6) Határozza meg a következő halmazokat! A= {deltoidok} {téglalapok}; B= {négyzetek} {húrnégyszögek} (2pont)
|
|
- Károly Botond Jónás
- 8 évvel ezelőtt
- Látták:
Átírás
1 (8/1) Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz, melyik hamis! a) Van olyan rombusz, amely téglalap is. (1pont) b) Minden paralelogrammának pontosan két szimmetriatengelye van. (1pont) c) Ha egy négyszög két szemközti szöge derékszög, akkor az téglalap (1pont) 2) Adja meg az alábbi állítások igazságértékét (igaz vagy hamis), majd döntse el, hogy a b) és a c) jelű állítások közül melyik az a) jelű állítás megfordítása! a) Ha az ABCD négyszög téglalap, akkor átlói felezik egymást (1pont) b) Ha az ABCD négyszög átlói felezik egymást, akkor ez a négyszög téglalap (1pont) c) Ha az ABCD négyszög nem téglalap, akkor átlói nem felezik egymást. (1pont) 3) Melyik állítás igaz? a) Ha egy deltoid téglalap, akkor négyzet is. (1pont) b) Minden húrtrapéz érintőnégyszög (1pont) c) Minden téglalap trapéz; (1pont) 4) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra esik (1pont) b) Egy négyszögnek lehet 180 -nál nagyobb belső szöge is (1pont) c) Minden trapéz paralelogramma (1pont) 5) Döntse el, hogy a következő állítások közül melyik igaz, melyik hamis a) A szabályos ötszög középpontosan szimmetrikus (1pont) b) Van olyan háromszög, amelynek a súlypontja és a magasságpontja egybeesik (1pont) c) Minden paralelogramma tengelyesen szimmetrikus (1pont) 6) Határozza meg a következő halmazokat! A= {deltoidok} {téglalapok}; B= {négyzetek} {húrnégyszögek} 7) Az alábbi állítások közül melyik hamis? a) Ha egy egyenlő szárú háromszög egyik szöge 60, akkor a háromszög szabályos (1pont) b) Ha egy négyszög trapéz, akkor átlói egyenlők (1pont) 8) Az alábbi állítások közül melyik igaz. A derékszögű háromszög magasságpontja a) Mindig a háromszög belsejében van. (1pont) b) Mindig az átfogó felezőpontja (1pont) c) Mindig a derékszögű csúcsban van (1pont) 9) Adott területű háromszögek esetében valamely oldal és a hozzá tartozó magassága
2 (8/2) Síkgeometria a) egyenesen arányosak ( Igaz / Hamis ) (1pont) b) fordítottan arányosak ( Igaz / Hamis ) (1pont) c) egyik sem biztos ( Igaz / Hamis ) (1pont) 10) Egy háromszög oldalai egész számok: egyik oldala 5, a másik oldala 6. Mekkora lehet a harmadik oldal, ha tudjuk, hogy prímszám? 11) Adja meg az alábbi logikai értékét! A táblázatban karikázza be a helyes választ! a) állítás: Minden rombusznak pontosan két szimmetriatengelye van b) állítás: Minden rombusznak van két szimmetriatengelye c) állítás: Van olyan rombusz, amelynek pontosan két szimmetriatengelye van d) állítás: Nincs olyan rombusz, amelynek négy szimmetriatengelye van 12) Mekkora az ábrán γ -val jelölt szög? 13) Az ábrán látható ABC háromszögnek berajzoltuk a CE szögfelezőjét. Mekkora az α - val jelölt szög? 14) Egy kör valamely P pontját összekötöttük a kör egy átmérőjének két végpontjával: A- val és B-vel. Mekkora a PAB szög, ha tudjuk hogy a PBA szög 24? 15) Hány olyan háromszög van, melynek oldalai egész számok, egyik oldala 1, másik pedig 2005 (az egybevágó háromszögeket nem tekintjük különbözőnek)? 16) Egy háromszög két oldala 14,2 cm és 2,8 cm. A 3. oldal értéke cm-ben mérve prímszám. Mekkora lehet a harmadik oldal? 17) Egy háromszög oldalhosszúságai egész számok. Két oldala 3cm és 7cm. Döntse el a következő állításokról, hogy igaz vagy hamis! a) állítás: A háromszög harmadik oldala lehet 9cm (1pont) b) állítás: A háromszög harmadik oldala lehet 10cm (1pont)
3 (8/3) Síkgeometria 18) Egy háromszög belső szögeinek aránya 2:5:11. Hány fokos a legkisebb szög? 19) Egy háromszög szögeinek aránya 2:3:4. Mekkora a legnagyobb szöge? 20) Egy háromszög belső szögeinek aránya 1:3:5. Mekkora a háromszög legnagyobb szöge? 21) Egy téglalap egyik oldala 5cm, területe 30cm 2. Mekkora a téglalap átlója? 22) Adott egy egyenes és tőle 3cm távolságra egy P pont, mely körül egy 1cm sugarú kört rajzoltunk. Hány db olyan 2cm sugarú kör van, mely az egyenest és a P körül rajzolt kört is érinti? 23) Az ABCD négyzet középpontja O. Mekkora a négyzet területe, ha AO= 8cm? 24) Egy derékszögű trapéz párhuzamos oldalai: AB=8cm, CD= 4cm. A merőleges szár egyenlő a rövidebb párhuzamos oldallal. Mekkora a trapéz kerülete? 25) Egy derékszögű háromszög befogói 6cm és 9cm. Milyen távol van a háromszög S súlypontja a derékszögű csúcstól? 26) Egy 8cm sugarú körbe berajzoltunk egy 12cm hosszú húrt. Milyen távol van a húr a kör középpontjától? 27) Egy fémből készült lámpatartó falikar látható az ábrán. Milyen hosszú az x-szel jelölt keresztrúd? Mekkora szögben hajlik az x-szel jelölt keresztrúd a falhoz? (6pont) 28) Az ABCD derékszögű trapéz hosszabbik alapja AB=10. Az AC átló a trapézból az ABC szabályos háromszöget vágja le. Mekkora a trapéz területe és kerülete? 29) Egy derékszögű trapéz párhuzamos oldalai 8cm és 4cm merőleges szára pedig ezek számtani közepe. Mekkora a trapéz kerülete?
4 (8/4) Síkgeometria 30) Egy derékszögű háromszög köré írható körének sugara 8,5cm, egyik befogója 2,6cm. Mekkora a derékszögű háromszög átfogója és a másik befogója? Írja le a megoldás menetét! 31) Hányszorosára nő egy 2 cm sugarú kör területe, ha a sugarát háromszorosára növeljük? 32) Egy szabályos konvex sokszögnek 10-szer annyi átlója van, mint oldala. Mekkora a sokszög kerülete, ha minden oldala 6 cm? 33) Mennyi az ábrán látható négyszög területe? a) 120 cm 2 b) 216cm 2 c) 60 cm 2 d) cm 2 18cm e) cm 2 34) Egy körbe írt egyenlőszárú derékszögű háromszög szára 3 2 cm. Mekkora a kör sugara? 35) Egy kör P pontjától egymásra merőleges húrokat rajzolunk, ezek a körlapot három részre osztják. Mekkora a legnagyobb rész területe, ha a húrok hossza 3cm és 4cm? 36) Egy téglalap alakú konyha padlózatát szeretnénk járólappal lefedni. A téglalap oldala: 2,8m és 3,6m. Egy járólap méretei: 10cm 20cm. Hány darab lapot kell vennünk, ha selejtre, törésre 10%-t kell számítani? 37) Egy derékszögű háromszög befogóinak összege 9, a befogók különbsége 3. Mekkora az átfogó? 38) Az alábbi állítások közül melyik igaz (R a szabályos háromszög köré írható, r pedig a beírható kör sugara)? a) R= r 3 b) R= 2r c) R= 2r 3 39) Egy konvex sokszög valamely csúcsából 5 átló húzható. Mekkora a sokszög belső szögeinek összege? 40) Egy lovas kocsi egyik kerekének az átmérője 88cm. Hány fordulatot tesz ez a kerék egy 2,5km hosszú úton?
5 (8/5) Síkgeometria 41) Ha egy 10cm sugarú kör sugarát 2cm-rel csökkentjük, hány százalékkal csökken a területe? a) a) 20 b) 25 c)36 d)40 e)64 42) Mekkora az egységsugarú kör 270 -os középponti szögéhez tartozó ívének hossza? 43) Mekkora ív tartozik egy 90cm kerületű körben a 72 -os középponti szöghöz? 44) Hány fokos szöget zár be az óra kismutatója és nagymutatója (percmutatója) 5 órakor? 45) Mekkora szög a π radián? a) a) 180 b) 90 c) kb 3,14 d) 180 e) teljesszög 46) Egy háromszög kerülte 36cm, egy hozzá hasonló háromszögé 54cm. Mekkora a területük aránya? 47) Az ABCD trapéz alapjainak hossza: AB= 7,2cm, CD= 4,8 cm. Az egyik szár AD= 3cm. A két szár egyenesének metszéspontja M. a) Készítsen vázlatot és számolja ki a DM szakasz hosszát! (5pont) b) A trapéz területének hány százaléka a kiegészítő háromszög (MDC ) területe? (7pont) 48) Egy trapéz alapjai 2,5 és 4cm kiegészítő háromszögének további oldalai 1,5 és 2cm. a) Mekkorák a trapéz szárai? b) Mekkora a kiegészítő háromszög területe? (5pont) c) Mekkora a trapéz területe? 49) Egy gyárkémény árnyéka 48m hosszú, amikor a merőlegesen földbe szúrt 1,8m hosszú karó árnyéka 1,52m. Határozza meg a gyárkémény magasságát! 50) Az ABCDEFGH szabályos nyolcszög köré írható körének középpontja O. Mekkora az AOD szög? 51) Egy téglalap területe 120 cm 2. Oldalainak számtani közepe 11cm. Mekkorák az oldalai? 52) Egy konvex sokszög oldalai és átlói számának összege 91. a) Hány oldalú a sokszög? b) Mennyi a belső szögeinek összege? 53) Hány csúcsú az a konvex sokszög, amelynek együttesen 153 oldala és átlója van?
6 (8/6) Síkgeometria 54) Három db egyenlő sugarú kábelhuzal egy helyezkedik el egy csőben, hogy a kábelek érintik a cső falát és egymással páronként is érintkeznek ( lásd ábra) a) Mekkora a kábelek átmérője, ha a cső sugara 4,5cm? b) Egy 10cm hosszú kábelhuzal súlya 32dkg, 10cm hosszú cső súlya 44dkg. Mekkora a súlya 32m hosszú bekábelezett csőnek? c) A 32m bekábelezett cső súlyának hány %-a a cső súlya? (10pont) 55) Ciang-ciang ókori kínai várost négyzet alakú kőfallal vették körül, melynek oldalai az egyes égtájak felé néztek és oldalaik felénél egy-egy kaput építettek. Az északi kaputól északra 4 km-re volt egy világítótorony. Ha a déli kaputól délre haladunk 4 km-t, majd nyugatra fordulunk és haladunk 10,5 km-t, egy őrtoronyba jutunk, ahonnan éppen megláthatjuk a világítótornyot. a) Hány lakosa volt a városnak, amikor a népsűrűsége 860 fő/km 2? b) Milyen messze van légvonalban az őrtorony az északi kaputól? (10pont) 56) Két torony áll a síkon egymástól 60m távolságra. Az egyik 50m, a másik 40m magas. A két torony talppontját összekötő egyenes úton található egy olyan kút, amely egyenlő távolságra van a tornyok csúcsaitól. a) Készítsen ábrát a feladathoz! b) Szerkessze meg a kút helyét a rajzon! c) Számítsa ki, milyen messze van a kút a torony talppontjaitól! 57) Egy téglalap alakú előkert oldalai 10m és 8m. Ebbe két egyforma virágágyat terveztünk az ábra szerint. A virágágyakat egyenlő szélességű füvezett sáv veszi körül. Ennek területe a két virágágy területének másfélszerese. a) Milyen széles a füvezett sáv? b) 1kg fűmaggal 30-35m 2 területet tudunk bevetni. Elegendő-e 1kg fűmag a füvezésre? 58) Két közös középpontú kör sugarának különbsége 8cm. A nagyobbik körnek egy húrja érinti a belső kört és hossza a belső kör átmérőjével egyenlő. a) Készítsen rajzot! b) Mekkorák a körök sugarai? (10pont) 59) Három alföldi város egymástól mért távolságai: 34km, 45km,és 27km. A három város közösen egy TV-átjátszó állomást épített úgy, hogy az állomás mindhárom várostól azonos távolságra legyen. Mekkora hatósugarúnak kell lennie az átjátszóberendezésnek ahhoz, hogy elláthassa feladatát?
7 (8/7) Síkgeometria 60) A következő kérdések ugyanarra a 20 oldalú szabályos sokszögre vonatkoznak. a) Mekkorák a sokszög belső szögei? Mekkorák a külső szögei? b) Hány átlója illetve hány szimmetriatengelye van a sokszögnek? Hány különböző hosszúságú átló húzható egy csúcsból? (6pont) c) Milyen hosszú a legrövidebb átló, ha a szabályos sokszög beírt körének sugara 15cm?A választ két tizedesjegyre kerekítve adja meg (8pont) 61) Szerkessze meg a) az ABC háromszög súlypontját! b) a súlypontjából kicsinyítse 2 1 arányban a háromszöget! 62) Kijelöltük a síkon egy paralelogramma egyik oldalát (AB) és az egyik vele szomszédos oldal felezőpontját (P). Szerkessze meg a paralelogrammát. P 63) Szerkesszen egy olyan egyenlő szárú derékszögű háromszöget, amelynek átfogója a megadott AB szakasz! 64) Szerkesszen a megadott téglalappal azonos kerületű négyzetet!
8 (8/8) Síkgeometria 65) Téglalap alakú telket két olyan téglalap alakú részre kell felosztani, amelyek területének aránya 2:3. Szerkessze meg a kerítés egy lehetséges elhelyezését!
Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.
Síkidomok Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria II.
Geometria II. Síkidomok, testek: A sík feldarabolásával síkidomokat, a tér feldarabolásával testeket kapunk. Törött vonal: A csatlakozó szakaszok törött vonalat alkotnak. DEFNÍCIÓ: (Sokszögvonal) A záródó
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.
Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk
Térgeometria feladatok. 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504 cm 2. Mekkora a testátlója és a térfogata?
Térgeometria feladatok Téglatest 1. Egy téglatest éleinek aránya 2 : 3 : 5, felszíne 992 cm 2. Mekkora a testátlója és a 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504
Ábrahám Gábor A háromszög és a terület Feladatok. Feladatok
I. Klasszikus, bevezető feladatok Feladatok 1. Az alábbi feladatokban hányad része a satírozott rész területe az eredeti négyszög területének? a) Egy paralelogramma valamely belső pontját összekötjük a
Koordináta - geometria I.
Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor
3. KÖRGEOMETRIA. 3.1. Körrel kapcsolatos alapismeretek
3. KÖRGEOMETRIA Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest, 89 109. és 121. oldal. Pelle Béla: Geometria, Tankönyvkiadó, Budapest, 86 97. és 117 121. oldal. Kovács Zoltán: Geometria,
BOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy
2) 2005/0513/4 Egy kör sugara 6 cm. Számítsa ki ebben a körben a 120 -os középponti szöghöz tartozó körcikk területét!
SÍKGEOMETRIA 2004-2014 1) 2004/mfs/12 Kör alakú amfiteátrum küzdőterének két átellenes pontjában áll egy-egy gladiátor, az uralkodó a pálya szélén ül. A gladiátorok egyenes vonalban odafutnak az uralkodóhoz.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Térgeometria V.
Térgeometria V. 1. Egy 4, 6 dm átmérőjű, 5 dm magasságú, 7, dm sűrűségű hengerből a lehető legnagyobb szabályos nyolcoldalú oszlopot kell készíteni. Mekkora lesz a tömege? Az oszlop magassága a henger
BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály
5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló gimnáziuma) Térgeometria III.
Térgeometria III. 1. Szabályos háromoldalú gúla alapéle 1 cm, oldaléle 1 cm. Milyen magas a gúla? Tekintsük a következő ábrát: Az alaplap szabályos ABC, így a D csúcs merőleges vetülete a háromszög S súlypontja.
Azonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉPSZINT Koordináta-gomtria szürkíttt háttrű fladatrzk nm tartoznak az érinttt témakörhöz azonban szolgálhatnak fontos információval az érinttt fladatrzk mgoldásához! 1)
Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség
Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,
A skatulya-elv alkalmazásai
1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely
MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.
MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik
Vektoralgebrai feladatok
Vektoralgebrai feladatok 1. Vektorok összeadása és szorzatai, azok alkalmazása 1.1 a) Írja fel a és vektorokat az és átlóvektorok segítségével! b) Milyen hosszú az + ha =1? 1.2 Fejezze ki az alábbi vektorokat
Budapesti Műszaki és Gazdaságtudományi Egyetem Matematika Intézet
Budapesti Műszaki és Gazdaságtudományi Egyetem Matematika Intézet Példatár a Bevezető matematika tárgyhoz Amit tudni kell a BSC képzés előtt Összeállította: Kádasné dr. V. Nagy Éva egyetemi docens Szerkesztette:
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egserő, hasonlósággal kapcsolatos feladatok 1. Határod meg a, és sakasok hossát! cm cm 2, cm 2. Határod meg a,,, u és v sakasok hossát! 2 v 2 . Határod meg a,,, u és
A döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Térgeometria II.
Térgeometria II. 1. Hány részre osztja a teret a kocka lapjainak 6 síkja? Tekintsük a következő ábrát: Oldalnézetből a következő látjuk: Ezek alapján a teret 3 9 = 27 részre osztja fel a kocka lapsíkjai.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 011/01 Matematika I. kategória (SZKKÖZÉPISKOL) Döntő 1. Határozza meg az összes olyan egész számot, amely eleget tesz az egyenlőtlenségnek! log
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot
1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!
1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.
Megyei Matematika Szakkör Feladatsorok. A foglakozások hétfő délutánonként 16.30-tól kezdődnek a Matematikai Intézet M402-es tantermében.
Debreceni Egyetem, Matematikai Intézet H-4010 Debrecen, Pf. 12 +3652512900 office.math@science.unideb.hu Megyei Matematika Szakkör Feladatsorok A foglakozások hétfő délutánonként 16.30-tól kezdődnek a
10. évfolyam, negyedik epochafüzet
10. évfolyam, negyedik epochafüzet (Geometria) Tulajdonos: NEGYEDIK EPOCHAFÜZET TARTALOM I. Síkgeometria... 4 I.1. A háromszög... 4 I.2. Nevezetes négyszögek... 8 I.3. Sokszögek... 14 I.4. Kör és részei...
I. rész. Pótlapok száma Tisztázati Piszkozati. Név:...osztály:... Matematika kisérettségi. 2012. május 15. Fontos tudnivalók
Matematika kisérettségi 2012. május 15. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az id elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetsz leges. 3. A
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály
3. osztály Két szám összege 33. Mennyi ennek a két számnak a különbsége, ha az egyik kétszerese a másiknak? Hány olyan háromjegyű szám van, amelyben a számjegyek összege legalább 25? 4. osztály A Zimrili
Geometriai alapfogalmak
Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny. MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták) Javítási-értékelési útmutató Kérjük a javító tanárokat,
A parabola és az egyenes, a parabola és kör kölcsönös helyzete
66 A paraola 00 egyen a keresett kör középpontja Az pont koordinátái: ( y) Ekkor felírhatjuk a következô egyenletet: ( - ) + ( y- ) = mert a kör sugara > 0 Innen rendezéssel: ( y- ) = 6 - A mértani hely
PRÓBAÉRETTSÉGI VIZSGA
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. Január 21. EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2012. Január 21. Az írásbeli vizsga időtartama: 240 perc Név Tanárok neve Email Pontszám STUDIUM GENERALE MATEMATIKA
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V.
Geometria V. DEFINÍCIÓ: (Középponti szög) Ha egy szög csúcsa egy adott kör középpontja, akkor a kör középponti szögének nevezzük. DEFINÍCIÓ: (Kerületi szög) Ha egy szög csúcsa egy adott körvonal pontja,
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
MATEMATIKA PRÓBAFELVÉTELI a 8. évfolyamosok számára
MEGOLDÓKULCS MATEMATIKA PRÓBAFELVÉTELI a 8. évfolyamosok számára 2012. december 17. 10:00 óra NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tollal dolgozz! Zsebszámológépet nem asználatsz. A feladatokat tetszés szerinti
4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!
(9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. május 3. 8:00. Az írásbeli vizsga időtartama: 240 perc NEMZETI ERŐFORRÁS MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc NEMZETI ERŐFORRÁS MINISZTÉRIUM Pótlapok száma Tisztázati Piszkozati Matematika
1. HÁROMSZÖGGEOMETRIA
1.1. Nevezetes egyenlőtlenségek 1. HÁROMSZÖGGEOMETRIA Fagnano feladata: Bizonyítandó, hogy adott hegyesszögű hároszögbe írt legkisebb kerületű hároszög csúcsai az adott hároszög agasságainak talppontjaival
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika emelt szint írásbeli
G Szabályfelismerés 2.2. 2. feladatcsomag
ÖSSZEFÜÉSEK Szabályfelismerés 2.2 Alapfeladat Szabályfelismerés 2. feladatcsomag összefüggés-felismerő képesség fejlesztése szabályfelismeréssel megkezdett sorozat folytatása a felismert szabály alapján
Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit
Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.
Elektronikus tananyag MATEMATIKA 10. osztály II. félév
Elektronikus tananyag MATEMATIKA 0. osztály II. félév A hasonlósági transzformáció és alkalmazásai. Párhuzamos szelők és szelőszakaszok A párhuzamos szelők tétele TÉTEL: Ha egy szög szárait párhuzamos
1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi
1 Mélyhúzott edény teríték méretének meghatározása 1. Mintapélda, amikor a fenék lekerekítési sugár (Rb) kicsi A mélyhúzott edény kiindulási teríték átmérőjének meghatározása a térfogat-állandóság alapján
Minta 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria A szürkített hátterű feladatrzek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
MATEMATIKA KOMPETENCIATERÜLET A
MATEMATIKA KOMPETENCIATERÜLET A Matematika 7. évfolyam TANULÓI MUNKAFÜZET 2. félév A kiadvány KHF/4002-17/2008 engedélyszámon 2008. 08. 18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő
Felszín- és térfogatszámítás (emelt szint)
Felszín- és térfogatszámítás (emelt szint) (ESZÉV 2004.minta III./7) Egy négyoldalú gúla alaplapja rombusz. A gúla csúcsa a rombusz középpontja felett van, attól 82 cm távolságra. A rombusz oldalának hossza
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Órai kidolgozásra: 1. feladat Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk,
1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév
MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Javítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT ) dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT
Matematika PRÉ megoldókulcs 0. január 8. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULS EMELT SZINT. Egy atlétika csapat alapozást tart. Robbanékonyságukat és állóképességüket 0 méteres síkfutással fejlesztik. Összesen
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2009. október 20. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. október 20. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika
MATEMATIKA ÉRETTSÉGI 2012. május 8. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 01. május 8. KÖZÉPSZINT 1) Egy mértani sorozat első tagja 3, hányadosa első hat tagjának összegét! n n 1 Sn na1 d, ebből: S I.. Adja meg a sorozat ( pont) 6 63.( pont) ) Írja fel annak
IV. Trigonometria. Szögek átváltása fokról radiánra és fordítva. Hegyesszögû trigonometriai alapfeladatok
. Trigoometria Szögek átváltása fokról radiára és fordítva 456. a) ; 90 ; 60 ; 45 ;,5. b) 10 ; 150; 15 ; 40 ; 10. 457. a) 00 ; 15 ; 6 ; 70 ; 5. b). 57,96 ;. 14,9 ;. 9,794 ;. 16,7 ;. 6,6. r 458. a). 114,59
3. Matematikai logika (megoldások)
(megoldások) 1. Hamis, ugyanis P, Q és R logikai értékét behelyettesítve kapjuk: (P Q) R = (1 0) 0 = 0 0 = 0. (Ebben és a további feladatok megoldásában alkalmazzuk a D 3.1 denícióit. A megoldást célszer
Hraskó András: FPI tehetséggondozó szakkör 10. évf
FPI tehetséggondozó szakkör 10. évf. I. foglalkozás, 2011. szeptember 20. I.1. Helyezzünk 15 piros pontot egy hatszög oldalaira úgy, hogy minden oldalon ugyanannyi piros pont legyen! I.2. Melyek azok a
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
Geometria, 7 8. évfolyam
Geometria, 7 8. évfolyam Fazakas Tünde és Hraskó András 010. január 5. 4 TARTALOMJEGYZÉK Tartalomjegyzék Feladatok 7 1. Szerkesztések I.................................. 7 1.1. Alapszerkesztések.............................
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam TANULÓI MUNKAFÜZET 2. FÉLÉV A kiadvány KHF/4356-14/2008. engedélyszámon 2008.11.25. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő
Kör kvadratúrája. Ezzel a címmel találtunk egy ábrát [ 1 ] - ben 1. ábra. 1. ábra
1 Kör kvadratúrája Ezzel a címmel találtunk egy ábrát [ 1 ] - ben 1. ábra. 1. ábra Ez az ábra hibás, hiába javított kiadásról van szó. Nézzük, miért! Az ábrázolt kék kör és rózsaszín négyzet területe egyenlő.
- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez
1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.C ÉS 13.B OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség kezdete: 2013.09. 01. Oldal/összes: 1/6 Fájlnév:ME-III.1.1. Tanmenetborító SZK-DC- 2013 MATEMATIKA
Geometriai egyenlőtlenségek a gömbfelületen
Geometriai egyenlőtlenségek a gömbfelületen Szakdolgozat Készítette: RÁCZ KRISZTINA Matematika BSc Tanári szakirány Témavezető: KERTÉSZ GÁBOR Egyetemi adjunktus Eötvös Loránd Tudományegyetem Természettudományi
MATEMATIKA VERSENY --------------------
Vonyarcvashegyi Eötvös Károly Általános Iskola 2014. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 10. évfolyam TANULÓK KÖNYVE. FÉLÉV A kiadvány KHF/4365-1/008. engedélyszámon 008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
EMIR azonosító: TÁMOP-3..8-09/-00-0004 MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA 4 ÍRÁSBELI VIZSGA Ideje: 04. április 4. JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatási Hivatal Cím: H 055 Budapest, Szalay u.
PRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0,
FELADATSOR I. rész Felhasználható idő: 45 perc 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0, 1 a) b) k = k 4 16 5 10 4 k = k 5 1..) Az alábbi állítások közül
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. május 4. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. október 20. 8:00. Az írásbeli vizsga időtartama: 240 perc
É RETTSÉGI VIZSGA 2009. október 20. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. október 20. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Kapitány Benedek AZ IZOPERIMETRIKUS EGYENLŐTLENSÉG. BSc szakdolgozat. Témavezető: Frenkel Péter Algebra és Számelmélet Tanszék
EÖTVÖS LORÁND TUDOMÁNY EGYETEM TERMÉSZETTUDOMÁNYI KAR Kapitány Benedek AZ IZOPERIMETRIKUS EGYENLŐTLENSÉG BSc szakdolgozat Témavezető: Frenkel Péter Algebra és Számelmélet Tanszék Budapest, 2013 Tartalomjegyzék
4. modul Poliéderek felszíne, térfogata
Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott
Érettségi feladatok: Térgeometria
Érettségi feladatok: Térgeometria 2003. Próba 4. Legalább mekkora átmérőjű hengeres fatörzsből lehet kivágni olyan gerendát, amelynek keresztmetszete egy 20 cm 21 cm-es téglalap? 2004. Próba 18. Egy síkon
MATEMATIKA ÉRETTSÉGI 2009. május 5. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 009. május 5. KÖZÉPSZINT I. 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x 1x 4 0 Az egyenlet gyökei 1, 5 és 8. ) Számítsa ki a 1 és 75 számok mértani közepét! A mértani
XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, 2015. április 8-12.
XXIV NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szbdk, 05 április 8- X évfolym A XXIV Nemzetközi Mgyr Mtemtik Verseny tiszteletére Frici rjzolt Szbdk főterére egy 4 oldlú szbályos sokszöget Hány olyn egyenlő
Osztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek
Osztályozó vizsga kérdések Mechanika I.félév 1. Az erő fogalma, jellemzői, mértékegysége 2. Az erőhatás jellege, jelölések, mértékegységek 4 A 4. 4 3. A statika I., II. alaptörvénye 4. A statika III. IV.
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
2007. jnuár 27. MATEMATIKA FELADATLAP 8. évfolymosok számár 2007. jnuár 27. 11:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű
Nagy András. Számelméleti feladatgyűjtemény 2009.
Nagy András Számelméleti feladatgyűjtemény 2009. Tartalomjegyzék Tartalomjegyzék... 1 Bevezetés... 2 1. Feladatok... 3 1.1. Természetes számok... 3 1.2. Oszthatóság... 5 1.3. Legnagyobb közös osztó, legkisebb
Lécgerenda. 1. ábra. 2. ábra
Lécgerenda Egy korábbi dolgozatunkban melynek címe: Karimás csőillesztés már szóltunk arról, hogy a szeezetek számításaiban néha célszerű lehet a diszkrét mennyiségeket folyto - nosan megoszló mennyiségekkel
Elsőfokú egyenletek...
1. Hozza egyszerűbb alakra a következő kifejezést: 1967. N 1. Elsőfokú egyenletek... I. sorozat ( 1 a 1 + 1 ) ( 1 : a+1 a 1 1 ). a+1 2. Oldja meg a következő egyenletet: 1981. G 1. 3x 1 2x 6 + 5 2 = 3x+1
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára
Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa
31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes
9. modul Szinusz- és koszinusztétel Készítette: Csákvári Ágnes Matematika A 11. évfolyam 9. modul: Szinusz- és koszinusztétel Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY
MAGISTER GIMNÁZIUM TANMENET 2012-2013 11. OSZTÁLY Heti 3 óra Évi 111 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató Másodfokú egyenletek. Ismétlés 1. óra: Másodfokú egyenletek,
PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok
Geometriai feladatok, 9. évfolyam
Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
Körfedések síkon és gömbön
Körfedések síkon és gömbön Berta Andrea matematikus, matematika tanár Témavezető: dr. Fejes Tóth Gábor MTA Rényi Alfréd Matematikai Kutatóintézet Budapest, 007. Tartalomjegyzék 1. Bevezetés körfedések