1. Feladatok a dinamika tárgyköréből
|
|
- Tamás Kerekes
- 8 évvel ezelőtt
- Látták:
Átírás
1 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Órai kidolgozásra: 1. feladat Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű fonál végét ujjunkkal fogva függőlegesen lógatunk a g homogén nehézségi erőtérben. Majd a t 0 időpillanattól kezdve a gyorsulással emeljük a fonál végét. Mekkora erő ébred az egyes fonalszakaszokban? 1.2. Feladat: Órai kidolgozásra: 2. feladat Egy mozgó kocsin rögzített fonál végén egy m = 2 kg tömegű test lóg. A fonal szakítási szilárdsága F max = 30 N. Mekkora egyenletes gyorsulással mozoghat a kocsi, hogy a fonal még éppen el ne szakadjon? 1.3. Feladat: (HN 5B-19) Nyugalomból induló test súrlódásmentesen csúszik le a vízsintessel α = os szöget bezáró lejtőn. (a) Határozzuk meg azt a t 0 időpillanatot amikor a test eléri a v 0 = 50 m/s-os sebességet? (b) Mekkora s távolságba jut el ezalatt a test? 1.4. Feladat: (HN: 5B-33) Az m és M = 8 kg tömegű hasábokat az 1. ábrán látható elrendezésben fonallal kötünk össze. A csiga tengelysúrlódása és az érintkező felületek közötti súrlódás elhanyagolható. (a) Mekkora az alsó test m tömege, ha a testek gyorsulása a = 2 m/s 2? (b) Mekkora K erő feszíti a fonalat? Centripetális erő 1.5. Feladat: Egy m = 70 kg tömegű pilóta repülőgépével R = 1 km sugarú függőleges síkú pályán v = 1080 km/h egyenletes sebességgel köröz. A repülőnek állandóan a teteje néz a körpálya középpontja felé. Mekkora erővel nyomja a pilóta az ülést a körpálya legfelső pontján? október 6. 3
2 1. ábra Feladat: Órai kidolgozásra: 3. feladat (HN 5B-20) Egy gépkocsi R = 18 m sugarú, függőleges síkú, kör alakú domboldalon mozog felfelé. A domb tetején a vezető azt tapasztalja, hogy éppen csak érinti az ülést. Mekkora sebességgel haladt a gépkocsi? 1.7. Feladat: (HN 5B-21) A hullámvasút kocsija állandó v = 6 m/s-os sebességgel halad át a pálya R = 6 m sugarú, függőleges síkú részének tetőpontján a 2. ábrán látható módon. A kocsi és az utasok együttes tömege m = 1350 kg. (a) Mekkora és milyen irányú a kocsi gyorsulása a tetőponton? (b) Mekkora eredő erő hat ebben a pillanatban a kocsira és az utasokra összesen? (c) Mekkora erővel nyomja a pálya a kocsit a tetőponton? 2. ábra október 6. 4
3 1.8. Feladat: (HN 5B-31) Egy L hosszúságú fonállal a mennyezethez erősített testet a 3. ábrán látható módon úgy hozunk mozgásba, hogy a test vízszintes síkú, R sugarú körpályán mozog, miközben a fonál a függőlegessel θ szöget zár be. Fejezzük ki egy fordulat idejét az L és θ paraméterek függvényében! 3. ábra Feladat: Órai kidolgozásra: 4. feladat (HN: 5B-32) Egy L = 1, 4 m hosszú fonálinga függőleges síkban mozog. Amikor az ingatest sebessége v = 2,2 m/s, akkor a fonál α = os szöget zár be a függőlegessel. Határozzuk meg ebben a pillanatban (a) az ingatest a cp centripetális gyorsulását, (b) az ingatest a t tangenciális gyorsulását, (c) a fonalat feszítő K erőt, ha az ingatest tömege m = 600 g! Feladat: Vízszintes asztallapon két tégla fekszik egymáson. Minimálisan mekkora F erővel kell hatni az alsó téglára, hogy az kicsússzon a felső alól? A súrlódási tényező az asztallap és a tégla, valamint a két tégla között µ = 0,4, a két tégla össztömege pedig m = 5 kg Feladat: Egy autó az országúton nagy sebességgel halad. Az autógumi és az úttest felülete között a tapadási súrlódási együttható µ = 0,9. Az R = 100 m sugarú, vízszinten kanyarban mekkora lehet a jármű maximáslis sebessége, hogy ne sodródjon ki? október 6. 5
4 1.12. Feladat: (HN 5B-43) Egy gyerek a parttól s = 12 m-re áll a befagyott tavacska jegén. Csizmája és a jég közötti tapadási súrlódási együttható µ = 0, 05. Határozzuk meg azt a minimális időt, amely alatt kisétálhat a partra, ha megcsúszás nélkül lépked? Feladat: (HN 5B-44) Egy rakodórámpán láda nyugszik. Ha a rámpa szöge α 1 = os, akkor a láda megcsúszik. Amennyiben a csúszó láda alatt a lejtő hajlásszöge α 2 = ra csökken, akkor a láda mozgása egyenletessé válik. Határozzuk meg a lejtő és a láda közötti csúszási és tapadási súrlódási együttható értékét! Feladat: (HN 5B-46) Az m = 5 kg-os tömegű test lecsúszik a vízszintessel α = 41 0 szöget bezáró lejtőn. A test és a lejtő közötti csúszási súrlódási együttható µ = 0,3. (a) Határozzuk meg a súrlódási erő nagyságát! (b) Mekkora gyorsulással csúszik le a test? Feladat: (HN 5B-47) A vízszintessel α = os szöget bezáró lejtőn egy test a = g/2 gyorsulással csúszik le. Mekkora a csúszó súrlódási együttható? Feladat: Órai kidolgozásra: 5. feladat (HN 5B-52) Egy m = 4 kg tömegű testet a 4. ábrának megfelelően F = 20 N erővel húzunk (α = 30 0 ). Mekkora a test gyorsulása, ha a test és talaj közötti csúszási súrlódási együttható µ k = 0,2? 4. ábra október 6. 6
5 1.17. Feladat: Órai kidolgozásra: 6. feladat (HN 5B-58) Egy gépkocsi R = 80 m sugarú vízszintes körpályán mozog. A 5. ábra azt a pillanatot mutatja, amikor az autó sebessége éppen v 0 = 10 m/s és a gyorsulása a, mely a körpálya érintőjével α = os szöget zár be. (a) Mekkora a gépkocsi centripetális gyorsulása? (b) Mekkora a tangenciális gyorsulás? (c) Mekkora utat tesz meg a gépkocsi a megállásig, ha az érintő menti gyorsulása állandó? (d) Az úttest vízszintes, azaz a kanyarban nem túlemelt pálya. Mekkora minimális nyugalmi súrlódási együttható szükséges ahhoz, hogy az ábrán mutatott pillantban a gépkocsi ne csússzon meg? 5. ábra Feladat: * A vízszintes asztalon m tömegű test nyugszik. A test és az asztallap közötti súrlódási együttható µ. (A tapadási és csúszási súrlódási együttható legyen azonos.) A testre a t = 0 időpillanattól kezdve F(t) = f 0 t erővel hatunk. (a) Mi az f 0 együttható mértékegysége? (b) Mikor indul el a test? (c) Mekkora lesz a test sebessége a t időpillanatban? Feladat: Egy függőleges tengelyű korong ω 0 szögsebességgel forog. A korong közepétől R távolságban m tömegű test helyezkedik el. A korong és a test között µ tapadási súrlódási együttható van. A korong egyenletes lassulásba kezd. Legalább mekkora legyen a tapadási súrlódási együttható, hogy a test ne csússzon meg? Feladat: Órai kidolgozásra: 7. feladat A 6. ábrán két, egyenként m = 40 kg tömegű test van összekapcsolva. A súrlódási együttható mindkét testre µ = 0, 15. Határozzuk meg a testek gyorsulását és a fonálban ébredő K kötélerőt! október 6. 7
6 30º 6. ábra Feladat: A vízszintessel α = os szöget bezáró lejtőn nyugalmi helyzetből indulva m A = 30 kg tömegű testet a 7. ábrán látható módon m B = 20 kg tömegű test húz felfelé. A súrlódási együttható µ = 0, 2. (a) Számoljuk ki a testek gyorsulását! (b) Számoljuk ki a testek által t 0 = 2 s alatt megtett utat! p C 25º A B A B 7. ábra. Közegellenállási erők V Feladat: ** Az m tömegű testet a koordinátarendszer origójából v 0 sebességgel a vízszinteshez képest α szöggel elhajítunk a homogén nehézségi erőtérben. A testre az F k = cv sebességgel arányos közegellenállás is hat, ahol c konstans arányossági tényező.) (a) Írjuk fel a mozgásegyenletet! (b) Határozzuk meg a sebességkomponensek időbeli változását! (c) Határozzuk meg a test helyét, mint az idő függvényét! (d) Határozzuk meg a pálya alakját! Feladat: ** Az m tömegű testet h magasságban elejtjük. A testre az F k = cv sebességgel arányos közegellenállás is hat. (A c konstans arányossági tényező.) október 6. 8
7 (a) Írjuk fel a mozgásegyenletet! (b) Határozzuk meg a sebességének időbeli változását! (c) Határozzuk meg a test helyét, mint az idő függvényét! október 6. 9
Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika Megoldandó feladatok: I.
Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika 1.5. Mennyi ideig esik le egy tárgy 10 cm magasról, és mekkora lesz a végsebessége?
Körmozgás és forgómozgás (Vázlat)
Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen
Forgómozgás alapjai. Forgómozgás alapjai
Forgómozgás alapjai Kiterjedt test általános mozgása Kísérlet a forgómozgásra Forgómozgás és haladó mozgás analógiája Merev test általános mozgása Gondolkodtató kérdés Összetett mozgások Egy test általános
Vektoralgebrai feladatok
Vektoralgebrai feladatok 1. Vektorok összeadása és szorzatai, azok alkalmazása 1.1 a) Írja fel a és vektorokat az és átlóvektorok segítségével! b) Milyen hosszú az + ha =1? 1.2 Fejezze ki az alábbi vektorokat
b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást!
2006/I/I.1. * Ideális gázzal 31,4 J hőt közlünk. A gáz állandó, 1,4 10 4 Pa nyomáson tágul 0,3 liter térfogatról 0,8 liter térfogatúra. a) Mennyi munkát végzett a gáz? b) Mekkora a gáz belső energiájának
Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat)
Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat) I. Pontszerű test 1. Pontszerű test modellje. Pontszerű test egyensúlya 3. Pontszerű test mozgása a) Egyenes vonalú egyenletes
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség
Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,
Lendület, lendületmegmaradás
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
Méréssel kapcsolt 3. számpélda
Méréssel kapcsolt 3. számpélda Eredmények: m l m 1 m 3 m 2 l l ( 2 m1 m2 m l = 2 l2 ) l 2 m l 3 = m + m2 m1 Méréssel kapcsolt 4. számpélda Állítsuk össze az ábrán látható elrendezést. Használjuk a súlysorozat
IGAZ-HAMIS ÁLLÍTÁSOK
IGAZ-HAMIS ÁLLÍTÁSOK 1. Az átlagsebesség a kezdő- és végsebesség számtani közepe. 2. A gyorsulásvektor nagysága egyenlő a sebességvektor nagyságának időderiváltjával. 3. Görbe vonalú mozgást végző tömegpont
Robottechnika. Differenciális kinematika és dinamika. Magyar Attila
Robottechnika Differenciális kinematika és dinamika Magyar Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2009 október 8. Áttekintés
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.
Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk
Gyakorló feladatok Tömegpont kinematikája
Gyakorló feladatok Tömegpont kinematikája 2.3.1. Feladat Egy részecske helyzetének időfüggését az x ( t) = 3t 3 [m], t[s] pályagörbe írja le, amint a = indulva a pozitív x -tengely mentén mozog. Határozza
Osztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek
Osztályozó vizsga kérdések Mechanika I.félév 1. Az erő fogalma, jellemzői, mértékegysége 2. Az erőhatás jellege, jelölések, mértékegységek 4 A 4. 4 3. A statika I., II. alaptörvénye 4. A statika III. IV.
FIZIKA. EMELT SZINTŐ ÍRÁSBELI VIZSGA 2008. április 12. Az írásbeli vizsga idıtartama: 240 perc. Max. p. Elért p. I. Feleletválasztós kérdések 30
FIZIKA EMELT SZINTŐ ÍRÁSBELI VIZSGA 2008. április 12. Az írásbeli vizsga idıtartama: 240 perc Max. p. Elért p. I. Feleletválasztós kérdések 30 II. Esszé: tartalom 18 II. Esszé: kifejtés módja 5 Összetett
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
35. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló 2016. február 9. 14-17 óra. A verseny hivatalos támogatói
35. Mikola Sándor Országos Tehetségkutató Fizikaverseny A verseny hivatalos támogatói 35. Mikola Sándor Országos Tehetségkutató Fizikaverseny Gimnázium 9. évfolyam Figyelem! A feladatok megoldása során
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 19. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika
Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek, mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A vllamos forgógépek, mutatós műszerek működésének alapja Magnetosztatka mező: nyugvó állandó mágnesek és egyenáramok dőben állandó
Térgeometria feladatok. 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504 cm 2. Mekkora a testátlója és a térfogata?
Térgeometria feladatok Téglatest 1. Egy téglatest éleinek aránya 2 : 3 : 5, felszíne 992 cm 2. Mekkora a testátlója és a 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály
3. osztály Két szám összege 33. Mennyi ennek a két számnak a különbsége, ha az egyik kétszerese a másiknak? Hány olyan háromjegyű szám van, amelyben a számjegyek összege legalább 25? 4. osztály A Zimrili
Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.
Síkidomok Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos
Slovenská komisia Fyzikálnej olympiády 49. ročník Fyzikálnej olympiády v školskom roku 2007/2008
Slovenská komisia Fyzikálnej olympiády 49. ročník Fyzikálnej olympiády v školskom roku 2007/2008 Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 49. évfolyam, 2007/2008-as tanév Az FO versenyzıinek
DÖNTŐ 2015. április 25. 7. évfolyam
Bor Pál Fizikaverseny 2014/2015-ös tanév DÖNTŐ 2015. április 25. 7. évfolyam Versenyző neve:.. Figyelj arra, hogy ezen kívül még két helyen (a belső lapokon erre kijelölt téglalapokban) fel kell írnod
Mágneses szuszceptibilitás vizsgálata
Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség
A Fizikai Intézet által íratott kritérium dolgozatok a 2006-2007-es időszakban
A Fizikai Intézet által íratott kritérium dolgozatok a 2006-2007-es időszakban Azért, hogy minél több hallgató fejezhesse be eredményesen tanulmányait, egyetemünk úgy döntött, hogy az adott szak szempontjából
EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 9. évfolyam Tanári segédanyag. Szemes Péter
FELADATLAPOK FIZIKA 9. évfolyam Tanári segédanyag Szemes Péter ajánlott korosztály: 9. évfolyam! 1. HOGYAN VADÁSZIK A DENEVÉR? fizika-9- BALESETVÉDELEM, BETARTANDÓ SZABÁLYOK, AJÁNLÁSOK A kísérlet során
MATEMATIKA HETI 3 ÓRA
EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának
Egységes jelátalakítók
6. Laboratóriumi gyakorlat Egységes jelátalakítók 1. A gyakorlat célja Egységes feszültség és egységes áram jelformáló áramkörök tanulmányozása, átviteli karakterisztikák felvétele, terhelésfüggőségük
Fizika 9. osztály. 1. Egyenes vonalú egyenletes mozgás... 2. 2. Az egyenes vonalú egyenletesen változó mozgás vizsgálata lejtőn...
Fizika 9. osztály 1 Fizika 9. osztály Tartalom 1. Egyenes vonalú egyenletes mozgás............................................. 2 2. Az egyenes vonalú egyenletesen változó mozgás vizsgálata lejtőn....................
NEM A MEGADOTT FORMÁBAN ELKÉSZÍTETT DOLGOZATRA 0 PONTOT ADUNK!
Villamosmérnök alapszak Fizika 1 NÉV: Csintalan Jakab 2011 tavasz Dátum: Neptuntalan kód: ROSSZ1 NagyZH Jelölje a helyes választ a táblázat megfelelő helyére írt X-el. Kérdésenként csak egy válasz helyes.
Fizikai olimpiász. 52. évfolyam. 2010/2011-es tanév. D kategória
Fizikai olimpiász 52. évfolyam 2010/2011-es tanév D kategória Az iskolai forduló feladatai (további információk a http://fpv.uniza.sk/fo vagy www.olympiady.sk honlapokon) A D kategória 52. évfolyamához
FIZIKA Tananyag a tehetséges gyerekek oktatásához
HURO/1001/138/.3.1 THNB FIZIKA Tananyag a tehetséges gyerekek oktatásához Készült A tehetség nem ismer határokat HURO/1001/138/.3.1 című projekt keretén belül, melynek finanszírozása a Magyarország-Románia
Üzembehelyezıi leírás
Üzembehelyezıi leírás MADE IN ITALY TECHNIKAI ADATOK Falra szerelve Lefedettség 15 m, 90 Mikrohullámú frekvencia 10.525 GHz Jelfeldolgozás DSP(Digital Signal Processing) Érzékelési távolság 3-15 m Érzékelési
1. BEVEZETÉS. - a műtrágyák jellemzői - a gép konstrukciója; - a gép szakszerű beállítása és üzemeltetése.
. BEVEZETÉS A korszerű termesztéstechnológia a vegyszerek minimalizálását és azok hatékony felhasználását célozza. E kérdéskörben a növényvédelem mellett kulcsszerepe van a tudományosan megalapozott, harmonikus
Fizikai példatár 3. 3. Mechanika II. Csordásné Marton, Melinda
Fizikai példatár 3. 3. Mechanika II. Csordásné Marton, Melinda Fizikai példatár 3.: 3. Mechanika II. Csordásné Marton, Melinda Lektor: MIhályi, Gyula Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.
Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.
Fizika 1i gyakorlat példáinak kidolgozása 2012. tavaszi félév
Fizika 1i gyakorlat példáinak kidolgozása 2012. tavaszi félév Köszönetnyilvánítás: Az órai példák kidolgozásáért, és az otthoni példákkal kapcsolatos kérdések készséges megválaszolásáért köszönet illeti
Szellőzőrács IB-R Tartalom Leírás... 3 Kivitel és méretek... 4 Műszaki adatok... 5 Jelmagyarázat...12 Kiírási szöveg...12 01/09-2
Szellőzőrács IB-R Ferdinand Schad KG Steigstraße 25-27 D-78600 Kolbingen Telefon +49 (0) 74 63-980 - 0 Telefax +49 (0) 74 63-980 - 200 info@schako.de www.schako.de Tartalom Leírás... 3 Kialakítás... 3
Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl Sándor. Hőközlés.
MŰSZAKI HŐTAN II.. ZÁRTHELYI Adja meg az Ön képzési kódját! N Név: Azonosító: Terem Helyszám: K - Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Györke Gábor Kovács Viktória Barbara Könczöl
31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
1. Nyomásmérővel mérjük egy gőzvezeték nyomását. A hőmérő méréstartománya 0,00 250,00 kpa,
1. Nyomásmérővel mérjük egy gőzvezeték nyomását. A hőmérő méréstartománya 0,0 250,0 kpa, pontossága 3% 2 osztás. Mekkora a relatív hibája a 50,0 kpa, illetve a 210,0 kpa értékek mérésének? rel. hiba_tt
Lécgerenda. 1. ábra. 2. ábra
Lécgerenda Egy korábbi dolgozatunkban melynek címe: Karimás csőillesztés már szóltunk arról, hogy a szeezetek számításaiban néha célszerű lehet a diszkrét mennyiségeket folyto - nosan megoszló mennyiségekkel
Szakács Jenő Megyei Fizikaverseny
Szakács Jenő Megyei Fizikaverseny 2015/2016. tanév II. forduló 2016. február 1. Minden versenyzőnek a számára (az alábbi táblázatban) kijelölt négy feladatot kell megoldania. A szakközépiskolásoknak az
Feladatok GEFIT021B. 3 km
Feladatok GEFT021B 1. Egy autóbusz sebessége 30 km/h. z iskolához legközelebb eső két megálló távolsága az iskola kapujától a menetirány sorrendjében 200 m, illetve 140 m. Két fiú beszélget a buszon. ndrás
FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika középszint 1511 ÉRETTSÉGI VIZSGA 016. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot
Newton törvények, erők
Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső
Hatvani István fizikaverseny 2015-16. 3. forduló. 1. kategória
1. kategória 1.3.1. Február 6-a a Magyar Rádiótechnikai Fegyvernem Napja. Arra emlékezünk ezen a napon, hogy 1947. február 6-án Bay Zoltán és kutatócsoportja radarral megmérte a Föld Hold távolságot. 0,06
Fizika 1i (keresztfélév) vizsgakérdések kidolgozása
Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Készítette: Hornich Gergely, 2013.12.31. Kiegészítette: Mosonyi Máté (10., 32. feladatok), 2015.01.21. (Talapa Viktor 2013.01.15.-i feladatgyűjteménye
1. feladat Előzetes becslés:
A feladat célkitűzése: Elvira, a kötéltáncos esete Az ábra egy vázlatrajz, ami Elvirát, a kötéltáncosnőt mutatja, amint a kötél egyik végétől a másik felé halad. Elvira súlya G=450 N. A vázlaton bemutatott
7 10. 7.o.: 1 50. feladat 8. o.: 26 75. feladat 9 10. o.: 50 100. feladat
-1- Fizikaiskola 2012 FELADATGYŰJTEMÉNY a 7 10. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny I. forduló 7.o.: 1 50. feladat 8. o.: 26 75. feladat 9 10. o.: 50 100. feladat Szerkesztette: Jármezei Tamás (1 75. feladat)
2. Egymástól 130 cm távolságban rögzítjük az 5 µ C és 10 µ C nagyságú töltéseket. Hol lesz a térerısség nulla? [0,54 m]
1. Elektrosztatika 1. Egymástól 30 m távolságban rögzítjük az 5 µ C és 25 µ C nagyságú töltéseket. Hová helyezzük a 12 µ C nagyságú töltést, hogy egyensúlyban legyen? [9,27 m] 2. Egymástól 130 cm távolságban
Koordináta - geometria I.
Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor
BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály
5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,
Fizika számolási gyakorlat
Fizika számolási gyakorlat. rész X. Munkatétel, kinetikai energia tétele: a test kinetikus energiájának megváltozása egyenlő a testre ható összes erő munkájával: E kin = W A mechanikai energia megmaradásának
2005/1. Szerencsétlenül járt műhold
5/. Szerencsétlenül járt műhold A mesterséges égitestek manőverezés során leggyakrabban repülésük irányában változtatják meg sebességüket, azaz felgyorsítanak, hogy magasabb pályákra kerüljenek, vagy lefékeznek,
Henger körüli áramlás. Henger körüli áramlás. Henger körüli áramlás 2015.03.02. ρ 2. R z. R z = 2 2. c A. = 4c. c p. = 2c. y/r 1.5.
5.3.. Henger körüli áramlás y/r.5.5.5 x/r.5 3 3 R w z + z R R iϑ e r R R z ( os ϑ + i sin ϑ ) Henger körüli áramlás ( os ϑ i sin ϑ ) r R + [ ϑ + sin ϑ ] ( ) ( os ) r R r R os ϑ + os ϑ + sin ϑ 444 3 r R
A mérések eredményeit az 1. számú táblázatban tüntettük fel.
Oktatási Hivatal A Mérések függőleges, vastag falú alumínium csőben eső mágnesekkel 2011/2012. tanévi Fizika Országos Középiskolai Tanulmányi Verseny döntő feladatának M E G O L D Á S A I. kategória. A
FIZIKA PRÓBAÉRETTSÉGI FELADATSOR - B - ELSŐ RÉSZ
FIZIKA PRÓBAÉRETTSÉGI FELADATSOR - B - HALLGATÓ NEVE: CSOPORTJA: Az írásbeli vizsga időtartama: 240 perc A feladatsor megoldásához kizárólag Négyjegyű Függvénytáblázat és szöveges információ megjelenítésére
Az Egyszerű kvalitatív kísérletek és az egész órás mérési gyakorlatok időzítése, szervezési kérdései!
Tartalomjegyzék Az Egyszerű kvalitatív kísérletek és az egész órás mérési gyakorlatok időzítése, szervezési kérdései! Egyszerű kvalitatív kísérletek 1. Forog vagy nem? 2. Szívószál-rakéta 3. Itt a golyó
MEZŐGAZDASÁGI ALAPISMERETEK
Mezőgazdasági alapismeretek középszint 0811 ÉRETTSÉGI VIZSGA 2008. május 26. MEZŐGAZDASÁGI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Slovenská komisia Fyzikálnej olympiády. Szlovákiai Fizikai Olimpiász Bizottság
Slovenská komisia Fyzikálnej olympiády 50. ročník Fyzikálnej olympiády Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 50. évfolyam Az B kategória 1. fordulójának feladatai 1. A spulni mozgása
Programozható irányítóberendezések és szenzorrendszerek ZH. Távadók. Érdemjegy
Név Neptun-kód Hallgató aláírása 0-15 pont: elégtelen (1) 16-21 pont: elégséges (2) 22-27 pont: közepes (3) 28-33 pont: jó (4) 34-40 pont: jeles (5) Érzékelők jellemzése Hőmérsékletérzékelés Erő- és nyomásmérés
VASÚTI PÁLYA DINAMIKÁJA
VASÚTI PÁLYA DINAMIKÁJA Dynamics of the railway track Liegner Nándor BME Út és Vasútépítési Tanszék A vasúti felépítmény szerkezeti elemeiben ébredő igénybevételek A Zimmermann Eisenmann elmélet alapján
TARTALOM. old. A GÉP LEÍRÁSA... 2 MŰSZAKI ADATOK... 4 FONTOS FIGYELMEZTETÉSEK... 4 VONTATÓRA KAPCSOLÁS... 5 A GÉP HASZNÁLATA... 6 KARBANTARTÁS...
TARTALOM old. A GÉP LEÍRÁSA... 2 MŰSZAKI ADATOK... 4 FONTOS FIGYELMEZTETÉSEK... 4 VONTATÓRA KAPCSOLÁS... 5 A GÉP HASZNÁLATA... 6 KARBANTARTÁS... 8 GARANCIA... 9 1 2 1. ábra 6 7 3 1) Alsó beakasztások 2)
A/2. számú melléklet
A/2. számú melléklet Járműkategóriák és járműtípusok fogalommeghatározásai I. Rész: Járműkategóriák A járműveket a következő kategóriákba soroljuk: 1. M kategória: Személyszállító gépkocsik. M 1 kategória:
Amit a Hőátbocsátási tényezőről tudni kell
Amit a Hőátbocsátási tényezőről tudni kell Úton-útfélen mindenki róla beszél, már amikor épületekről van szó. A tervezéskor találkozunk vele először, majd az építkezéstől az épület lakhatási engedélyének
A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban.
E II. 6. mérés Műveleti erősítők alkalmazása A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. A mérésre való felkészülés
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 17. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika
Síkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált
Síkban polarizált hullámok Tekintsünk egy z-tengely irányában haladó fénysugarat. Ha a tér egy adott pontjában az idő függvényeként figyeljük az elektromos (ill. mágneses) térerősség vektorokat, akkor
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló gimnáziuma) Térgeometria III.
Térgeometria III. 1. Szabályos háromoldalú gúla alapéle 1 cm, oldaléle 1 cm. Milyen magas a gúla? Tekintsük a következő ábrát: Az alaplap szabályos ABC, így a D csúcs merőleges vetülete a háromszög S súlypontja.
FOLYTONOS TESTEK. Folyadékok sztatikája. Térfogati erők, nyomás. Hidrosztatikai nyomás. www.baranyi.hu 2010. szeptember 19.
FOLYTONOS TESTEK Folyadékok sztatikája Térfogati erők, nyomás A deformáció szempontjából a testre ható erőket két csoportba soroljuk. A térfogati erők a test minden részére, a belső részekre és a felületi
rezegnek, mások pedig nyugalomban maradnak. Ezek a csomópontok. Ha mindkét végén L = nλ n
Állóhullám kötélen 1. Elméleti háttér A hullámok alapvető tulajdonságai egyszerűen tanulmányozhatók kötélen kialakult állóhullámok segítségével. A hullámoknak ez a típusa gyakran megfigyelhető mindennapi
Földrajzi helymeghatározás
A mérés megnevezése, célkitűzései: Földrajzi fokhálózat jelentősége és használata a gyakorlatban Eszközszükséglet: Szükséges anyagok: narancs Szükséges eszközök: GPS készülék, földgömb, földrajz atlasz,
A döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. I.
Oktatási Hivatal A 8/9. tanévi FIZIKA Országos Közéiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.
1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!
1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.
1. Metrótörténet. A feladat folytatása a következő oldalon található. Informatika emelt szint. m2_blaha.jpg, m3_nagyvaradter.jpg és m4_furopajzs.jpg.
1. Metrótörténet A fővárosi metróhálózat a tömegközlekedés gerincét adja. A vonalak építésének története egészen a XIX. század végéig nyúlik vissza. Feladata, hogy készítse el a négy metróvonal történetét
MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PRÓBAÉRETTSÉGI FELADATSORHOZ 11. ÉVFOLYAM
AZ OSZÁG VEZETŐ EGYETEMI-FŐISKOLAI ELŐKÉSZÍTŐ SZEVEZETE MEGOLDÓKULCS AZ EMELT SZINTŰ FIZIKA HELYSZÍNI PÓBAÉETTSÉGI FELADATSOHOZ. ÉVFOLYAM I. ÉSZ (ÖSSZESEN 3 PONT) 3 4 5 6 7 8 9 3 4 5 D D C D C D D D B
Lineáris algebra gyakorlat
Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek
INFORMÁCIÓS MEMORANDUM
INFORMÁCIÓS MEMORANDUM Kőkút út 7., Hrsz.: 2939/1 3200 GYÖNGYÖS MAGYARORSZÁG INGATLAN SZ.: 008 2011. július Rev.01 Page 1 of 6 Megye Régió Heves Mátra / Gyöngyös Lakosság száma Kb. 35.000 Autópálya csatlakozás
A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 521 03 Gépgyártástechnológiai technikus Tájékoztató A vizsgázó az első lapra írja
Tanulói munkafüzet. FIZIKA 9. évfolyam 2015. egyetemi docens
Tanulói munkafüzet FIZIKA 9. évfolyam 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Az egyenletes mozgás vizsgálata... 3 2. Az egyenes vonalú
Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék
Széchenyi István Egyetem Szerkezetek dinamikája Alkalmazott Mechanika Tanszék Elméleti kérdések egyetemi mesterképzésben (MSc) résztvev járm mérnöki szakos hallgatók számára 1. Merev test impulzusának
Párhuzamos programozás
Párhuzamos programozás Rendezések Készítette: Györkő Péter EHA: GYPMABT.ELTE Nappali tagozat Programtervező matematikus szak Budapest, 2009 május 9. Bevezetés A számítástechnikában felmerülő problémák
EXAMENUL DE BACALAUREAT
EXMEUL DE BCLURET - 007 Proba E: ecializarea : matematic informatic, tiin e ale naturii Proba F: Profil: tehnic toate secializ rile unt obligatorii to i itemii din dou arii tematice dintre cele atru rev
BOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 35 582 03 Hűtő-, klíma- és hőszivattyú
A mechanika alapjai. A pontszerű testek dinamikája. Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29.
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. Bevezetés Newton I. Newton II. Newton III. Newton IV. 2 / 27 Bevezetés Bevezetés Newton I.
Térfogatáram mérési módszerek 2.: Térfogatáram mérés csőívben (K)
Térfogatáram mérési módszerek.: Térfogatáram mérés csőívben (K) A mérés célja: meghatározandó egy csőkönyök nyomásesése és ellenállástényezője, illetve a csőkönyök legkisebb és legnagyobb görbületi sugarú
Név:...EHA kód:... 2007. tavasz
VIZSGA_FIZIKA II (VHNB062/210/V/4) A MŰSZAKI INFORMATIKA SZAK Név:...EHA kód:... 2007. tavasz 1. Egy 20 g tömegű testet 8 m/s sebességgel függőlegesen felfelé dobunk. Határozza meg, milyen magasra repül,
Ha vasalják a szinusz-görbét
A dolgozat szerzőjének neve: Szabó Szilárd, Lorenzovici Zsombor Intézmény megnevezése: Bolyai Farkas Elméleti Líceum Témavezető tanár neve: Szász Ágota Beosztása: Fizika Ha vasalják a szinusz-görbét Tartalomjegyzék
Magyar Tanítási Nyelvű Magángimnázium Dunaszerdahely
Név: Magyar Tanítási Nyelvű Magángimnázium Dunaszerdahely Fizika 1. laboratóriumi munka Dátum: Téma: Cél Hosszúságmérés Osztály: A füzet és a füzetlap vastagságának meghatározása tolómérce és mikrométer
Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 3. FIZ3 modul. 3. Mechanika II.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Csordásné Marton Melinda Fizikai példatár 3 FIZ3 modul 3 Mechanika II SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi LXXVI
( ) Schultz János EGYENLŐTLENSÉGEK A HÁROMSZÖG GEOMETRIÁJÁBAN
Shultz János EGYENLŐLENSÉGEK A HÁOMSZÖG GEOMEIÁJÁBAN Igzoljuk hogy egy szályos háromszög első pontját súsokkl összekötő három szkszól mindig szerkeszthető háromszög Egy tégllp elsejéen vegyünk fel egy
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű