Korlátozott terjesztésű! Érvényességi idő: az írásbeli vizsgatevékenység befejezésének időpontjáig A minősítő neve: Rauh Edit A minősítő beosztása: mb. főigazgató-helyettes

Részletesebben

felsőfokú szakképzések szakirányú továbbképzések informatikai alapszakok informatikai mesterszakok informatikai doktori iskola

felsőfokú szakképzések szakirányú továbbképzések informatikai alapszakok informatikai mesterszakok informatikai doktori iskola felsőfokú szakképzések szakirányú továbbképzések informatikai alapszakok informatikai mesterszakok informatikai doktori iskola Általános rendszergazda WEB - programozó Informatika tanár Társadalom-informatikai

Részletesebben

Az éves statisztikai összegezés. Statisztikai összegezés az éves közbeszerzésekről a Kbt. IV. és VI. fejezete szerinti ajánlatkérők vonatkozásában

Az éves statisztikai összegezés. Statisztikai összegezés az éves közbeszerzésekről a Kbt. IV. és VI. fejezete szerinti ajánlatkérők vonatkozásában 9. melléklet a 14/2010. (X.29.) NFM rendelethez Az éves statisztikai összegezés Statisztikai összegezés az éves közbeszerzésekről a Kbt. IV. és VI. fejezete szerinti ajánlatkérők vonatkozásában I. SZAKASZ:

Részletesebben

KÖVETELMÉNYEK 2015/2016. 2. félév. Informatika II.

KÖVETELMÉNYEK 2015/2016. 2. félév. Informatika II. 2015/2016. 2. félév Tantárgy neve Informatika II. Tantárgy kódja TAB1110 Meghirdetés féléve 4. Kreditpont 1 Heti kontakt óraszám (gyak.) 0 + 1 Előfeltétel (tantárgyi kód) TAB1109 Tantárgyfelelős neve és

Részletesebben

1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!

1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! 1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.

MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot

Részletesebben

Juhász Tibor. Lineáris algebra

Juhász Tibor. Lineáris algebra Juhász Tibor Lineáris algebra Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Juhász Tibor Lineáris algebra Eger, 2013 Készült a TÁMOP-425B-11/1-2011-0001 támogatásával Tartalomjegyzék

Részletesebben

Tantárgyi program. 9. A tantárgy hallgatásának előfeltétele, előképzettségi szint: 10. A tantárgy tartalma:

Tantárgyi program. 9. A tantárgy hallgatásának előfeltétele, előképzettségi szint: 10. A tantárgy tartalma: Tantárgyi program 1. A tantárgy neve, kódja: AVM_VFLB111-K5 Marketing menedzsment 2. A neve, beosztása: 3. Szakcsoport (szakirány) megnevezése: Vállalkozásfejlesztés MSc szak, levelező tagozat 4. A tantárgy

Részletesebben