Dr. Balogh Albert: A statisztikai adatfeldolgozás néhány érdekessége
|
|
- Éva Hajdu
- 9 évvel ezelőtt
- Látták:
Átírás
1 Dr. Balogh Albert: A statszta adatfeldolgozás éháy érdeessége
2 Kérdése:. Hogya becsüljü a tapasztalat eloszlásfüggvéyt? 2. M az a redezett mta? 3. M az a medá rag és mlye becslése vaa?. Hogya becsüljü a hbaaráy 50%-os felső ofdeca határát? 5. Mért tér el az Excel és Mtab vartlsszámítása? 2
3 .A tapasztalat eloszlásfüggvéyt redszert a Webull és a ormáls eloszlás esetébe grafus módszerrel becsül. Eor a becsléseet például Gauss(Webullpapíro ábrázolva ormáls eloszlás esetébe egy egyeest apu. 2.A tapasztalat eloszlásfüggvéyt a redezett mtaeleme eloszlásáa jellemzőből határozzu meg. x < x <... < x <... < x Legyee 2 a redezett mtaeleme agyság szert övevő: Eor az ezehez tartozó y F(x értée s redezett övevő mtát ada. y <y 2 < <y < <y.. 3
4 Normáls eloszlásfüggvéy 09 Öaazegzett eloszlás függvéy y 07 ( x y 0 μ 0 x Megfgyelt x értée. ábra A ormáls eloszlásfüggvéy
5 y Φ( u Φ x μ σ u x μ σ y Med ( y Φ(0 05 x y ( μ x x Med ( x Kérdés: mvel becsüljü az. 2 -ed mtaelemhez tartozó y y2... y t Egyees Gauss-papíro ábrázolva
6 3. M az a medá rag? Az x <x 2 < <x <x redezett mtaeleme sorszáma a rag. Az ezehez tartozó y eloszlásfüggvéy-értée s redezett mtát alota azaz y <y 2 < <y < <y s redezett mta eze sorszáma s rag. Az y redezett mtaelem (ragja a [0] tervallumba egyeletes eloszlású valószíűség változó amelye sűrűségfüggvéye:! g( y y..( y ;(0 y. (!(! Ee az eloszlása az eloszlásfüggvéye az y medá helye vesz fel a 05 értéet. sorrede száma (-db elem sebb vszge -ed elem sfv-e (- db elem agyobb vszge Agol: meda ra. Magyar: a rag medája. 6
7 3.A tapasztalat eloszlásfüggvéy szoásos becsléset részbe y eloszlásából származtatjá. A szoásos becslése egy része gyaorlat meggodoláso alapjá a övetező: ϕ ( ϕ2(. 2 ϕ3 (. (Motgomery ( ϕ Ez y eloszlásáa várható értée. ϕ5( ϕ6( < < 0 g( y G ( y! y ( (!(! < 2 y ;(0 y. ( ( ( y ( y y ( y Ez y eloszlásáa módusa. Ez y eloszlásáa özelítő medája vagys a medá rag. ha Ez y sűrűségfüggvéyeebből G (y: y ( y G ( y 0 7
8 8 A medá rag özelítő épletée származtatása: ( ( ( 0 ( ( ( ( ( y G y y y y y y y G G (yg - (-y.. ( ( ϕ ϕ 05 ( G y. b a b a b-2a ( a a a a Ha aor a fet éplet az (-a paraméterű Posso eloszlással özelíthető és apju hogy a jó özelítéssel 03. Keressü a becslést alaba. b a ϕ( ( a a ϕ
9 y ϕ ϕ y 0 yf(x Adatsor2 ϕ y05 x x F ( 03 0 x A három becslés módszer ábrázolása 9
10 A becslése tulajdosága és összehasolításu:.az /( becslés az esetee több mt felébe az egyees alatt va. 2.Az (-/(- becslés az esetee több mt felébe az egyees felett va Mvel > > erre s teljesül a fet megállapítás Az (-03/(0 becslés özel azoos számú esetbe va az egyees alatt és felett. 5. A 2. és 3. esetbe alábecsül a ormáls eloszlás szórását az. esetbe pedg túl agy szórást becsüle. Ez azért va mert az egyees meredesége fordította aráyos a szórással. Az egyees 05 ordátájú potjához tartozó x érté becsül a várható értéet az egyees meredesége pedg a szórás recpro értée. 0
11
12 N(35;5 (-05/ 2
13 N(35;5 3
14 2 E l o s z l á s f v. 5 N(05; ( 05/ ( 03/( ( /( Sorozato Sorozato2 Sorozato3 Sorozato Sorozato5 N(05;2 /( ( /( ( 05/ ( 03/(0 Leárs (Sorozato Leárs (Sorozato2 Leárs (Sorozato3 Leárs (Sorozato Leárs (Sorozato5 3 Mtaeleme megfgyelt értée
15 N(05;2 E l ( 03/(0 05 o s 0 z l 05 á( 05/ s f v ( 0/( Sorozato Sorozato2 Sorozato3 Sorozato Sorozato5 N(05;2 /( ( /( ( 05/ ( 03/(0 Leárs (Sorozato Leárs (Sorozato2 Leárs (Sorozato3 Leárs (Sorozato Leárs (Sorozato5 3 Mtaeleme megfgyelt értée 5
16 .A hbaaráy 50%-os felső ofdeca határa: C U 0 ( p ( p 00%. Bomáls eloszlásból számítva. pˆ pˆ ( 03 0 ( F A fet épletből adód a potos éplet. Ez a özelítő éplet a medá ragból. Értéelés mód Mta Gyaorlat megfotolás 25 % 50 % 75 % Excel (-/(- 25 % 50 % 75 % Mtab program(/( % 50 % 75 % Motgomery ( 05/ % % % Kvartlse és a medá százaléos értéee összehasolító táblázata
17 Kvartlse számítás éplete: Az Excel a ( ; pˆ épletből dul és így p/ eseté Ee a száma egész részét ell ve ezt a sorszámú tagot ell duló értée tete és ehhez hozzá ell ad ee a száma a törtrészée és övetező mtaelemtől való távolságáa szorzatát. p3/ eseté hasoló az eljárás. A Mtab a pˆ épletből dul és így p/-re /(; ezt övetőe az eljárás azoos. 05 pˆ eseté. ha p/ aor (/. 05 ezutá az eljárás azoos. Ee megfelelőe az Excel éplete a 25 és 75%-os vartlsere ahol [x] x egész része{x} x törtrésze: X0 25 X[ ] { ' } ( X[ ] [ ]; 075 [ ' 3 ] { ' 3} ( ' X ' X X ' X[ ' 3 ] X[ ' 3 ] X A Mtab éplete: { }( X[ ] X[ ]; X075 X[ ] { 3} X[ ] X[ ] 0 25 X[ ] (
18 8 { } { } { } { } { } { } { } { } { } { } excel tab tab ha tab ha tab ha tab ha excel ha excel ha excel ha excel ha ; 05;m ; 3;m 0 2;m 075 ; ;m 05 ; ;m 025 ; ; 0 ; ; 075 ; 3; 05; ' ; 2; 025; ' ' ' '
19 p- vatls mtabel becslése p becslése értée p vatls p/( (p x p x [] {}(x [] x [] p( /( ( p x p x [] {}(x [] x [] p( 05/ p05 x p x [] {}(x [] x [] p( 03/(0 (0p03 x p x [] {}(x [] x [] Jelölése: [] egész része; {} tört része; F(x p p. 9
V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL
86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )
A Sturm-módszer és alkalmazása
A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 12 XII. STATIsZTIKA ellenőrző feladatsorok 1. FELADATsOR Megoldások: láthatók nem láthatók 1. minta: 6.10, 0.01, 6.97, 6.03, 3.85, 1.11,
A statisztikai módszerek alkalmazásának okai. A mérési eredmények jellemzésének matematikaistatisztikai. A várható érték becslésére szolgáló jellemzők
... A statsztka módszerek alkalmazásáak oka A mérés eredméek jellemzéséek matematkastatsztka alapja Ezek a módszerek lehetővé teszk a mérések értékelését, bzotalaság eseté az okokra és a mérés egéb összefüggésere
2012.03.01. Méréselmélet PE_MIK MI_BSc, VI_BSc 1
Mérés adatok feldolgozása 202.03.0. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel
Valószínűségszámítás összefoglaló
Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!
A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata
6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az
- mit, hogyan, miért?
- mit, hogyan, miért? Dr. Bélavári Csilla VITUKI Nonprofit Kft., Minőségbiztosítási és Ellenőrzési Csoport c.belavari@vituki.hu 2011.02.10. 2010. évi záróértekezlet - VITUKI, MECS 1 I. Elfogadott érték
HÁZI FELADAT NÉV:.. Beadási határidı: az elsı ZH-ig (2010. március 30. 8:00). Olvassa el az útmutatást is! KOMBINATORIKA
HÁZI FELADAT NÉV:.. NEPTUN KÓD: CSOPORT: Beadási határidı: az elsı ZH-ig (010. március 0. 8:00). Olvassa el az útmutatást is! KOMBINATORIKA 1. Egy irádulás sorá tizeöt tauló elhelyezésére három szoba áll
I. BEVEZETİ. i= 1 i= Z : Ai F és Ai Ai+ i Z : Bi F és Bi Bi+
I ALAPFOGALMAK I BEVEZETİ Jelölése: K: véletle ísérlet, ω : elem eseméy, { : } Ω= ω : eseméytér, F Ω : eseméyalgebra, A F : eseméy, Ω F : bztos eseméy Mővelete eseméyeel: összegzés: A+B (halmazuó), szorzás:
n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!
KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:
Ftéstechnika I. Példatár
éecha I. Példaár 8 BME Épülegépéze azé éecha I. példaár aralojegyzé. Ha özeoglaló... 3.. Hvezeé...3.. Háadá....3. Hugárzá...6.. Háoáá....5. Szgeel axál hleadáához arozó ül áér....6. Bordázo vezeé.... Sugárzá...5.
Hegedős Csaba NUMERIKUS ANALÍZIS
Hegedős Csaba NUMERIKUS ANALÍZIS Jegyzet ELE, Iformata Kar Hegedős: Numerus Aalízs ARALOM Gép szám, hbá 3 Normá, egyelıtlesége 9 3 A umerus leárs algebra egyszerő traszformácó 6 4 Mátro LU-felbotása, Gauss-Jorda
Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1
Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel
Radon, Toron és Aeroszol koncentráció viszonyok a Tapolcai Tavas-barlangban
Radon, Toron és Aeroszol koncentráció viszonyok a Tapolcai Tavas-barlangban Kutatási jelentés Veszprém 29. november 16. Dr. Kávási Norbert ügyvezetı elnök Mérési módszerek, eszközök Légtéri radon és toron
FELADATOK a Bevezetés a matematikába I tárgyhoz
FELADATOK a Bevezetés a matematiába I tárgyhoz a számítástechia taár főisolai és a programozó matematius szao számára 2004 ovember 4 FIGYELEM: a számtech szaosoa csa a övetező feladato ellee: 2,6,7,8,9-13,16-25,27,31-33
9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA
9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.
Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás
Matemata statszta elıadás III. éves elemzı szaosoa 009/00. élév. elıadás Tapasztalat eloszlás Mde meggyeléshez (,,, ) / súlyt redel. Valószíőségeloszlás! Mtaátlag éppe ee az eloszlása a várható értée.
Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel
Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást
Valószínűségszámítás. Ketskeméty László
Valószíűségszámítás Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 3. Kombatorka alapfogalmak 4 Elleőrző kérdések és gyakorló feladatok 6. A valószíűségszámítás alapfogalma
Bevezetés az ökonometriába
Az idősorelemzés alapjai Gánics Gergely 1 gergely.ganics@freemail.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Tizedik előadas Tartalom 1 Alapfogalmak, determinisztikus és sztochasztikus megközelítés
Laboratóriumi mérések
Laboratórum mérések. Bevezetı Bármlye mérés ayt jelet, mt meghatároz, háyszor va meg a méredı meységbe egy másk, a méredıvel egyemő, ökéyese egységek választott meység. Egy mérés eredméyét tehát két adat
Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága
Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
dolgokhoz valamely szabály alapján számokat rendelünk. a dolgokhoz valamely szabály alapján rendelt számok.
Mérés: Adat: Adatfajták - mérés skálák: dolgokhoz valamely szabály alapjá számokat redelük. a dolgokhoz valamely szabály alapjá redelt számok. Aráyskála tulajdosága: - egy-egy szám mt adat mdg ugyaazt
Kontingencia táblák. Khi-négyzet teszt. A nullhipotézis felállítása. Kapcsolatvizsgálat kategorikus változók között.
Kotigecia táblák. Khi-égyzet tet 1. Függetleségvizsgálat. Illekedésvizsgálat 3. Homogeitásvizsgálat Példa 1 em ő 8 75 13 Ismétlés: változók, mérési skálák típusai 48 49 97 76 14 jeles (5) jó (4) közepes
STATISZTIKA. Statisztikai becslés. Torzítatlan és konzisztens becslés. Pontos és torzítatlan becslés. Pontos és torzított becslés
Statsztka becslés STATSZTKA 6. Előadás dexek. Valamely araméter smeretle (feltételezett) téyleges értékéek közelítő megadása egy statsztka függéyel. Elleg bármelyk statsztka függéy tekthető becslések,
Minőségirányítási rendszerek 8. előadás 2013.05.03.
Miőségiráyítási redszerek 8. előadás 2013.05.03. Miőségtartó szabályozás Elleőrző kártyák miősítéses jellemzőkre Két esete: A termékre voatkozó adat: - valamely jellemző alapjá megfelelő em megfelelő:
Hipotézis-ellenırzés (Statisztikai próbák)
Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat
Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.
Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika
Távközlő hálózatok és szolgáltatások Kapcsolástechnika
Távözlő hálózato és szolgáltatáso Kapcsolástechia émeth Krisztiá BME TMIT 015. ot. 1-8. A tárgy felépítése 1. Bevezetés. IP hálózato elérése távözlő és ábel-tv hálózatoo 3. VoIP, beszédódoló 4. Kapcsolástechia
Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése
3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés
specific (assignable) cause: azonosítható, tettenérhető (veszélyes) hiba megváltozott a folyamat
ELLENŐRZŐ KÁRTYÁK méréses mősítéses commo cause: véletle gadozás secfc (assgable) cause: azoosítható, tetteérhető (veszélyes) hba megváltozott a folyamat Mősítéses elleőrző kártyák 41 Mősítéses elleőrző
Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat
Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 5 V. BECsLÉsELMÉLET 1. STATIsZTIKAI becslés A becsléselméletben gyakran feltesszük, hogy a megfigyelt mennyiségek független valószínűségi
Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü
ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü
Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű
Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü
Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó
É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű
Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é
:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő
ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü
ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü
A döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
Matematikai statisztika
Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),
VALÓS SZÁMOK MEGKÖZELÍTÉSE TÖRTEKKEL
Surányi János Farey törte mate.fazeas.u Surányi János VALÓS SZÁMOK MEGKÖZELÍTÉSE TÖRTEKKEL FAREY-TÖRTEK. Egy a alós számot racionális számoal, azaz törteel aarun megözelíteni. A törteet az alábbiaban mindig
UJJLENYOMATOK FELISMERÉSE
Babeş Bolyai Tudomáyegyetem Matematia Iformatia ar Iformatia sza UJJLENYOMATOK FELISMERÉSE Uleyomatépe feldolgozása, osztályozás euroális hálóal, azoosítási célú összehasolítás Vezetőtaár: Dr. Soós Aa
Illeszkedésvizsgálat
Slide 1 Illeszkedésvizsgálat (kategória értékű változóra) Freedman: 28. fejezet 1-3. Egy képzeletbeli országban 10M ember lakik: 30% szőke, 10% barna, 60% fekete. Slide 2 N = 200 fős mintát vettünk, a
Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:
JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött
MÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011
MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe
FELADATOK A KALKULUS C. TÁRGYHOZ
FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy
Sz ekelyhidi L aszl o Val osz ın us egsz am ıt as es matematikai statisztika *************** Budapest, 1998
Székelyhidi László Valószínűségszámítás és matematikai statisztika *************** Budapest, 1998 Előszó Ez a jegyzet a valószínűségszámításnak és a matematikai statisztikának azokat a fejezeteit tárgyalja,
Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
31 521 09 1000 00 00 Gépi forgácsoló Gépi forgácsoló
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
VI.Kombinatorika. Permutációk, variációk, kombinációk
VI.ombiatorika. ermutációk, variációk, kombiációk VI..ermutációk ismétlés élkül és ismétléssel (sorredi kérdések) l..) Az,, számjegyekből, ismétlés élkül, háy háromjegyű szám írható? F. 6 db. va. A feti
Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
Elemi statisztika fizikusoknak
Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu 1. oldal 7. előadás Becslések és minta elemszámok 7-1 Áttekintés 7-2 A populáció arány becslése 7-3 A populáció átlag
1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény
Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,
Az anyagáramlás intenzitása
Az ayagáramlás teztása Az ayagáramlás teztása () alatt meghatározott dőegység (dőtervallum) alatt (t) mozgatott ayagmeységet (M) értü. M (g, t, E, db, stb./ dőegység) t Szaaszos műödésű ayagmozgató redszere
Statisztikai programcsomagok
Statisztikai programcsomagok Sz cs Gábor Szegedi Tudomáyegyetem, Bolyai Itézet Szeged, 2012. tavaszi félév Sz cs Gábor (SZTE, Bolyai Itézet) Statisztikai programcsomagok 2012. tavaszi félév 1 / 26 Bevezetés
18. Differenciálszámítás
8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke
Konfidencia-intervallumok
Konfdenca-ntervallumok 1./ Egy 100 elemű mntából 9%-os bztonság nten kéített konfdenca ntervallum: 177,;179,18. Határozza meg a mnta átlagát és órását, feltételezve, hogy az egé sokaság normáls elolású
Komputer statisztika gyakorlatok
Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes
Kockázatkezelés és biztosítás
Kockázatkezelés és biztosítás Dr. habil. Farkas Szilveszter PhD egyetemi docens, tanszékvezető Pénzügy Intézeti Tanszék Témák 1. Kockáztatott eszközök 2. Károkozó tényezők (vállalati kockázatok) 3. Holisztikus
Tuzson Zoltán A Sturm-módszer és alkalmazása
Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta
KÁR-MENTOR Bt. 5000 Szolnok, Arany János út 20. Tel: 56/426-226 Tfax: 56/513-395 e-mail: karmentor@brokerroyal.hu. Tisztelt Ajánlattevő!
KÁR-MENTOR Bt. 5000 Szolnok, Arany János út 20. Tel: 56/426-226 Tfax: 56/513-395 e-mail: karmentor@brokerroyal.hu Tisztelt Ajánlattevő! Mellékelten megküldjük a Pilisi Labdarugó Klub részére a Vázlatterv,
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2010. május 1. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 1. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
Feladatok diszkriminancia anaĺızisre
Feladatok diszkriminancia anaĺızisre. A normált Fisher-féle lineáris diszkriminancia függvény a osztály esetén használatos alakja: az osztályozási kritérium: Lx c µ µ T Σ x µ ahol c µ T Σ µ µ ha Lx > Lµ
A Secretary problem. Optimális választás megtalálása.
A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra
tartalmazó becsült értékek. 2 2011. októbertől a lakáscélú és szabad felhasználású jelzáloghitelek új szerződéses összege tartalmazza a
Grafikonkészlet a háztartási és a nem pénzügyi vállalati kamatlábakról szóló közleményhez 2012. január 1. ábra: A háztartási forint, euro és svájci frank lakáscélú hitelek új szerződéseinek értéke a szezonálisan
Hosszmérés finomtapintóval 2.
Mechatroika, Optika és Gépészeti Iformatika Taszék kiadva: 0.0.. Hosszmérés fiomtapitóval. A mérések helyszíe: D. épület 53-as terem. Az aktuális mérési segédletek a MOGI Taszék holapjá érhetők el, a www.mogi.bme.hu
A Hozzárendelési feladat megoldása Magyar-módszerrel
A Hozzárendelési feladat megoldása Magyar-módszerrel Virtuális vállalat 2013-2014/1. félév 3. gyakorlat Dr. Kulcsár Gyula A Hozzárendelési feladat Adott meghatározott számú gép és ugyanannyi független
) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus.
Kétmtás t-próba ^t ȳ ( s +( s + + df + vag ha, aor ^t ȳ (s +s Welch-próba ^d ȳ s + s ( s + s df ( s ( s + d rtus t s (α, +t s (α, s + s Kofdecatervallum ét mta átlagáa ülöbségére SE s ( + s ( ±t (α,df
Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat) f(x) = 2x 2 x 4. 2x 2 x 4 = 0, x 2 (2 x 2 ) = 0.
Feladatok megoldásokkal a negyedik gyakorlathoz (Függvényvizsgálat). Feladat. Végezzük el az f(x) = x x 4 ) Értelmezési tartomány: x R. ) A zérushelyet az f(x) = 0 egyenlet megoldásával kapjuk: amiből
VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR
védőeryő az ismeretleek záporába VALÓSZÍNŰSÉGSZÁMÍTÁS KÉPLETTÁR www.matektaitas.hu www.matektaitas.hu ifo@matektaitas.hu 1 védőeryő az ismeretleek záporába Kombiatorika Permutáció Ismétlés élküli permutáció
Matematikai statisztika. 2008. május 28.
Matematikai statisztika 008. május 8. ii Tartalomjegyzék. A statisztika alapfogalmai.. Alapstatisztikák.................................. Feladatok................................... 6. Véletle a statisztikába..
Biostatisztika e-book Dr. Dinya Elek
TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 5 ÉRETTSÉGI VIZSG 05. október. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ EMBERI ERŐFORRÁSOK MINISZTÉRIM Egyszerű, rövid
Jelek tanulmányozása
Jelek tanulmányozása A gyakorlat célja A gyakorlat célja a jelekkel való műveletek megismerése, a MATLAB környezet használata a jelek vizsgálatára. Elméleti bevezető Alapműveletek jelekkel Amplitudó módosítás
Statisztika I. 4. előadás. Előadó: Dr. Ertsey Imre
Statsztka I. 4. előadás Előadó: Dr. Ertsey Imre KÖZÉPÉRTÉKEK A statsztka sor általáos jellemzésére szolgálak, a statsztka sokaságot egy számmal jellemzk. Számított középértékek: matematka számítás eredméyekét
xdsl Optika Kábelnet Mért érték (2012. II. félév): SL24: 79,12% SL72: 98,78%
Minőségi mutatók Kiskereskedelmi mutatók (Internet) Megnevezés: Új hozzáférés létesítési idő Meghatározás: A szolgáltatáshoz létesített új hozzáféréseknek, az esetek 80%ban teljesített határideje. Mérési
Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium
26 Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium Az Önök telephelyére vonatkozó egyedi adatok táblázatokban és grafikonokon 1. évfolyam gimnázium szövegértés Előállítás ideje: 27.3.. 12:28:21
A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke:
A PÉNZ IDİÉRTÉKE A péz értéke többek között az idı függvéye. Ha idıbe késıbb jutuk hozzá egy jövedelemhez, akkor elveszítjük aak lehetıségét, hogy az eltelt idıbe azt befektessük, azaz elesük aak hozamától,
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek
A mágneses tér energája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája Egy koncentrált paraméterű, ellenállással és nduktvtással jellemzett tekercs Uáll feszültségre kapcsolásakor az
1. EGYVÁLTOZÓS ELOSZLÁSOK JELLEMZÉSE... 4
TARTALOMJEGYZÉK. EGYVÁLTOZÓS ELOSZLÁSOK JELLEMZÉSE... 4.. Eloszláso "cetrumára" jellemző paramétere... 4 Várható érté... 4 Medá... 4 Módusz... 4 A cetráls jellemző apcsolata... 5.. Eloszláso "szóródására"
MINTA. Fizetendô összeg: 62 136,00 HUF. Telefonon: 06 40 / 20 99 20 ben: Interneten:
Részszámla Számla. eredeti példány / oldal Elszámolási idôszak: 00.0. - 00.09.. Partnerszám: 000009 Fizetési határidô: 00.09.0. Vevô neve, címe: Minta út. Fizetendô összeg:, Minta út. Szerzôdéses folyószámla
Ingatlanfinanszírozás és befektetés
Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:
MINTA. Fizetendô összeg: 47 303,00 HUF. Telefonon: 06 40 / 20 99 20 ben: Interneten:
Részszámla Számla. eredeti példány / oldal Elszámolási idôszak: 00..0-00... Partnerszám: 0000 Fizetési határidô: 00..0. Vevô neve, címe: Minta u.. Fizetendô összeg:, Minta u.. Szerzôdéses folyószámla szám:
Csapágyak üzem közbeni vizsgálata a csavarhúzótól a REBAM 1 -ig 2
ÜZEMFENNTARTÁSI TEVÉKENYSÉGEK 3.9 Csapágyak üzem közbei vizsgálata a csavarhúzótól a REBAM 1 -ig 2 Gergely Mihály okl. gépészmérök, Acceleratio Bt. Budapest Tóbis Zsolt doktoradusz, Miskolci Egyetem Gépelemek
Metrikus terek. továbbra is.
Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d
Kevei Péter. 2013. november 22.
Valószíűségelmélet feladatok Kevei Péter 2013. ovember 22. 1 Tartalomjegyzék 1. Mérhetőség 4 2. 0 1 törvéyek 12 3. Vektorváltozók 18 4. Véletle változók traszformáltjai 28 5. Várható érték 33 6. Karakterisztikus
Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet
Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak
3.3 Fogaskerékhajtások
PTE, PMMK Stampfer M.: Gépelemek II / Mechaikus hajtások II / 7 / 3.3 Fogaskerékhajtások Jó tulajoságaikak köszöhetőe a fogaskerékhajtóművek a legelterjetebbek az összes mechaikus hajtóművek közül. A hajtás
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 080 ÉETTSÉGI VIZSG 009. május. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTÁLIS MINISZTÉIM Egyszerű, rövid feladatok
A fiatalok pénzügyi kultúrája Számít-e a gazdasági oktatás?
A fiatalok pénzügyi kultúrája Számít-e a gazdasági oktatás? XXXII. OTDK Konferencia 2015. április 9-11. Készítette: Pintye Alexandra Konzulens: Dr. Kiss Marietta A kultúrától a pénzügyi kultúráig vezető
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIM Elektronikai alapismeretek