Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.
|
|
- Jázmin Hegedüs
- 9 évvel ezelőtt
- Látták:
Átírás
1 Síkidomok
2 Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos és szabálytalan síkidomok. Szabálytalan Szabályos A továbbiakban csak szabályos síkidomokkal foglalkozunk.
3 A határoló vonalak szerinti megkülönböztethetünk: egyenes vonalakkal és görbe vonalakkal határolt síkidomokat, valamint a kettő együttes megléte esetén összetett síkidomokat.
4 Háromszögek
5 A sík három nem egy egyenesre eső pontját jelölje A, B, C. Az AB, BC, CA egyenesszakaszokkal határolt síktartományt, síkalakzatot háromszögnek nevezzük.
6 Csoportosítás A háromszög szögei szerint: Hegyesszögű Derékszögű Tompaszögű A háromszög oldalai szerint: Általános Egyenlő szárú Egyenlő oldalú
7 Általános hegyesszögű háromszög α, β, γ < 90 A, B, C : a háromszög csúcsai a, b, c : a háromszög oldalai a b c α, β, γ : a háromszög belső szögei α + β + γ = 180
8 Általános derékszögű háromszög α, β < 90 γ = 90 A, B, C : a háromszög csúcsai a, b, c : a háromszög oldalai a b c α, β, γ : a háromszög belső szögei α + β + γ = 180
9 Általános tompaszögű háromszög α, β < 90 γ > 90 A, B, C : a háromszög csúcsai a, b, c : a háromszög oldalai a b c α, β, γ : a háromszög belső szögei α + β + γ = 180
10 Egyenlő szárú, hegyesszögű háromszög α = β γ < 90 A, B, C : a háromszög csúcsai a, b, c : a háromszög oldalai a = b c α, β, γ : a háromszög belső szögei α + β + γ = 180
11 Egyenlő szárú, derékszögű háromszög α = β < 90 γ = 90 A, B, C : a háromszög csúcsai a, b, c : a háromszög oldalai a = b c α, β, γ : a háromszög belső szögei α + β + γ = 180
12 Egyenlő szárú, tompaszögű háromszög α = β < 90 γ > 90 A, B, C : a háromszög csúcsai a, b, c : a háromszög oldalai a = b c α, β, γ : a háromszög belső szögei α + β + γ = 180
13 Egyenlő oldalú, szabályos háromszög α = β = γ = 60 A, B, C : a háromszög csúcsai a, b, c : a háromszög oldalai a = b = c α, β, γ : a háromszög belső szögei α + β + γ = 180
14 Négyszögek
15 A sík négy nem egy egyenesre eső pontját jelölje A, B, C, D. Az AB, BC, CD, DA egyenesszakaszokkal határolt síktartományt, síkalakzatot négyszögnek nevezzük. Konvex négyszög Konkáv négyszög
16 Négyzet Szemközti oldalai párhuzamosak Minden oldala egyenlő hosszúságú (a) Minden szöge egyenlő nagyságú (α = 90 )
17 Négyzet Átlói egyenlő hosszúak Átlói merőlegesen felezik egymást Az átlók felezik a szögeket Tengelyesen szimmetrikus, tengelyei az átlói és az oldalfelező merőlegesei Középpontosan szimmetrikus, középpont az átlók metszéspontja
18 Téglalap Szemközti oldalai párhuzamosak Szemközti oldalai egyenlő hosszúságúak Minden szöge egyenlő nagyságú (α = 90 )
19 Téglalap Átlói egyenlő hosszúak Átlói felezik egymást Tengelyesen szimmetrikus, tengelyei az oldalfelező merőlegesei Középpontosan szimmetrikus, középpont az oldalfelező merőlegesek metszéspontja
20 Rombusz Szemközti oldalai párhuzamosak Oldalai egyenlő hosszúságúak Szemközti szögei egyenlő nagyságúak Szomszédos szögei egymást 180 -ra egészítik ki α + β = 180
21 Rombusz Átlói merőlegesen felezik egymást Tengelyesen szimmetrikus, tengelyei az átlói Középpontosan szimmetrikus, középpont az átlók metszéspontja
22 Trapéz Van párhuzamos oldalpárja (a, c) Párhuzamos oldalpár az alap, (a, c) a másik kettő a szár (b, d) Az alapok távolsága a magasság (m) A szárak felezőpontját összekötő szakasz a középvonal (k) A trapéz egy szárán fekvő két szögének összege 180
23 Szimmetrikus trapéz Van párhuzamos oldalpárja (húrtrapéz) Párhuzamos oldalpár az alap, a másik kettő a szár Szárai egyenlő hosszúak Az alapok távolsága a magasság A trapéz egy szárán fekvő két szögének összege 180 Egy alapon fekvő szögei egyenlők. Átlói egyenlő hosszúak, és a szimmetriatengelyen metszik egymást
24 Paralelogramma Szemközti oldalai párhuzamosak Szemközti oldalai egyenlő hosszúak Szemközti szögei egyenlők Két magassága van Szomszédos szögeinek összege 180 α + β = 180
25 Paralelogramma Átlói felezik egymást Középpontosan szimmetrikus, középpontja az átlók metszéspontja
26 Deltoid Két-két szomszédos oldala egyenlő hosszú Van két egyenlő szöge Átlói merőlegesek egymásra
27 Deltoid Átlói merőlegesek egymásra Egy szimmetriatengelye van, amely az egyenlő oldalak által meghatározott csúcsokon halad keresztül A szimmetriatengely felezi a másik átlót és a szögeket
28 A kör
29 A kör vagy körvonal olyan pontok halmaza a síkban, melyek egy adott ponttól (középpont; O) adott távolságra (sugár; r) vannak.
30 Részei: Sugár: a középpontot bármely pontjával összekötő szakasz. d(o;p) = r Átmérő: a kör két pontját összekötő, középponton átmenő szakasz. Hossza a sugár kétszerese. d = 2r
31 Érintő: olyan egyenes, melynek pontosan egy közös pontja van a körrel. e Az érintő merőleges a sugárra. Szelő: olyan egyenes, mely két pontban metszi a körvonalat. s Húr: olyan szakasz, melynek végpontjai a körvonalon vannak. h
32 Körív: a körvonalat a kör bármely két pontja két körívre osztja. Körcikk olyan síkidom, melyet két sugár és egy körív határol. Körszelet: olyan síkidom, melyet egy húr és a hozzá tartozó körív határol. Körgyűrű: két koncentrikus kör közé eső rész
33 Kör és egyenes kölcsönös helyzete: 1. A körvonalnak és az egyenesnek nincs közös pontja. (n) 2. A körvonalnak és az egyenesnek egy közös pontja van. (e) érintő 3. A körvonalnak és az egyenesnek kettő közös pontja van. (m) szelő
34 Két kör kölcsönös helyzete: 1. Nincs közös pontjuk
35 Két kör kölcsönös helyzete: 2. Egy közös pontjuk van Kívülről érintik egymást Belülről érintik egymást
36 Két kör kölcsönös helyzete: 3. Két közös pontjuk van.
37 Két kör kölcsönös helyzete: 4. Az egyik kör tartalmazza a másikat.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria II.
Geometria II. Síkidomok, testek: A sík feldarabolásával síkidomokat, a tér feldarabolásával testeket kapunk. Törött vonal: A csatlakozó szakaszok törött vonalat alkotnak. DEFNÍCIÓ: (Sokszögvonal) A záródó
Koordináta - geometria I.
Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor
3. KÖRGEOMETRIA. 3.1. Körrel kapcsolatos alapismeretek
3. KÖRGEOMETRIA Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest, 89 109. és 121. oldal. Pelle Béla: Geometria, Tankönyvkiadó, Budapest, 86 97. és 117 121. oldal. Kovács Zoltán: Geometria,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.
Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk
Ábrahám Gábor A háromszög és a terület Feladatok. Feladatok
I. Klasszikus, bevezető feladatok Feladatok 1. Az alábbi feladatokban hányad része a satírozott rész területe az eredeti négyszög területének? a) Egy paralelogramma valamely belső pontját összekötjük a
Geometriai alapfogalmak
Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.
6) Határozza meg a következő halmazokat! A= {deltoidok} {téglalapok}; B= {négyzetek} {húrnégyszögek} (2pont)
(8/1) Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz, melyik hamis! a) Van olyan rombusz, amely téglalap is. (1pont) b) Minden paralelogrammának pontosan két szimmetriatengelye
Térgeometria feladatok. 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504 cm 2. Mekkora a testátlója és a térfogata?
Térgeometria feladatok Téglatest 1. Egy téglatest éleinek aránya 2 : 3 : 5, felszíne 992 cm 2. Mekkora a testátlója és a 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Térgeometria V.
Térgeometria V. 1. Egy 4, 6 dm átmérőjű, 5 dm magasságú, 7, dm sűrűségű hengerből a lehető legnagyobb szabályos nyolcoldalú oszlopot kell készíteni. Mekkora lesz a tömege? Az oszlop magassága a henger
Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség
Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló gimnáziuma) Térgeometria III.
Térgeometria III. 1. Szabályos háromoldalú gúla alapéle 1 cm, oldaléle 1 cm. Milyen magas a gúla? Tekintsük a következő ábrát: Az alaplap szabályos ABC, így a D csúcs merőleges vetülete a háromszög S súlypontja.
Vektoralgebrai feladatok
Vektoralgebrai feladatok 1. Vektorok összeadása és szorzatai, azok alkalmazása 1.1 a) Írja fel a és vektorokat az és átlóvektorok segítségével! b) Milyen hosszú az + ha =1? 1.2 Fejezze ki az alábbi vektorokat
BOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy
BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály
5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,
- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez
1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak
A skatulya-elv alkalmazásai
1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V.
Geometria V. DEFINÍCIÓ: (Középponti szög) Ha egy szög csúcsa egy adott kör középpontja, akkor a kör középponti szögének nevezzük. DEFINÍCIÓ: (Kerületi szög) Ha egy szög csúcsa egy adott körvonal pontja,
2) 2005/0513/4 Egy kör sugara 6 cm. Számítsa ki ebben a körben a 120 -os középponti szöghöz tartozó körcikk területét!
SÍKGEOMETRIA 2004-2014 1) 2004/mfs/12 Kör alakú amfiteátrum küzdőterének két átellenes pontjában áll egy-egy gladiátor, az uralkodó a pálya szélén ül. A gladiátorok egyenes vonalban odafutnak az uralkodóhoz.
PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok
A parabola és az egyenes, a parabola és kör kölcsönös helyzete
66 A paraola 00 egyen a keresett kör középpontja Az pont koordinátái: ( y) Ekkor felírhatjuk a következô egyenletet: ( - ) + ( y- ) = mert a kör sugara > 0 Innen rendezéssel: ( y- ) = 6 - A mértani hely
10. évfolyam, negyedik epochafüzet
10. évfolyam, negyedik epochafüzet (Geometria) Tulajdonos: NEGYEDIK EPOCHAFÜZET TARTALOM I. Síkgeometria... 4 I.1. A háromszög... 4 I.2. Nevezetes négyszögek... 8 I.3. Sokszögek... 14 I.4. Kör és részei...
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉPSZINT Koordináta-gomtria szürkíttt háttrű fladatrzk nm tartoznak az érinttt témakörhöz azonban szolgálhatnak fontos információval az érinttt fladatrzk mgoldásához! 1)
Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik
Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala
MATEMATIKA 9. osztály Segédanyag 4 óra/hét
MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY
Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek
Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges
Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit
Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.
Elsőfokú egyenletek...
1. Hozza egyszerűbb alakra a következő kifejezést: 1967. N 1. Elsőfokú egyenletek... I. sorozat ( 1 a 1 + 1 ) ( 1 : a+1 a 1 1 ). a+1 2. Oldja meg a következő egyenletet: 1981. G 1. 3x 1 2x 6 + 5 2 = 3x+1
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.
Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.
MATEMATIKA KOMPETENCIATERÜLET A
MATEMATIKA KOMPETENCIATERÜLET A Matematika 7. évfolyam TANULÓI MUNKAFÜZET 2. félév A kiadvány KHF/4002-17/2008 engedélyszámon 2008. 08. 18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny. MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták) Javítási-értékelési útmutató Kérjük a javító tanárokat,
Add meg az összeadásban szereplő számok elnevezéseit!
1. 2. 3. 4. 5. Add meg az összeadásban szereplő Add meg a kivonásban szereplő Add meg a szorzásban szereplő Add meg az osztásban szereplő Hogyan függ két szám előjelétől a két szám szorzata, hányadosa?
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.C ÉS 13.B OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség kezdete: 2013.09. 01. Oldal/összes: 1/6 Fájlnév:ME-III.1.1. Tanmenetborító SZK-DC- 2013 MATEMATIKA
Elemi matematika szakkör
lemi matematika szakkör Kolozsvár, 2015. október 26. 1.1. eladat. z konvex négyszögben {} = és { } = (lásd a mellékelt ábrát). izonyítsd be, hogy a következő három kijelentés egyenértékű: 1. z négyszögbe
MATEMATIKA PRÓBAFELVÉTELI a 8. évfolyamosok számára
MEGOLDÓKULCS MATEMATIKA PRÓBAFELVÉTELI a 8. évfolyamosok számára 2012. december 17. 10:00 óra NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tollal dolgozz! Zsebszámológépet nem asználatsz. A feladatokat tetszés szerinti
Geometria. A geometria vagy mértan a geo+metros= földmérés szóból ered, görög tudósok és egyiptomi földmérnökök tapasztalataira épül.
Geometri A geometri vgy mértn geo+metros= földmérés szóól ered, görög tudósok és egyiptomi földmérnökök tpsztltir épül. Az euklideszi geometri lpfoglmkr, lpreláiókr és xiómákr épül. - lpfoglmk: például
Elektronikus tananyag MATEMATIKA 10. osztály II. félév
Elektronikus tananyag MATEMATIKA 0. osztály II. félév A hasonlósági transzformáció és alkalmazásai. Párhuzamos szelők és szelőszakaszok A párhuzamos szelők tétele TÉTEL: Ha egy szög szárait párhuzamos
Javítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Térgeometria II.
Térgeometria II. 1. Hány részre osztja a teret a kocka lapjainak 6 síkja? Tekintsük a következő ábrát: Oldalnézetből a következő látjuk: Ezek alapján a teret 3 9 = 27 részre osztja fel a kocka lapsíkjai.
NT-17112 Az érthető matematika 9. Tanmenetjavaslat
NT-17112 Az érthető matematika 9. Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Juhász István
Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 10. évfolyam TANULÓK KÖNYVE. FÉLÉV A kiadvány KHF/4365-1/008. engedélyszámon 008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria A szürkített hátterű feladatrzek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Megyei Matematika Szakkör Feladatsorok. A foglakozások hétfő délutánonként 16.30-tól kezdődnek a Matematikai Intézet M402-es tantermében.
Debreceni Egyetem, Matematikai Intézet H-4010 Debrecen, Pf. 12 +3652512900 office.math@science.unideb.hu Megyei Matematika Szakkör Feladatsorok A foglakozások hétfő délutánonként 16.30-tól kezdődnek a
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot
Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának
Geometria, 7 8. évfolyam
Geometria, 7 8. évfolyam Fazakas Tünde és Hraskó András 010. január 5. 4 TARTALOMJEGYZÉK Tartalomjegyzék Feladatok 7 1. Szerkesztések I.................................. 7 1.1. Alapszerkesztések.............................
Budapesti Műszaki és Gazdaságtudományi Egyetem Matematika Intézet
Budapesti Műszaki és Gazdaságtudományi Egyetem Matematika Intézet Példatár a Bevezető matematika tárgyhoz Amit tudni kell a BSC képzés előtt Összeállította: Kádasné dr. V. Nagy Éva egyetemi docens Szerkesztette:
2. ELŐADÁS. Transzformációk Egyszerű alakzatok
2. ELŐADÁS Transzformációk Egyszerű alakzatok Eltolás A tér bármely P és P pontpárjához pontosan egy olyan eltolás létezik, amely P-t P -be viszi. Bármely eltolás tetszőleges egyenest vele párhuzamos egyenesbe
NT-17102/1 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102/1 Matematika 9. (Heuréka) Tanmenetjavaslat A Dr. Fried Katalin Dr. Gerőcs László Számadó László Matematika 9. tankönyvben (Heuréka-sorozat) a középszintű érettségihez találjuk meg a tananyagot,
Másodrendű felületek
Azon pontok halmaza a térben, melyek koordinátái kielégítik az egyenletet, ahol feltételezzük, hogy az a, b, c, d, e, f együtthatók egyszerre nem tűnnek el. Minden másodrendű felülethez hozzárendelünk
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin
Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 011/01 Matematika I. kategória (SZKKÖZÉPISKOL) Döntő 1. Határozza meg az összes olyan egész számot, amely eleget tesz az egyenlőtlenségnek! log
Geometriai egyenlőtlenségek a gömbfelületen
Geometriai egyenlőtlenségek a gömbfelületen Szakdolgozat Készítette: RÁCZ KRISZTINA Matematika BSc Tanári szakirány Témavezető: KERTÉSZ GÁBOR Egyetemi adjunktus Eötvös Loránd Tudományegyetem Természettudományi
Azonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
54. Mit nevezünk rombusznak? A rombusz olyan négyszög,
52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes
4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!
(9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora
I. rész. Pótlapok száma Tisztázati Piszkozati. Név:...osztály:... Matematika kisérettségi. 2012. május 15. Fontos tudnivalók
Matematika kisérettségi 2012. május 15. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az id elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetsz leges. 3. A
Helyvektorok, műveletek, vektorok a koordináta-rendszerben
Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )
IV. Trigonometria. Szögek átváltása fokról radiánra és fordítva. Hegyesszögû trigonometriai alapfeladatok
. Trigoometria Szögek átváltása fokról radiára és fordítva 456. a) ; 90 ; 60 ; 45 ;,5. b) 10 ; 150; 15 ; 40 ; 10. 457. a) 00 ; 15 ; 6 ; 70 ; 5. b). 57,96 ;. 14,9 ;. 9,794 ;. 16,7 ;. 6,6. r 458. a). 114,59
Kör kvadratúrája. Ezzel a címmel találtunk egy ábrát [ 1 ] - ben 1. ábra. 1. ábra
1 Kör kvadratúrája Ezzel a címmel találtunk egy ábrát [ 1 ] - ben 1. ábra. 1. ábra Ez az ábra hibás, hiába javított kiadásról van szó. Nézzük, miért! Az ábrázolt kék kör és rózsaszín négyzet területe egyenlő.
A döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
1. HÁROMSZÖGGEOMETRIA
1.1. Nevezetes egyenlőtlenségek 1. HÁROMSZÖGGEOMETRIA Fagnano feladata: Bizonyítandó, hogy adott hegyesszögű hároszögbe írt legkisebb kerületű hároszög csúcsai az adott hároszög agasságainak talppontjaival
Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q
Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
4. előadás. Vektorok
4. előadás Vektorok Vektorok bevezetése Ha adottak a térben az A és a B pontok, akkor pontosan egy olyan eltolás létezik, amely A-t B- be viszi. Ha φ egy tetszőleges eltolás, akkor ez a tér minden P pontjához
( ) Schultz János EGYENLŐTLENSÉGEK A HÁROMSZÖG GEOMETRIÁJÁBAN
Shultz János EGYENLŐLENSÉGEK A HÁOMSZÖG GEOMEIÁJÁBAN Igzoljuk hogy egy szályos háromszög első pontját súsokkl összekötő három szkszól mindig szerkeszthető háromszög Egy tégllp elsejéen vegyünk fel egy
BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA
Pék Johanna BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA (Matematika tanárszakos hallgatók számára) Tartalomjegyzék Előszó ii 0. Alapismeretek 1 0.1. Térgeometriai alapok............................. 1 0.2. Az ábrázoló
Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint
TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,
MATEMATIKA A 10. évfolyam
MATEMATIKA A 10. évfolyam 8. modul Hasonlóság és alkalmazásai Készítették: Vidra Gábor, Lénárt István Matematika A 10. évfolyam 8. modul: Hasonlóság és alkalmazásai A modul célja Időkeret Ajánlott korosztály
Osztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek
Osztályozó vizsga kérdések Mechanika I.félév 1. Az erő fogalma, jellemzői, mértékegysége 2. Az erőhatás jellege, jelölések, mértékegységek 4 A 4. 4 3. A statika I., II. alaptörvénye 4. A statika III. IV.
Geometria 1 összefoglalás o konvex szögek
Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.
Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
Kompetencia alapú matematika oktatás Oláhné Téglási Ilona
Kompetencia alapú matematika oktatás Oláhné Téglási Ilona Ítéletalkotás, döntés képességének fejlesztése Rezner-Szabó Zsuzsanna Matematikatanár, MA Eszterházy Károly Főiskola 1. feladat Építs piramist!
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika PRÉ megoldókulcs 0. január 8. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULS EMELT SZINT. Egy atlétika csapat alapozást tart. Robbanékonyságukat és állóképességüket 0 méteres síkfutással fejlesztik. Összesen
Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz
MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
EMIR azonosító: TÁMOP-3..8-09/-00-0004 MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA 4 ÍRÁSBELI VIZSGA Ideje: 04. április 4. JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatási Hivatal Cím: H 055 Budapest, Szalay u.
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.
Geometria háromszögek, négyszögek 2004_01/10 Az ABC háromszög C csúcsánál derékszög van. A derékszöget a CT és CD szakaszok három egyenlő részre osztják. A CT szakasz a háromszög egyik magassága is egyben.
Izoperimetrikus típusú egyenlőtlenségek az orsókonvexitásban
Szegedi Tudományegyetem Bolyai Intézet Izoperimetrikus típusú egyenlőtlenségek az orsókonvexitásban Isoperimetric type inequalities in spindle convexity Szakdolgozat Készítette: Siroki Dávid matematika
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egserő, hasonlósággal kapcsolatos feladatok 1. Határod meg a, és sakasok hossát! cm cm 2, cm 2. Határod meg a,,, u és v sakasok hossát! 2 v 2 . Határod meg a,,, u és
MATEMATIKA ÉRETTSÉGI 2012. május 8. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 01. május 8. KÖZÉPSZINT 1) Egy mértani sorozat első tagja 3, hányadosa első hat tagjának összegét! n n 1 Sn na1 d, ebből: S I.. Adja meg a sorozat ( pont) 6 63.( pont) ) Írja fel annak
Koordináta - geometria I.
Koordináta - geometria I A koordináta geometria témaköre geometriai problémákat old meg algebrai módszerekkel úgy, hogy a geometriai fogalmaknak algebrai fogalmakat feleltet meg: a pontokat, vektorokat
2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára
Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam TANULÓI MUNKAFÜZET 2. FÉLÉV A kiadvány KHF/4356-14/2008. engedélyszámon 2008.11.25. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő
0663 MODUL SÍKIDOMOK. Háromszögek, nevezetes vonalak. Készítette: Jakucs Erika, Takácsné Tóth Ágnes
0663 MODUL SÍKIDOMOK Háromszögek, nevezetes vonalak Készítette: Jakucs Erika, Takácsné Tóth Ágnes Matematika A 6. évfolyam 0663. Síkidomok Háromszögek, nevezetes vonalak Tanári útmutató 2 MODULLEÍRÁS A
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen
9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes
9. modul Szinusz- és koszinusztétel Készítette: Csákvári Ágnes Matematika A 11. évfolyam 9. modul: Szinusz- és koszinusztétel Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ
MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz
Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón