NT-17102/1 Matematika 9. (Heuréka) Tanmenetjavaslat
|
|
- Sarolta Gulyás
- 8 évvel ezelőtt
- Látták:
Átírás
1 NT-17102/1 Matematika 9. (Heuréka) Tanmenetjavaslat A Dr. Fried Katalin Dr. Gerőcs László Számadó László Matematika 9. tankönyvben (Heuréka-sorozat) a középszintű érettségihez találjuk meg a tananyagot, de tartalmaz emelt szintű kitekintéseket és kiegészítő részeket is. Ezeket a könyvben jelöltük. Ez a segédanyag segítséget jelenthet mindazoknak, akik a matematikai oktatáshoz és neveléshez a 9. évfolyamon ezt a könyvet szeretnék használni. A tanmenetjavaslatban is elsősorban a középszintű érettségit tartottuk szem előtt, a tananyag, a fejlesztési feladatok, a tevékenységek és a fejezetek órabeosztása is ehhez igazodik. Az emelt szintű és a kiegészítő részekhez a szabadon tervezhető időkeretből lehet óraszámot biztosítani, a gyakorlóórák terhére. A jobb képességű csoportok esetén ezt feltétlenül érdemes végiggondolni. A tankönyv a középiskolák 9. évfolyamán alkalmas a középszintű érettségire való felkészítésre, hiszen tartalmazza a kötelező tananyagot. Az emelt és kiegészítő részek pedig azt a célt szolgálják, hogy az utolsó két évben sikeres felkészítés történhessen az emelt szintű érettségire. A tankönyv szerzői az alábbi fejlesztési követelményeket tartották szem előtt a tankönyv megírásakor és a tanmenetjavaslat összeállításakor is: Az elsajátított matematikai fogalmak alkalmazása A matematikai szemlélet fejlesztése Gyakorlottság a matematikai problémák megoldásában Jártasság a logikus gondolkodásban Az elsajátított megismerési módszerek és gondolkodási műveletek alkalmazása A helyes tanulási szokások fejlesztése A tanmenet megtervezésénél heti 3 matematikaórával számoltunk, ezért 111 órára lebontva látható a tananyag feldolgozása. A tanórák sorszáma mellett a lecke címe látható, a harmadik oszlopban az órához kapcsolódó legfontosabb fogalmakat, tételeket adtuk meg. Magasabb óraszám esetén a felhasználó döntése, hogy a gyakoroltatást és az emelt (illetve kiegészítő) anyagokat milyen arányban építi be az éves tervbe. Fontos, hogy ezt az anyagot javaslatnak tekintsük, és megtörténjen a tanítandó csoporthoz igazítása. Budapest, július Számadó László 1
2 Halmazok 1. Halmazok, jelölések Halmaz eleme, halmazok egyenlősége, véges, végtelen halmazok, természetes, egész, racionális, valós számok 2. Speciális halmazok, intervallum Alaphalmaz, üres halmaz, részhalmaz, intervallum 3. Halmazok uniója, metszete Unió, metszet 4. Halmazok különbsége, komplementer Különbség, komlementer halmaz halmaz 5. Logikai szita Logikai szita 6. A matematikai logika elemei Állítás megfordítása, megfordítható állítás 7. Ismétlés, gyakorlás 8. Számonkérés Algebra és számelmélet 9. A hatványozás és azonosságai Hatványalak, kitevő, alap, a hatványozás azonosságai 10. A hatványozás azonosságainak A permanencia elve kiterjesztése 11. Gyakorlati számítások Normálalak, százalékalap, százalékláb, százalékérték 12. A hatványozás azonosságainak gyakorlása 13. Algebrai kifejezések összevonása, Algebrai kifejezés, polinom szorzása 14. Nevezetes szorzatok Két tag összegének (különbségének) második, harmadik hatványa, két tag összegének és különbségének szorzata 15. Nevezetes szorzatok gyakorlása 16. Összegek szorzattá alakítása Kiemelés 17. Algebrai törtek egyszerűsítése, összevonása Algebrai tört, törtek egyszerűsítése, bővítése, törtek összevonása 18. Összetett műveletek algebrai törtekkel Algebrai törtek szorzása, osztása 19. Gyakorlás 20. Oszthatóság Szám osztója, többszöröse, valódi osztó, nem valódi osztó, oszthatósági szabályok 21. Prímszámok, a számelmélet alaptétele Prímszám, összetett szám, a számelmélet alaptétele 22. Legnagyobb közös osztó, legkisebb közös többszörös Legnagyobb közös osztó, legkisebb közös többszörös 2
3 23. Vegyes feladatok 24. Osztók száma, négyzetszámok 25. Számrendszerek Számjegy, helyiérték, számrendszer alapszáma 26. Gyakorló feladatok 27. A témazáró dolgozat előkészítése 28. Témazáró dolgozat 29. A témazáró dolgozat megbeszélése, Függvények, sorozatok 30. Hozzárendelések, függvények, sorozatok Függvény, változó, értelmezési tartomány, képhalmaz, képelemek, értékkészlet, sorozat 31. Ponthalmazok a koordináta-rendszerben Koordináta-rendszer, tengelyek, origó 32. Függvényvizsgálat Korlátosság, függvény menete, páros, páratlan függvények 33. A lineáris függvény Grafikon, meredekség, lineáris függvény, tengelymetszet, zérushely, konstans és elsőfokú függvény 34. Az abszolútérték-függvény Abszolútérték-függvény 35. Függvénytranszformáció A függvénytranszformáció lépései 36. A másodfokú függvény Másodfokú függvény, parabola 37. A másodfokú függvény összetett transzformációi 38. További függvények Négyzetgyökfüggvény, egyenes arányosság, fordított arányosság, hiperbola 39. Gyakorló feladatok 40. A témazáró dolgozat előkészítése 41. Témazáró dolgozat 42. A témazáró dolgozat megbeszélése, Bevezetés a geometriába 43. Pontok, egyenesek, síkok Pont, egyenes, sík, illeszkedés, alapfogalmak, axiómák, 44. Szakasz, félegyenes, szög Félegyenes, szakasz, szögtartomány, hegyesszög, tompaszög, konvex, konkáv szög, fok, irányított szög, szögpárok 45. Háromszögek Hegyesszögű, derékszögű, tompaszögű háromszög, 3
4 háromszög-egyenlőtlenségek, belső és külső szögek összege 46. További összefüggések a háromszög Két tétel és a tételek megfordítása alapadatai között 47. Összefüggés a derékszögű háromszög Pitagorasz-tétel és megfordítása oldalai között 48. Gyakorló feladatok 49. Geometriai számítások Pitagorasz-féle számhármasok 50. Geometriai szerkesztések Euklideszi szerkesztés 51. Thalész-tétel Thalész-tétel és megfordítása, kör érintőegyenese, érintési pont, érintőszakasz, közös külső és belső érintők 52. A háromszög köré írt köre A felező merőlegesek tétele, háromszög köré írt köre 53. A háromszög beírt és hozzáírt körei A szögfelezők tétele, háromszög beírt és hozzáírt körei 54. Gyakorló feladatok 55. Sokszögek Konvex sokszög és síkidom, konkáv sokszög és síkidom, átlók száma, belső és külső szögek összege, szabályos sokszögek, érintő sokszögek 56. Vegyes feladatok 57. Gyakorlás 58. Számonkérés 59. A számonkérés feladatainak megbeszélése, Egyenletek, egyenletrendszerek 60. Elsőfokú egyismeretlenes egyenletek Egyenlet megoldás, ekvivalens egyenletek, ekvivalens átalakítás, mérlegelv, egyenlet értelmezési tartománya, azonosság 61. Gyakorlás 62. Szöveges feladatok megoldása egyenletekkel 63. Egyenletek megoldási módszerei Szorzattá alakítás módszere, grafikus módszer, értelmezési tartomány és értékkészlet vizsgálata 64. Gyakorló feladatok 65. Egyenlőtlenségek Megoldáshalmaz 66. Abszolút értéket tartalmazó egyenletek, Abszolút érték egyenlőtlenségek 67. Elsőfokú kétismeretlenes Behelyettesítő módszer egyenletrendszerek és megoldásuk 4
5 68. Elsőfokú kétismeretlenes egyenletrendszerek és megoldásuk 69. Gyakorló feladatok 70. Elsőfokú kétismeretlenes egyenletrendszerek megoldása grafikus módszerrel 71. Gyakorló feladatok 72. Egyenletrendszerrel megoldható szöveges feladatok 73. Vegyes, gyakorló feladatok 74. Vegyes, gyakorló feladatok 75. A témazáró dolgozat előkészítése 76. Témazáró dolgozat 77. A témazáró dolgozat megbeszélése, Egyenlő együtthatók módszere Geometriai transzformációk 78. Néhány geometriai transzformáció Geometriai transzformáció, identitás, fixpont, invariáns alakzat, fixegyenes 79. Egybevágósági transzformációk a síkon Egybevágósági transzformáció, tengelyes tükrözés, pont körüli forgatás, középpontos tükrözés, eltolás 80. Alakzatok egybevágósága Egybevágó alakzatok, két háromszög egybevágóságának alapesetei 81. Szimmetria Szimmetrikus alakzatok, tengelyesen, középpontosan szimmetrikus alakzatok, forgásszimetrikus és eltolásszimmetrikus alakzatok, paralelogramma, trapéz, deltoid, téglalap, rombusz, négyzet 82. További nevezetes pontok, vonalak a háromszögben Háromszög magassága, magasságpont, középvonal, súlyvonal, súlypont 83. Tengelyes tükrözéssel megoldható feladatok 84. Középpontos tükrözéssel megoldható feladatok 85. Elforgatással megoldható feladatok 86. Vektorok Vektorok összeadása, kivonása, nullvektor 87. Eltolással megoldható feladatok 88. Vegyes feladatok 5
6 89. Ponthalmazok Ponthalmaz, körvonal, körlap, kör érintője, gömbfelület, gömbtest, gömb érintőegyenese, érintősíkja 90 Gyakorló feladatok 91. Szög, körív, körcikk Középponti szög, körcikk, ívmérték, radián 92. A témazáró dolgozat előkészítése 93. Témazáró dolgozat 94. A témazáró dolgozat megbeszélése, Kombinatorika 95. Sorrendek Faktoriális, permutáció 96. Leszámlálások 97. Vegyes feladatok 98. Számonkérés Statisztika 99. Adatok gyűjtése, rendszerezése, jellemzése Adatsokaság, adatsor, számtani közép, módusz, medián, középértékek 100. Adatok szemléltetése Adat gyakorisága, pontdiagram, vonaldiagram, oszlopdiagram, szalagdiagram, kördiagram 101. A kétarcú statisztika Súlyozott számtani közép 102. Vegyes feladatok 103. Számonkérés Év végi összefoglalás 104. Számtan, algebra 105. Számtan, algebra 106. Függvények 107. Függvények 108. Geometria 109. Geometria 110. Vegyes feladatok 111. Az éves munka 6
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin
NT-17112 Az érthető matematika 9. Tanmenetjavaslat
NT-17112 Az érthető matematika 9. Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Juhász István
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.C ÉS 13.B OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség kezdete: 2013.09. 01. Oldal/összes: 1/6 Fájlnév:ME-III.1.1. Tanmenetborító SZK-DC- 2013 MATEMATIKA
Javítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Másodfokú egyenletek. Ismétlés 1. óra: Másodfokú egyenletek,
Tanmenetjavaslat az NT-00880 raktári számú Matematika 8. tankönyvhöz
Tanmenetjavaslat az NT-00880 raktári számú Matematika 8. tankönyvhöz Oktatáskutató és Fejlesztő Intézet, Budapest A tanmenetjavaslat 111 órára lebontva dolgozza fel a tananyagot. Amennyiben ennél több
Matematika házivizsga 11. évfolyamon részletes követelmények
Matematika házivizsga on részletes követelmények A vizsga időpontja: 016. április 11. típusa: írásbeli időtartama:180 perc (45 perc + 135 perc) Tankönyv: Sokszínű matematika 11. és a hozzá tartozó feladatgyűjtemény
Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!
Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április
9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.
9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok
I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)
MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,
Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás
12. évfolyam Osztályozó vizsga 2013. augusztus Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás Ismerje a számsorozat
MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY Heti 4 óra Évi 148 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató 1 / 5 I. Az általános iskolai ismeretek ismétlése 1. óra: Műveletek
Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.
Síkidomok Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos
Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma
Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra
Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató
Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február
Helyi tanterv Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február 1 A TANTERV SZERKEZETE Bevezető Célok és feladatok Fejlesztési célok és kompetenciák Helyes
Halmazok és függvények
Halmazok és függvények Óraszám: 2+2 Kreditszám: 6 Meghirdető tanszék: Analízis Debrecen, 2005. A tárgy neve: Halmazok és függvények (előadás) A tárgy oktatója: Dr. Gilányi Attila Óraszám/hét: 2 Kreditszám:
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
3. KÖRGEOMETRIA. 3.1. Körrel kapcsolatos alapismeretek
3. KÖRGEOMETRIA Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest, 89 109. és 121. oldal. Pelle Béla: Geometria, Tankönyvkiadó, Budapest, 86 97. és 117 121. oldal. Kovács Zoltán: Geometria,
1. Gondolkodási módszerek, halmazok, logika, kombinatorika, gráfok
1. Gondolkodási módszerek, halmazok, logika, kombinatorika, gráfok 1.1. Halmazok Ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát. Definiálja és alkalmazza gyakorlati
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.
Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk
MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ
MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam
BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag
Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból
Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények
MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,
Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam
Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az
MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok
MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve
MATEMATIKA 9. osztály Segédanyag 4 óra/hét
MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY
A Szekszárdi I. Béla Gimnázium Helyi Tanterve
A Szekszárdi I. Béla Gimnázium Helyi Tanterve Matematika Készítette: a gimnázium reál szakmai munkaközössége 2015. Tartalom Emelt szintű matematika képzés... 3 Matematika alapóraszámú képzés... 47 Matematika
HELYI TANTERV / MATEMATIKA 9-13. ÉVFOLYAM / ANGOL NYELVI ELŐKÉSZÍTŐ
MATEMATIKA Iskolánkban a 2004 szeptemberétől indítandó nyelvi előkészítő évfolyamokon a képességfejlesztésre szánt időkeretből évi 74 (azaz heti 2) órát matematikaoktatásra szánunk. Kedvező lehetőségnek
Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz
MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.
A továbbhaladás feltételei fizikából és matematikából
A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.
MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik
MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI
A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja
Számelmélet I. 1. A tantárgy általános célja és specifikus célkitűzései
Számelmélet I. Tantárgy neve Számelmélet I. Tantárgy kódja MTB 1011 Meghirdetés féléve 3. félév Kreditpont 3 Összóraszám (elm+gyak) 2+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) MTB 1003
MATEMATIKA EMELT 9-12. évfolyam
MATEMATIKA EMELT 9-12. évfolyam Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.
hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria II.
Geometria II. Síkidomok, testek: A sík feldarabolásával síkidomokat, a tér feldarabolásával testeket kapunk. Törött vonal: A csatlakozó szakaszok törött vonalat alkotnak. DEFNÍCIÓ: (Sokszögvonal) A záródó
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Matematika pótvizsga témakörök 9. V
Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális
2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
A SZÁMFOGALOM KIALAKÍTÁSA
A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése
PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok
Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
A skatulya-elv alkalmazásai
1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely
Matematika 9-12. (10-13.)- középszintű (K)
K Matematika 9-12. (10-13.)- középszintű (K) Ez a tanterv az Országos Közoktatási Intézet tantervi adatbankjában az OKI96PÁLMAT1-12 változat alatt szereplő minősített tanterv 9-12. osztályokra lebontott
Tanmenetjavaslat 5. osztály
Tanmenetjavaslat 5. osztály 1. A természetes számok A tanmenetjavaslatokban dőlt betűvel szedtük a tananyag legjellemzőbb részét (amelyet a naplóba írunk). Kisebb betűvel jelezzük a folyamatos ismétléssel
MATEMATIKA Emelt szint 9-12. évfolyam
MATEMATIKA Emelt szint 9-12. évfolyam évfolyam 9. 10. 11. 12. óra/tanév 216 216 216 224 óra/hét 6 6 6 7 Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről
FÜGGVÉNYEK, SOROZATOK
FÜGGVÉNYEK, SOROZATOK A FÜGGVÉNYFOGALOM ELŐKÉSZÍTÉSE 1-6. OSZTÁLY Adott szabály követése Szabályfelismerés és szabálykövetés Szabályfelismerés és szabály megadása szöveggel, képlettel EGYENES ÉS FORDÍTOTT
Matematika emelt szint a 11-12.évfolyam számára
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka
Matematika 8. PROGRAM. általános iskola 8. osztály nyolcosztályos gimnázium 4. osztály hatosztályos gimnázium 2. osztály. Átdolgozott kiadás
Dr. Czeglédy István fôiskolai tanár Dr. Czeglédy Istvánné vezetôtanár Dr. Hajdu Sándor fôiskolai docens Novák Lászlóné tanár Dr. Sümegi Lászlóné szaktanácsadó Zankó Istvánné tanár Matematika 8. PROGRAM
Elektronikus tananyag MATEMATIKA 10. osztály II. félév
Elektronikus tananyag MATEMATIKA 0. osztály II. félév A hasonlósági transzformáció és alkalmazásai. Párhuzamos szelők és szelőszakaszok A párhuzamos szelők tétele TÉTEL: Ha egy szög szárait párhuzamos
HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam
HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam Készült az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet alapján. Érvényesség kezdete: 2013.09.01. Utoljára indítható:.. Dunaújváros,
Koordináta - geometria I.
Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor
1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!
1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.
Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 011/01 Matematika I. kategória (SZKKÖZÉPISKOL) Döntő 1. Határozza meg az összes olyan egész számot, amely eleget tesz az egyenlőtlenségnek! log
Trigonometria és koordináta geometria
Tantárgy neve Trigonometria és koordináta geometria Tantárgy kódja MTB1001 Meghirdetés féléve I. Kreditpont 4k Összóraszám (elm+gyak) 30+30 Számonkérés módja Gyakorlati jegy (2 zárthelyi dolgozat) Előfeltétel
Meghirdetés féléve 1 Kreditpont 4 Összóraszám (elm+gyak) 2+2
Tantárgy neve Algebrai alapismeretek Tantárgy kódja MTB1003 Meghirdetés féléve 1 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja Gyakorlati jegy Előfeltétel (tantárgyi kód) Tantárgyfelelős neve
Matematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára
Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 10 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
MATEMATIKA. 5 8. évfolyam
MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni
A MEDGYESSY FERENC GIMNÁZIUM ÉS MŰVÉSZETI SZAKKÖZÉPISKOLA. Matematika I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY II.
A MEDGYESSY FERENC GIMNÁZIUM ÉS MŰVÉSZETI SZAKKÖZÉPISKOLA Matematika I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY II. A VIZSGA LEÍRÁSA OM azonosító: 031202 MATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY
értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják
A Baktay Ervin Gimnázium alap matematika tanterve a 6 évfolyamos gimnáziumi osztályok számára 7. 8. 9. 10. 11. 12. heti óraszám 3 cs. 3 cs. 3 cs. 4 4 4 éves óraszám 108 108 108 144 144 120 (cs.: csoportbontásban)
Geometriai alapfogalmak
Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.
Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
Reál osztály, angol- német nyelvi előkészítővel. 9. évfolyam+ előkészítő év. Célok és feladatok
Reál osztály, angol- német nyelvi előkészítővel 9. évfolyam+ előkészítő év Célok és feladatok A 9. évfolyamon fontos cél az alapképességek továbbfejlesztése. El kell érni, hogy a szemléletes fogalmak többsége
Általános érettségi tantárgyi vizsgakatalógus. Matematika
Általános érettségi tantárgyi vizsgakatalógus Matematika SPLOŠNA MATURA A tantárgyi vizsgakatalógus a 2009. évi tavaszi vizsgaidőszaktól érvényes az új megjelenéséig. A katalógus érvényességéről az adott
A döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
2004. december 1. Irodalom
LINEÁRIS LEKÉPEZÉSEK I. 2004. december 1. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:
Témakörök az osztályozó vizsgához. Matematika
Témakörök az osztályozó vizsgához Idegenforgalmi és Informatikus osztályok (9.A/9.B) 1. A halmazok, számhalmazok, ponthalmazok 2. Függvények 3. A számelmélet elemei. Hatványozás. 0 és negatív kitevőjű
I. rész. Pótlapok száma Tisztázati Piszkozati. Név:...osztály:... Matematika kisérettségi. 2012. május 15. Fontos tudnivalók
Matematika kisérettségi 2012. május 15. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az id elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetsz leges. 3. A
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek
MATEMATIKA 5-8. évfolyam
MATEMATIKA 5-8. évfolyam A tantárgy óraszáma: 481 A tanterv NAT Matematika műveltségterület 5.-8.évfolyamok követelményét fedi le. A NAT-ban megfogalmazott Fejlesztési feladatok fejezetet a helyi tantervben
Matematika 9-12. (10-13.)- középszint (K) - PÁLMAT1-12 - Kidolgozandó B vített
Matematika Matematika 9-12. (10-13.)- középszint (K) - PÁLMAT1-12 - Kidolgozandó B vített Ez a tanterv az Országos Közoktatási Intézet tantervi adatbankjában az OKI96PÁLMAT1-12 változat alatt szerepl min
MATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK
MATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
Gyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA!
Gyõrffy Magdolna Tanmenetjavaslat A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Dinasztia Tankönyvkiadó Kft., 2004 1 ÍRTA: GYÕRFFY MAGDOLNA TIPOGRÁFIA: KNAUSZ VALÉRIA
Nemzeti alaptanterv 2012 MATEMATIKA
ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten RACIONÁLIS TÖRTFÜGGVÉNYEK INTEGRÁLJA Készítette: Gábor Szakmai felel s: Gábor Vázlat
MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember
MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra
Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Relációk Waldhauser Tamás 2014 őszi félév Relációk reláció lat. 1. kapcsolat, viszony; összefüggés vmivel 2. viszonylat, vonatkozás reláció lat. 3. mat halmazok elemei
COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET
COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET 5. osztály 2015/2016. tanév Készítette: Tóth Mária 1 Tananyagbeosztás Évi óraszám: 144 óra Heti óraszám: 4 óra Témakörök:
Jelek tanulmányozása
Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás
Analízis előadások. Vajda István. 2013. február 10. Neumann János Informatika Kar Óbudai Egyetem
Analízis előadások Vajda István Neumann János Informatika Kar Óbudai Egyetem 013. február 10. Vajda István (Óbudai Egyetem) Analízis előadások 013. február 10. 1 / 3 Az elemi függvények csoportosítása
Nagy András. Számelméleti feladatgyűjtemény 2009.
Nagy András Számelméleti feladatgyűjtemény 2009. Tartalomjegyzék Tartalomjegyzék... 1 Bevezetés... 2 1. Feladatok... 3 1.1. Természetes számok... 3 1.2. Oszthatóság... 5 1.3. Legnagyobb közös osztó, legkisebb
Azonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
TANMENET ... Az iskola fejbélyegzője. a matematika tantárgy. tanításához a 9. a, b osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához a 9. a, b osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján
MATEMATIKA 5-8. évfolyam
MATEMATIKA 5-8. évfolyam MATEMATIKA 5-8. évfolyam A tanterv a NAT Matematika műveltségterület 5-8. évfolyamok követelményét fedi le. A NAT-ban megfogalmazott Fejlesztési feladatok fejezetet szervesen beépítettük
MATEMATIKA (4+4+3+4 óra)
MATEMATIKA (4+4+3+4 óra) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.
Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat) f(x) = 2x 2 x 4. 2x 2 x 4 = 0, x 2 (2 x 2 ) = 0.
Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat). Feladat. Végezzük el az f(x) = x x 4 ) Értelmezési tartomány: x R. ) A zérushelyet az f(x) = 0 egyenlet megoldásával kapjuk: amiből
MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA
MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú
értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják
Helyi tanterv matematika általános iskola 5-8. évf. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,
BOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy