Tanmenetjavaslat az NT raktári számú Matematika 8. tankönyvhöz
|
|
- Andrea Dobos
- 8 évvel ezelőtt
- Látták:
Átírás
1 Tanmenetjavaslat az NT raktári számú Matematika 8. tankönyvhöz Oktatáskutató és Fejlesztő Intézet, Budapest
2 A tanmenetjavaslat 111 órára lebontva dolgozza fel a tananyagot. Amennyiben ennél több idő áll a rendelkezésünkre, minden alkalmat ragadjunk meg arra, hogy a tanulók matematikai kultúráját növeljük, szélesítsük látókörüket. Ebből a célból feldolgozhatjuk a munkafüzet (00880/M) és a feladatgyűjtemény (00880/Fgy) nehezebb, több kreativitást igénylő, *-gal jelölt feladatait, kereshetünk érdekes (a gyerekek figyelmét felkeltő szövegezésű) at, kipróbálhatunk matematikai és logikai játékokat. A kézikönyvben a tankönyv összes feladatának megadjuk a megoldását, a feladatétól eltérő betűtípussal. Dolgozatíratáshoz is találhatunk javaslatokat a könyvben. 1. A számok világa 1 1 A racionális számok Természetes szám, egész szám, tört, a tört részei, osztás, hányados, tizedestört. Végtelen szakaszos tizedestört, végtelen nem szakaszos tizedestört. Számegyenesen ábrázolás, törtek összehasonlítása. 2 2 A négyzetgyök fogalma A négyzet területe, számok négyzete. Négyzetgyök. 3 3 A pi és más nem Tizedestörtek, Végtelen nem Helyiértéktáblázat. racionális számok tizedestörtek szakaszos összehasonlítása, tizedestört. helyiérték-táblázat. 4 4 Gyakorlás 880/m; 880/Fgy 5 5 Kis számok 10 nemnegatív 10 negatív egész egész kitevőjű kitevőjű hatványai. hatványai. Reciprok. 6 6 Egy szám többféle alakja a normálalak 7 7 Műveletek normálalakban adott számokkal 1-nél nagyobb számok normálalakja. Műveletek. A hatványozás intuitív szinten használt azonosságai. 8 8 Számelmélet Oszthatóság, többszörös, osztó, közös osztó, közös többszörös, legnagyobb közös osztó, legkisebb közös többszörös. Prímtényezős felbontás, számok prímtényezős alakja. 1-nél kisebb számok normálalakja. További intuitív ismeretek a hatványozás azonosságairól. A korábban tanult fogalmak áte, gyakorlása. A hatványozási azonosságok megfigyelése. 9 9 Gyakorlás 880/m; 880/Fgy Gyakorlás 880/m; 880/Fgy, kémia, kémia, biológia, földrajz, kémia, biológia, földrajz, kémia, biológia, földrajz 2
3 2. Vektorok 11 1 Vektorok bevezetése 12 2 Vektorok összeadása Szakasz, távolság, párhuzmosság, a geometria elemei. A vektor fogalma. Műveletek vektorokkal. Láncszabály Vektorok kivonása Műveletek vektorokkal. Inverz művelet Gyakorlás 880/m; 880/Fgy 15 5 Gyakorlás 880/m; 880/Fgy 3. Algebra 16 1 Műveletek. Összeadás, szorzás 17 2 Összetett műveletek, átalakítások, zárójelezések 18 3 Műveletek algebrai kifejezésekkel 19 4 Egyenletek. Elemi úton megoldható szöveges Műveletek a racionális számkörben. A megismert műveletek tulajdonságai: assozciativitás (társíthatóság), kommutativitás (felcserélhetőség). A szorzás és az összeadás kapcsolata, a disztributivitás. Algebrai jelek, betűs kifejezések, fogalmak: egytagú, többtagú kifejezések (intuitív szinten), együttható, egynemű kifejezések. Egyenletmegoldás i módszerek: szisztematikus próbálgatás, következtetés, lebontogatás, mérlegelv. A disztributivitás két alkalmazása: kiemelés és beszorzás. Műveletei tulajdonságok algebrai kifejezésekkel; kifejezések azonos átalakítása. Szövegértésfejlesz tés, elemi logikai gondolkodási képesség fejlesztése Gyakorlás 880/m; 880/Fgy 21 6 A mérlegelv alkalmazása Egyenletek ekvivalens átalakításai a mérlegelvvel. Nem ekvivalens átalakítások Egyenlőtlenségek A mérlegelv alkalmazása egyenlőtlenségek megoldására. Az ekvivalens és nem ekvivalens További tapasztalatszerzés az egyenlőtlenségek megoldási módszereiről., kémia 3
4 átalakítások Gyakorlás 880/m; 880/Fgy 24 9 Számokkal kapcsolatos Számok tízes számrendszerben való helyiértékes felírása Keverési Arány, aránypár, egyenes, fordított arányosság Mozgásos A mozgással kapcsolatos fizikai összefüggések: a sebesség, idő, megtett út közti összefüggés. Szisztematikusan felépített megoldási módszer a mozgásos megoldására Gyakorlás 880/m; 880/Fgy Gyakorlás 880/m; 880/Fgy Együttes munkavégzésre vonatkozó (Emelt szintű, Fordítottan arányos mennyiségek közti összefüggések megfigyelése, felírása. Szisztematikusan felépített módszer az együttes munkavégzésre vonatkozó megoldására Szöveges a geometria témaköréből Halmazműveletek összefoglaló gyakorlása Kombinatorikai A geometria algebrai vonatkozású területei: terület-, kerületszámítás, térfogat-, felszínszámítás stb. Halmaz, elem, elemszám, metszet, egyesítés, üreshalmaz. Elemek sorrendje, sorbarakás, kiválasztási lehetőségek szisztematikus leszámlálása Gyakorlás 880/m; 880/Fgy Gyakorlás 880/m; 880/Fgy dolgozat dolgozat javítása Kémia 4. Transzformációk 37 1 Egybevágósági transzformációk Térelemek Eltolás Geometriai transzformáció, vektor Pont körüli Geometriai elforgatás transzformáció. (Választható 40 4 Középpontos hasonlóság Eltolás fogalma. Pont körüli elforgtás fogalma. Középponzos hasonlóság Színes ceruzák, vonalzók, körző. Szerkesztés: körző, vonalzó. Szerkesztés: körző, vonalzó. Szerkesztés: körző, vonalzó. 4
5 41 5 A középpontos hasonlóság tulajdonságai 42 6 Szerkesszünk középpontosan fogalma. Vonalzó, körző. Színes ceruzák, vonalzók, körző. hasonló képet! 43 7 Hasonlóság A hasonlóság fogalma Gyakorlás 880/m; 880/Fgy 45 9 Gyakorlás 880/m; 880/Fgy 5. A Pitagorasz-tétel 46 1 Mérjük meg a hosszát! A szerkesztés lépései. Szerkesztés: vonalzók, körző A Pitagorasz-tétel 2 2 a b 2 c Színes ceruzák A Pitagorasz-tétel alkalmazása síkbeli ban Kerekítés. Számológép A Pitagorasz-tétel alkalmazása térbeli ban 50 5 Pitagoraszi számhármasok Térelemek. Számológép. Pitagoraszi háromszög. Számológép Gyakorlás 880/m; 880/Fgy 52 7 Gyakorlás 880/m; 880/Fgy 6. A számológép 53 1 Mit tud a számológép? A számológép Algebrai műveletek Négyzetgyök A négyzetgyök fogalma, számok négyzetgyökének becslése Eljárások (Olvasmány, 56 4 Eszközök (Olvasmány,. Gépek (Olvasmány, Műveleti azonosságok, azonos algebrai átalakítások. A számológéppel kapcsolatos fontos ismeretek. Négyzetgyökvonás eljárások. Számolási algoritmusok. Ismerkedés a számítógépek történetével. Számológép. Számológép Gyakorlás 880/m; 880/Fgy 58 6 Gyakorlás 880/m; 880/Fgy 5
6 dolgozat dolgozat javítása 7. Függvények 61 1 Lineáris függvények. Áttekintés 62 2 Lineáris függvények meredeksége I Lineáris függvények meredeksége II. Lineáris függvények. Lineáris függvények alapvető tulajdonságai, grafikonja. Meredekség, a lineáris függvény egyszerű felírási módja. Tengelymetszet. Meredekség, a lineáris függvény egyszerű felírási módja. Tengelymetszet. Eszközök, ajánlott 64 4 Gyakorlás 880/m; 880/Fgy 65 5 Elsőfokú egyenletek grafikus megoldása Egyenlet, függvénygrafikon, függvényábrázolás. Koordináta-rendszer. A metszéspont leolvasása, a leolvasott metszéspont mint megoldás értelmezése Elsőfokú egyenlőtlenségek grafikus megoldása Megoldáshalmaz. Egyenlőtlenség, függvénygrafikon, függvényábrázolás. Koordináta-rendszer. Intervallum. A keresett intervallum leolvasása, a leolvasott intervallum mint megoldás értelmezése Gyakorlati alkalmazások Mozgási grafikus megoldása Nem lineáris Az abszolútérték Az abszolútértékfüggvény függvények. Az fogalma. grafikonja. abszolútérték függvény 69 9 Gyakorlás 880/m; 880/Fgy A másodfokú A négyzetreemelés A másodfokú függvény függvény fogalma. grafikonja, a parabola A lineáris Eltolás. Lineáris törtfüggvény. törtfüggvény. Függvények mozgatása az x tengellyel párhuzamosan A két függvényeltolás összekapcsolása Tükrözés az x tengelyre Egyenletek, egyenlőtlenségek grafikus megoldása Tükrözés. Koordináta-rendszer. Metszéspont, megoldáshalmaz. Összetett függvény-transzformációk. Kapcsolódás más 6
7 75 15 Gyakorlás 880/m; 880/Fgy 8. Statisztika 76 1 Milyen ismereteink vannak statisztikából? 77 2 Adatok ábrázolása diagramon 78 3 Ábrázolás kördiagramon. Hogyan készítsünk kördiagramot? 79 4 Az adatsokaságot jellemző középértékek. Az Adatgyűjtés, adatok csoportosítása. Adatok szemléltetése, oszlopdiagram, grafikon, szalagdiagram stb. A kördiagram leolvasása. A kör felosztása, szög. Átlag kiszámítása két, illetve több elem esetén. A kördiagram készítése. Adathalmazra jellemző, illetve nem jellemző középérték. Grafikon, négyzethálós Szögmérő, körző, vonalzó. Számológép. átlag 80 5 Módusz, medián Módusz, medián. Számológép Gyakorlás 880/m; 880/Fgy 82 7 Gyakorlás 880/m; 880/Fgy 83 8 Gyakorlás 880/m; 880/Fgy 9. A tér geometriája 84 1 A tanult testek áttekintése 85 2 Gúlák hasábok A gúla fogalma, felszínének kiszámítása Kúpok hengerek a kúp fogalma, felszínének kiszámítása A gúla és a kúp térfogata (Emelt szintű, Gúla, kúp. A gúla és a kúp térfogatának kiszámítása. Számológép, színes ceruzák. Számológép, színes ceruzák. Számológép, színes ceruzák. Számológép, színes ceruzák Gömb Gömbfelület, A gömb felszín- és Számológép. gömbtest. térfogatképlete Gyakorlás 880/m; 880/Fgy 90 7 Gyakorlás 880/m; 880/Fgy 10. Sorozatok 91 1 Sorozatok A sorozat fogalma. A sorozat eleme, értelmezési tartománya, a sorozat mint függvény. A 7
8 számtani sorozat. Differencia (különbség) Mértani sorozat Mértani sorozat. Kvóciens (hányados). Első elemével és hányadosával adott mértani sorozat n -edik elemének meghatározása Gyakorlás 880/m; 880/Fgy 94 4 Gyakorlás 880/m; 880/Fgy dolgozat dolgozat javítása 11. Valószínűség-számítás 97 1 Áttekintés. A valószínűség klasszikus modellje Kísérlet, esemény, gyakoriság, relatív gyakoriság. Adatgyűjtés, adatok rendszerezése. Eszközök, ajánlott Dobókocka, pénzérmék Gyakorlás 880/m; 880/Fgy 99 3 Összetett események valószínűsége Dobókocka, pénzérmék. Események együttes bekövetkeztének valószínűsége. Két esemény összetételével kapott esemény bekövetkeztének valószínűsége Gyakorlás 880/m; 880/Fgy Geometriai valószínľség A valószínűség geometriai interpretációja (területtel, hosszúsággal való jellemzése) Gyakorlás 880/m; 880/Fgy Kapcsolódás más 12. Halmazok Halmazok, halmazműveletek Speciális tulajdonságú halmazok Műveletek halmazokkal Halmaz, elem. Alaphalmaz, üreshalmaz. Komplementerhalmaz (kiegészítőhalmaz). Halmazok egyesítése, metszete. A fogalom gyakorlása szöveges on keresztül Gyakorlás 880/m; 880/Fgy 8
9 Tanév végi Tanév végi, gyakorlás Tanév végi, gyakorlás Tanév végi, gyakorlás Tanév végi, gyakorlás Tanév végi, gyakorlás 9
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
RészletesebbenJavítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
RészletesebbenMATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.C ÉS 13.B OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség kezdete: 2013.09. 01. Oldal/összes: 1/6 Fájlnév:ME-III.1.1. Tanmenetborító SZK-DC- 2013 MATEMATIKA
RészletesebbenNT-17112 Az érthető matematika 9. Tanmenetjavaslat
NT-17112 Az érthető matematika 9. Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Juhász István
RészletesebbenA SZÁMFOGALOM KIALAKÍTÁSA
A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése
RészletesebbenNT-17102/1 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102/1 Matematika 9. (Heuréka) Tanmenetjavaslat A Dr. Fried Katalin Dr. Gerőcs László Számadó László Matematika 9. tankönyvben (Heuréka-sorozat) a középszintű érettségihez találjuk meg a tananyagot,
RészletesebbenNT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin
RészletesebbenMatematika házivizsga 11. évfolyamon részletes követelmények
Matematika házivizsga on részletes követelmények A vizsga időpontja: 016. április 11. típusa: írásbeli időtartama:180 perc (45 perc + 135 perc) Tankönyv: Sokszínű matematika 11. és a hozzá tartozó feladatgyűjtemény
Részletesebben9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.
9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok
RészletesebbenHalmazok és függvények
Halmazok és függvények Óraszám: 2+2 Kreditszám: 6 Meghirdető tanszék: Analízis Debrecen, 2005. A tárgy neve: Halmazok és függvények (előadás) A tárgy oktatója: Dr. Gilányi Attila Óraszám/hét: 2 Kreditszám:
RészletesebbenMAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Másodfokú egyenletek. Ismétlés 1. óra: Másodfokú egyenletek,
Részletesebben1. Gondolkodási módszerek, halmazok, logika, kombinatorika, gráfok
1. Gondolkodási módszerek, halmazok, logika, kombinatorika, gráfok 1.1. Halmazok Ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát. Definiálja és alkalmazza gyakorlati
RészletesebbenTanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató
RészletesebbenMeghirdetés féléve 1 Kreditpont 4 Összóraszám (elm+gyak) 2+2
Tantárgy neve Algebrai alapismeretek Tantárgy kódja MTB1003 Meghirdetés féléve 1 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja Gyakorlati jegy Előfeltétel (tantárgyi kód) Tantárgyfelelős neve
RészletesebbenMatematika tanterv. A matematikai gondolkodás fejlesztése segíti a gondolkodás általános kultúrájának kiteljesedését.
Matematika tanterv A matematika tanítás célja, feladatai: Hiteles képet nyújtani a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. Formálni,
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenFÜGGVÉNYEK, SOROZATOK
FÜGGVÉNYEK, SOROZATOK A FÜGGVÉNYFOGALOM ELŐKÉSZÍTÉSE 1-6. OSZTÁLY Adott szabály követése Szabályfelismerés és szabálykövetés Szabályfelismerés és szabály megadása szöveggel, képlettel EGYENES ÉS FORDÍTOTT
RészletesebbenHelyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam
Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenMATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények
MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,
RészletesebbenMATEMATIKA 5-8. évfolyam
MATEMATIKA 5-8. évfolyam A tantárgy óraszáma: 481 A tanterv NAT Matematika műveltségterület 5.-8.évfolyamok követelményét fedi le. A NAT-ban megfogalmazott Fejlesztési feladatok fejezetet a helyi tantervben
RészletesebbenMATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ
MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a
RészletesebbenAz áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!
Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április
RészletesebbenSzámsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás
12. évfolyam Osztályozó vizsga 2013. augusztus Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás Ismerje a számsorozat
RészletesebbenI. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)
MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,
RészletesebbenMATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam
BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag
RészletesebbenHELYI TANTERV / MATEMATIKA 9-13. ÉVFOLYAM / ANGOL NYELVI ELŐKÉSZÍTŐ
MATEMATIKA Iskolánkban a 2004 szeptemberétől indítandó nyelvi előkészítő évfolyamokon a képességfejlesztésre szánt időkeretből évi 74 (azaz heti 2) órát matematikaoktatásra szánunk. Kedvező lehetőségnek
RészletesebbenMATEMATIKA EMELT 9-12. évfolyam
MATEMATIKA EMELT 9-12. évfolyam Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.
RészletesebbenMATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI
A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja
RészletesebbenHelyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február
Helyi tanterv Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február 1 A TANTERV SZERKEZETE Bevezető Célok és feladatok Fejlesztési célok és kompetenciák Helyes
RészletesebbenMATEMATIKA 5-8. évfolyam
MATEMATIKA 5-8. évfolyam MATEMATIKA 5-8. évfolyam A tanterv a NAT Matematika műveltségterület 5-8. évfolyamok követelményét fedi le. A NAT-ban megfogalmazott Fejlesztési feladatok fejezetet szervesen beépítettük
RészletesebbenMATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok
MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve
RészletesebbenMATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
RészletesebbenHalmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma
Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,
RészletesebbenMatematika emelt szint a 11-12.évfolyam számára
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.
Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk
RészletesebbenGONDOLKODNI JÓ! Tanmenetjavaslat 5. osztály
Tanmenetjavaslat 5. osztály A tanmenetjavaslatban dőlt betűvel szedtük a tananyag legjellemzőbb részét (amelyet a naplóba írunk). Kisebb betűvel jelezzük a folyamatos ismétléssel és koncentrációval kapcsolatos
RészletesebbenMAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY Heti 4 óra Évi 148 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató 1 / 5 I. Az általános iskolai ismeretek ismétlése 1. óra: Műveletek
RészletesebbenTANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő
4 TANMENET javaslat a szorobánnal számoló 4. osztály számára Szerkesztette: Dr. Vajda József - Összeállította az Első Szorobán Alapítvány megbízásából: Vajdáné Bárdi Magdolna tanítónő Makó, 2001. 2010.
RészletesebbenOrszágos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 011/01 Matematika I. kategória (SZKKÖZÉPISKOL) Döntő 1. Határozza meg az összes olyan egész számot, amely eleget tesz az egyenlőtlenségnek! log
RészletesebbenA továbbhaladás feltételei fizikából és matematikából
A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban
RészletesebbenAz osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból
Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.
RészletesebbenA Szekszárdi I. Béla Gimnázium Helyi Tanterve
A Szekszárdi I. Béla Gimnázium Helyi Tanterve Matematika Készítette: a gimnázium reál szakmai munkaközössége 2015. Tartalom Emelt szintű matematika képzés... 3 Matematika alapóraszámú képzés... 47 Matematika
RészletesebbenA MEDGYESSY FERENC GIMNÁZIUM ÉS MŰVÉSZETI SZAKKÖZÉPISKOLA. Matematika I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY II.
A MEDGYESSY FERENC GIMNÁZIUM ÉS MŰVÉSZETI SZAKKÖZÉPISKOLA Matematika I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY II. A VIZSGA LEÍRÁSA OM azonosító: 031202 MATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY
RészletesebbenReál osztály, angol- német nyelvi előkészítővel. 9. évfolyam+ előkészítő év. Célok és feladatok
Reál osztály, angol- német nyelvi előkészítővel 9. évfolyam+ előkészítő év Célok és feladatok A 9. évfolyamon fontos cél az alapképességek továbbfejlesztése. El kell érni, hogy a szemléletes fogalmak többsége
RészletesebbenMatematika 9-12. (10-13.)- középszintű (K)
K Matematika 9-12. (10-13.)- középszintű (K) Ez a tanterv az Országos Közoktatási Intézet tantervi adatbankjában az OKI96PÁLMAT1-12 változat alatt szereplő minősített tanterv 9-12. osztályokra lebontott
RészletesebbenTanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz
MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.
RészletesebbenSzámelmélet I. 1. A tantárgy általános célja és specifikus célkitűzései
Számelmélet I. Tantárgy neve Számelmélet I. Tantárgy kódja MTB 1011 Meghirdetés féléve 3. félév Kreditpont 3 Összóraszám (elm+gyak) 2+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) MTB 1003
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.
MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik
RészletesebbenMATEMATIKA 9. osztály Segédanyag 4 óra/hét
MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY
RészletesebbenMatematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
RészletesebbenMATEMATIKA HELYI SZAKTÁRGYI TANTERV (5 8. évfolyam) 2013
MATEMATIKA HELYI SZAKTÁRGYI TANTERV (5 8. évfolyam) 2013 A matematika kerettanterv az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 szerint, az emelt szintő a 2.3.1.2 szerint
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
RészletesebbenF E L V É T E L I K Ö V E T E L M É N Y E K T A G O Z A T O N K É N T KLASSZIKUS HUMÁN TAGOZAT
F E L V É T E L I K Ö V E T E L M É N Y E K T A G O Z A T O N K É N T KLASSZIKUS HUMÁN TAGOZAT Szóbeli vizsga: magyar nyelv- és irodalomból, valamint történelemből A. Követelmények magyar nyelv- és irodalomból:
Részletesebbenértelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják
A Baktay Ervin Gimnázium alap matematika tanterve a 6 évfolyamos gimnáziumi osztályok számára 7. 8. 9. 10. 11. 12. heti óraszám 3 cs. 3 cs. 3 cs. 4 4 4 éves óraszám 108 108 108 144 144 120 (cs.: csoportbontásban)
Részletesebbenhogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
RészletesebbenFejlesztési követelmények/ Tevékenységek Személyek, tárgyak, logikai készlet elemeinek elhelyezése halmazábrákba. Évfolyamozás több szempont alapján.
Matematika heti óraszám: 5 éves óraszám: 180 6. évfolyam: Tematikai egység rövid címe Kerettantervi óraszám Helyi többlet- óraszám (±) Témakör összidőkerete Gondolkodási módszerek, halmazok, matematikai
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 10 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
RészletesebbenAzonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
Részletesebben2013. Matematika TANTÁRGY HELYI TANTERVE. a 5 8. évfolyamra
2013. Matematika TANTÁRGY HELYI TANTERVE a 5 8. évfolyamra Készült a vonatkozó EMMI kerettanterv és rendelet alapján megjelentetett MOZAIK Tankönyvkiadó: Kerettantervi ajánlás a helyi tanterv készítéséhez
RészletesebbenSz ekelyhidi L aszl o Val osz ın us egsz am ıt as es matematikai statisztika *************** Budapest, 1998
Székelyhidi László Valószínűségszámítás és matematikai statisztika *************** Budapest, 1998 Előszó Ez a jegyzet a valószínűségszámításnak és a matematikai statisztikának azokat a fejezeteit tárgyalja,
RészletesebbenA tanulók rendszeresen oldjanak meg önállóan feladatokat, aktívan vegyenek részt a tanítási, tanulási folyamatban. A feladatmegoldáson keresztül a
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
RészletesebbenScherlein Márta MATEMATIKA 1. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK
Scherlein Márta MATEMATIKA 1. TANANYAGBEOSZTÁS, KÖVETELMÉNYEK KOMPETENCIÁK, FEJLESZTÉSI FELADATOK TANANYAGBEOSZTÁS, KÖVETELMÉNYEK A tanmenetet három lehetséges óraszámhoz igazítva állítottuk össze. I.
RészletesebbenTrigonometria és koordináta geometria
Tantárgy neve Trigonometria és koordináta geometria Tantárgy kódja MTB1001 Meghirdetés féléve I. Kreditpont 4k Összóraszám (elm+gyak) 30+30 Számonkérés módja Gyakorlati jegy (2 zárthelyi dolgozat) Előfeltétel
Részletesebbenhogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
RészletesebbenMatematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti
Matematika 9. nyelvi előkészítő évfolyam Témakörök Gondolkodási és megismerési módszerek Számtan, algebra Összefüggések, függvények, sorozatok Geometria, mérés Statisztika, valószínűség Év végi összefoglaló
RészletesebbenMATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
RészletesebbenIV.5. GARÁZS 1. A feladatsor jellemzői
IV.5. GARÁZS 1. Tárgy, téma A feladatsor jellemzői Lineáris egyenlet, egyenletrendszer. Elsőfokú függvény. Többismeretlenes problémák megoldása egyenletrendszerek felírásával algebrai úton, illetve intuitív
RészletesebbenMATEMATIKA. 5 8. évfolyam
MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni
Részletesebben3. évfolyam. Órakeret 5 óra + folyamatos
Tematikai egység/ Fejlesztési cél Előzetes tudás A tematikai egység nevelési-fejlesztési céljai 3. évfolyam 1. Gondolkodási módszerek, halmazok, matematikai logika, kombinatorika, gráfok Halmazok összehasonlítása.
RészletesebbenA döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
RészletesebbenÁltalános érettségi tantárgyi vizsgakatalógus. Matematika
Általános érettségi tantárgyi vizsgakatalógus Matematika SPLOŠNA MATURA A tantárgyi vizsgakatalógus a 2009. évi tavaszi vizsgaidőszaktól érvényes az új megjelenéséig. A katalógus érvényességéről az adott
Részletesebben1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!
1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten RACIONÁLIS TÖRTFÜGGVÉNYEK INTEGRÁLJA Készítette: Gábor Szakmai felel s: Gábor Vázlat
RészletesebbenMATEMATIKA Emelt szint 9-12. évfolyam
MATEMATIKA Emelt szint 9-12. évfolyam évfolyam 9. 10. 11. 12. óra/tanév 216 216 216 224 óra/hét 6 6 6 7 Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről
RészletesebbenMATEMATIKA (4+4+3+4 óra)
MATEMATIKA (4+4+3+4 óra) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT ) dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből
RészletesebbenMATEMATIKA. 5-8. évfolyam. Alapelvek, célok
MATEMATIKA 5-8. évfolyam Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi
RészletesebbenElektronikus tananyag MATEMATIKA 10. osztály II. félév
Elektronikus tananyag MATEMATIKA 0. osztály II. félév A hasonlósági transzformáció és alkalmazásai. Párhuzamos szelők és szelőszakaszok A párhuzamos szelők tétele TÉTEL: Ha egy szög szárait párhuzamos
RészletesebbenTémakörök az osztályozó vizsgához. Matematika
Témakörök az osztályozó vizsgához Idegenforgalmi és Informatikus osztályok (9.A/9.B) 1. A halmazok, számhalmazok, ponthalmazok 2. Függvények 3. A számelmélet elemei. Hatványozás. 0 és negatív kitevőjű
RészletesebbenAnalízis előadások. Vajda István. 2013. február 10. Neumann János Informatika Kar Óbudai Egyetem
Analízis előadások Vajda István Neumann János Informatika Kar Óbudai Egyetem 013. február 10. Vajda István (Óbudai Egyetem) Analízis előadások 013. február 10. 1 / 3 Az elemi függvények csoportosítása
RészletesebbenFelvételi előkészítő tájékoztató 2012.
Felvételi előkészítő tájékoztató 2012. Néhány gondolat a központi felvételiről! A központi Matematika felvételi az elmúlt években sok 8. osztályos diák számára igen csak komoly megmérettetésnek bizonyult.
RészletesebbenA skatulya-elv alkalmazásai
1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely
RészletesebbenPRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. Január 21. EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2012. Január 21. Az írásbeli vizsga időtartama: 240 perc Név Tanárok neve Email Pontszám STUDIUM GENERALE MATEMATIKA
RészletesebbenHelyi tanterv Matematika
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika 9. nyelvi előkészítő évfolyam 9-12. évfolyam 1 Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról,
RészletesebbenMatematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára
Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási
RészletesebbenIsmétlés: Gyakoroljuk a számjegyírást! Számok nagyságrendje, számszomszédok, számok rendezése, válogatásuk szempontok
Szeptember 1. hét 1. JAVASLAT A TANANYAG FELDOLGOZÁSÁRA A tanmenetjavaslatban szürke mezôbe tettük a szabadon tervezhetô plusz egy óra tananyagát. Rövidítések: Tk.: Második matematikám; Fgy.: Az én matematikám
RészletesebbenEmelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
Részletesebben3. KÖRGEOMETRIA. 3.1. Körrel kapcsolatos alapismeretek
3. KÖRGEOMETRIA Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest, 89 109. és 121. oldal. Pelle Béla: Geometria, Tankönyvkiadó, Budapest, 86 97. és 117 121. oldal. Kovács Zoltán: Geometria,
Részletesebbenmegfigyelőképesség, érzékelés, szám és jel számok sorrendje, számszomszédok páros, páratlan
Társadalmi Megújulás Operatív Program Kompetencia alapú oktatás, egyenlő hozzáférés - Innovatív intézményekben TÁMOP 3.1.4-08/2. - 2009-0094 " Oktatásfejlesztés Baja Város Önkormányzata által fenntartott
Részletesebben2004. december 1. Irodalom
LINEÁRIS LEKÉPEZÉSEK I. 2004. december 1. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
RészletesebbenArany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
RészletesebbenTANMENET. Tantárgy: Informatika Osztály: 9B. Heti óraszám: 2
KAPOSVÁRI SZAKKÉPZÉSI CENTRUM EÖTVÖS LORÁND MŰSZAKI SZAKKÖZÉPISKOLÁJA, SZAKISKOLÁJA ÉS KOLLÉGIUMA 7400 Kaposvár, Pázmány Péter u. 17. OM 203027 TANMENET Tantárgy: Informatika Osztály: 9B. Heti óraszám:
RészletesebbenGyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA!
Gyõrffy Magdolna Tanmenetjavaslat A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Dinasztia Tankönyvkiadó Kft., 2004 1 ÍRTA: GYÕRFFY MAGDOLNA TIPOGRÁFIA: KNAUSZ VALÉRIA
RészletesebbenMatematika 9-12. (10-13.)- középszint (K) - PÁLMAT1-12 - Kidolgozandó B vített
Matematika Matematika 9-12. (10-13.)- középszint (K) - PÁLMAT1-12 - Kidolgozandó B vített Ez a tanterv az Országos Közoktatási Intézet tantervi adatbankjában az OKI96PÁLMAT1-12 változat alatt szerepl min
RészletesebbenMATEMATIKA. Általános érettségi tantárgyi vizsgakatalógus Splošna matura
Ljubljana 2015 MATEMATIKA Általános érettségi tantárgyi vizsgakatalógus Splošna matura A tantárgyi vizsgakatalógus a 2017. évi tavaszi vizsgaidőszaktól érvényes az új megjelenéséig. A katalógus érvényességéről
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 12 XII. STATIsZTIKA ellenőrző feladatsorok 1. FELADATsOR Megoldások: láthatók nem láthatók 1. minta: 6.10, 0.01, 6.97, 6.03, 3.85, 1.11,
RészletesebbenHELYI TANTERV MATEMATIKA GIMNÁZIUMI OSZTÁLYOK
HELYI TANTERV MATEMATIKA GIMNÁZIUMI OSZTÁLYOK 1 MATEMATIKA (4+4+4+4) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről és mint sajátos emberi megismerési,
RészletesebbenMATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
Részletesebben