Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
|
|
- Fanni Ballané
- 6 évvel ezelőtt
- Látták:
Átírás
1 Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function
2 Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez, és ismétlõdõen vagy folyamatosan hozzájárul annak tüzeléséhez, akkor valamely, egyik vagy mindkét sejtre jellemzõ növekedési folyamat vagy metabolikus változás következménye az lesz, hogy az A sejt hatékonysága a B sejt tüzeléséhez való hozzájárulás szempontjából megnõ."
3 A tanulás problémája matematikailag Modell paramétereinek hangolása adatok alapján Kettős dinamika Változók (bemenet-kimenet leképezés) - gyors Paraméterek - lassú Memória és tanulás különbsége Memória használatánál a bemenetre egy konkrét kimenetet szeretnék kapni a reprezentáció megváltoztatása nélkül Tanulásnál minden bemenetet felhasználok arra, hogy finomítsam a reprezentációt, miközben kimenetet is generálok Alapvető cél: predikciót adni a jövőbeli történésekre a múlt alapján
4 A tanulás alapvető típusai Felügyelt Az adat: bemenet-kimenet párok halmaza A cél: függvényapproximáció, klasszifikáció Megerősítéses A cél: optimális stratégia a jutalom maximalizálására Nem felügyelt, reprezentációs Az adat: állapotmegfigyelések és jutalmak Az adat: bemenetek halmaza A cél: az adat optimális reprezentációjának megtalálása / magyarázó modell felírása Egymásba ágyazások
5 Perceptron Bináris neuron: lineáris szeparáció Két dimenzióban a szeparációs egyenes: = x 1 w1 x 2 w 2 Logikai függvények x2 = w 1 x 1 w2 w2
6 Tanulásra alkalmas neurális rendszerek Egyetlen sejt Előrecsatolt hálózat Rekurrens hálózat Ezen az órán: rátamodell y =f ( xw θ) Paraméterek: súlyok, küszöbök Különböző kimeneti nemlinearitások Lépcső: H (Heavyside) Szigmoid: Lineáris neuron
7 Error-correcting tanulási szabályok Felhasználjuk azt az információt, hogy milyen messze van a céltól a rendszer Rosenblatt-algoritmus bináris neuron m m w(t+1)=w(t )+ϵ(t y ( x )) x m Delta-szabály Folytonos kimenetű neuron gradiens-módszer E w b (t +1)=w b (t ) ϵ wb 1 N m E= m ( t y (x m ))2 2 s N E = m (t m y (x m )) x m w b s lineáris neuronra, egy pontpárra vonatkozó közelítéssel: w(t+1)=w+ϵ(t m y ( x m)) x m Minsky-paper 1969: a neurális rendszerek csak lineáris problémákat tudnak megoldani
8 Error-correcting tanulási szabályok Rosenblatt-algoritmus bináris neuron W1 W2 W1 W2 Θ 1 y=h(w1+w2 Θ) b y=h(w1+w2+b) Egy konstans 1 bemenet és a b=-θ (bias) bevezetésével kitranszformáljuk a küszöböt. A bias tanulása így ekvivalens egy kapcsolatsúly tanulásával.
9 Error-correcting tanulási szabályok Rosenblatt-algoritmus bináris neuron w w v m v u m u m Rossz W Jó W Bemenet um Elvárt kimenet: vm=0 Jó W Rossz W Bemenet um Elvárt kimenet: vm=1
10 Error-correcting tanulási szabályok Rosenblatt-algoritmus bináris neuron w w v m v u m u m Bemenet um Elvárt kimenet: vm=1 Bemenet um Elvárt kimenet: vm=0 Jó W Rossz W Rossz W Megoldáskúp, Konvex probléma
11 Multi-Layer Perceptron Nemlineáris szeparáció regresszió egyenletesen sűrű l2-ben egy rejtett réteggel A reprezentációs képességet a rejtett réteg növelésével tudjuk növelni Idegrendszerben látórendszer...
12 What could be represented by a simple, one layered, feed forward network called perceptron? It is able to learn many functions, but there are some exceptions such as XOR. Problem: The linearly inseparable functions are more numerous as the dimension of the problem increases.
13 In two dimensions the problem can be transformed: this requires a two layered network With this two layered network, all the two dimensional Boolean-functions can be learned. But in higher dimensions? The weights and the thresholds appropriate to the XOR solution:
14 A possible solution: increasing the embedding dimension In three dimension the XOR problem is linearly separable. As the embedding dimension increases, the fraction of linearly inseparable logical functions vanishes
15 Soft-max kimeneti réteg, valószínűségi eloszlások reprezentációjára A logisztikus függvény 0 és 1 közé képzi le az aktivációt: 1 y =f ( z)= z (1+e ) A softmax réteg a logisztikus függvény általánosítása több változóra: pi = y i = e zi T e zi T yi = y i (1 y i) zi Nem lokális, a kimenet a softmax réteg Minden neuronjának bemenetétől függ, nem csak az adott neuronétól. T: hőmérséklet paraméter T->inf: egyenletes eloszlást ad T->0: konvergál a Max függvényhez A deriváltja szépen viselkedik és lokális, Mint a logisztikus függvény esetében
16 Error backpropagation Bemenet/aktiváció: z Elvárt kimenet: tn Aktuális kimenet: y A hibafüggvény parciális deriváltjai: Mivel gradiens-módszer, a hibafüggvény lokális minimumába fog konvergálni. z=xw +b 1 y =f ( z)= (1+e z) E E y z = w bi y z w bi E n =t y ( x) y dy = y (1 y ) dz z =x i w i w i (t +1)=wi (t )+( y t n) y (1 y ) xi δ j= y j (1 y j ) w jq δq
17 Lassú konvergencia a korrelált változók mentén Probléma: Erősen korrelált változók esetén a gradiens gyakran/általában majdnem merőleges a minimum valódi irányára. Lehetséges megoldások: Momentum módszer, Hessian mátrix Hessian mentes optimalizátor Konjugált Grádiensek Adaptív lépésköz
18 Rekurrens Hálózatok Lehetséges tanítási technikák Hiba visszaterjesztés az időben Echo state network Long short term memory
19 Hebb's rule When an axon of cell A is near enough to excite cell B, and repeatedly or consistently takes part in firing it, some growth process or metabolic change takes part in one or both cells such that A's efficiency, as one of cell firing B, is increased" (Hebb, The Organization of Behavior, 1949)
20 Hebb's rule in an experiment at population level LTP long term potentation LTD long term depression
21 Idegrendszeri plaszticitás A plaszticitás helye: szinapszisok, posztszinaptikus sejtek tüzelési küszöbei (excitabilitás) Potenciáció, depresszió STP: kalciumdinamika, transzmitterkimerülés tartam < 1 perc LTP: génexpresszió (induction, expression, maintenance), NMDA magnézium-blokkja tartam > 1 perc Korreláció a molekuláris és pszichológiai szint között
22 Rate-based and spike-time dependent learning rules
23 A Hebb-szabály Timing-dependent plasticity: Ha a posztszinaptikus neuron nagy frekvenciával közvetlenül a preszinaptikus után tüzel, akkor erősödik a kapcsolat Az alacsony frekvenciájú tüzelés gyengíti a kapcsolatot Sok más lehetőség A Hebb-szabály formalizációja: lineáris ráta-modellben dw w =v u dt
24 Stabilizált Hebb-szabályok Problémák a Hebb szabállyal: csak nőni tudnak a súlyok Nincs kompetíció a szinapszisok között inputszelektivitás nem megvalósítható Egyszerű megoldás: felső korlát a súlyokra BCM: a posztszinaptikus excitabilitás felhasználása a stabilizásra dw w =v u v u dt d u =v 2 u dt Szinaptikus normalizáció Szubsztraktív normalizáció w v 1 u 1 dw =v u dt Nu Globális szabály, de generál egyes megfigyelt mintázatokat (Ocular dominance) Oja-szabály w dw 2 =v u v u dt Lokális szabály, de nem generálja a megfigyelt mintázatokat
25 Principal component analysis
26 Principal component network, derivation of Oja's rule:
27 The Oja-rule and the pricipal component analysis y output x input w weight matrix y=wtx=xtw Δw=α(xy y2w) Oja's rule Substituting y: Δw=α(xxTw wtxxtww) Assuming mean(x)=0 & averaging over the input => xxt = C The convergence point: Δw=0 Cw wtcww=0 This is an eigenvector equation! E modification for Indenpendent Component analysis wtcw Δw=α(xy3 w) is scalar! If C=1
28 Independent component analysis (ICA)
29 Independent component analysis (ICA)
30 The somatosensory map
31 Kohonen's self organizing map Winner take all
32 Kohonen's self organizing map Generates feature maps Captures the structure in the inputs
33 Asszociatív memória Heteroasszociatív Autoasszociatív pl. hely-objektum Töredékes jelből az eredetit Különbség a számítógép memóriája és az AM között: címzés módja Kapacitás: hány mintát tudunk eltárolni úgy, hogy azok visszahívhatók legyenek (többféle definíció) Stabilitás: minden mintára a legközelebbi tárolt mintát szeretnénk visszakapni
34 Attraktorhálózatok Attraktorok típusai Pont Periodikus Kaotikus Vonzási tartományok Realizáció: rekurrens neurális hálózatok Attraktorok tárolása: szinaptikus súlyokon Offline tanulás Online tanulás One-shot learning Előhívás: konvergencia tetszőleges pontból egy fix pontba
35 W. J. Freeman
36 Hopfield-hálózat Asszociatív memória Bináris MCP-neuronok Minták tárolása: bináris vektorok Szimmetrikus súlymátrix Offline learning tanulandó minták: 1 N {s s } x t 1 Dale's law: egy sejt nem lehet egyszerre serkentő és gátló ezt most megsértjük Rekurrens (dominánsan) hálózatok az agyban: hippokampusz CA3 régió,... 1 W ij = N t =sgn W x N n x n n si s j t +1 k Hebbi szabály K =sgn( i W ik x i θ k ) Léptetési szabályok: szinkron és szekvenciális t
37 A HN dinamikája Nemlineáris rendszerek stabilitás-analízise: Lyapunov-függvény segítségével definiáljuk az állapotokhoz rendelhető energiát. Ha a függvény: Korlátos Belátható, hogy a léptetési dinamika mindig csökkenti (növeli) Akkor a rendszer minden bemenetre stabil fix pontba konvergál. Hopfield-hálózat Lyapunov-függvénye: 1 T E = x W x x 2 Attraktorok az eltárolt mintáknál, de más helyeken is A HN használható kvadratikus alakra hozható problémák optimalizációjára is
38 A HN kapacitása Információelméleti kapacitás A tárolandó mintákat tekintsük Bernoulli-eloszlású változók halmazának P s ni =1 =P s in=0 =0.5 Követeljük meg az egy valószínűségű konvergenciát a a lim n P s =sgn Ws =1 a=1 M Ekkor (sok közelítő lépéssel) megmutatható, hogy N 2 log 2 N Összehasonlítás a CA3-mal M Kb sejt, kb minta tárolható Más becslések figyelembevéve a minták ritkaságát P s ni =1 = M N 1 1 log 2
39 Boltzmann-gép Eloszlások reprezentációja mennyiségek közti statisztikai összefüggések Sztochasztikus állapotátmenet I =Wu Mv P v t 1 a 1 =1 = I 1 e a A hálózat határeloszlása Energia: 1 T T E v = v Wu v Mv 2 Boltzmann-eloszlás: e E v P v = E v e v
40 Tanulás Boltzmann-géppel Felügyelt tanulás, csak W-re, M analóg Hiba: Kullback-Leibler-divergencia a közelítendő és a megvalósított eloszlás között nem függ W-től P v u D KL [ P v u, P v u, W ]= v P v u ln P v u, W a P v u -val súlyozott kimeneti összegzés helyett bemeneteke vett átlag: D KL = 1 m m ln P v u, W K Ns Gradient descent egyetlen bemenetre ln P v m u m, W =v mi u mj v P v um, W v i u mj W ij Delta-szabály az összes lehetséges kimenetre való átlagot az aktuális értékkel közelítjük W ij W ij w v mi u mj v i um u mj Két fázis: a Boltzmann-eloszlásból hebbi Nem felügyelt D KL [ P u, P u, W ] anti-hebbi
41 Tanulás Boltzmann-géppel Felügyelt tanulás, csak W-re, M analóg Hiba: Kullback-Leibler-divergencia a közelítendő és a megvalósított eloszlás között nem függ W-től P v u D KL [ P v u, P v u, W ]= v P v u ln P v u, W a P v u -val súlyozott kimeneti összegzés helyett bemeneteke vett átlag: D KL = 1 m m ln P v u, W K Ns Gradient descent egyetlen bemenetre ln P v m u m, W =v mi u mj v P v um, W v i u mj W ij Delta-szabály az összes lehetséges kimenetre való átlagot az aktuális értékkel közelítjük W ij W ij w v mi u mj v i um u mj Két fázis: a Boltzmann-eloszlásból hebbi Nem felügyelt D KL [ P u, P u, W ] anti-hebbi
42 Tanulás Boltzmann-géppel Felügyelt tanulás, csak W-re, M analóg Hiba: Kullback-Leibler-divergencia a közelítendő és a megvalósított eloszlás között nem függ W-től P v u D KL [ P v u, P v u, W ]= v P v u ln P v u, W a P v u -val súlyozott kimeneti összegzés helyett bemeneteke vett átlag: D KL = 1 m m ln P v u, W K Ns Gradient descent egyetlen bemenetre ln P v m u m, W =v mi u mj v P v um, W v i u mj W ij Delta-szabály az összes lehetséges kimenetre való átlagot az aktuális értékkel közelítjük W ij W ij w v mi u mj v i um u mj Két fázis: a Boltzmann-eloszlásból hebbi Nem felügyelt D KL [ P u, P u, W ] anti-hebbi
43 Tanulás Boltzmann-géppel Felügyelt tanulás, csak W-re, M analóg Hiba: Kullback-Leibler-divergencia a közelítendő és a megvalósított eloszlás között nem függ W-től P v u D KL [ P v u, P v u, W ]= v P v u ln P v u, W a P v u -val súlyozott kimeneti összegzés helyett bemeneteke vett átlag: D KL = 1 m m ln P v u, W K Ns Gradient descent egyetlen bemenetre ln P v m u m, W =v mi u mj v P v um, W v i u mj W ij a Boltzmann-eloszlásból Delta-szabály az összes lehetséges kimenetre való átlagot az aktuális értékkel közelítjük W ij W ij w v mi u mj v i um u mj Két fázis: hebbi anti-hebbi
44 Tanulás Boltzmann-géppel Felügyelt tanulás, csak W-re, M analóg Hiba: Kullback-Leibler-divergencia a közelítendő és a megvalósított eloszlás között nem függ W-től P v u D KL [ P v u, P v u, W ]= v P v u ln P v u, W a P v u -val súlyozott kimeneti összegzés helyett bemeneteke vett átlag: D KL = 1 m m ln P v u, W K Ns Gradient descent egyetlen bemenetre ln P v m u m, W =v mi u mj v P v um, W v i u mj W ij Delta-szabály az összes lehetséges kimenetre való átlagot az aktuális értékkel közelítjük W ij W ij w v mi u mj v i um u mj Két fázis: a Boltzmann-eloszlásból hebbi Nem felügyelt D KL [ P u, P u, W ] anti-hebbi
45 Megerősítéses tanulás Állapottér: a szenzorikus (vagy egyéb bemeneti) változók lehetséges értékeinek kombinációjából előálló halmaz Jutalomszignál: bizonyos állapotokban kapunk információt a cselekvésünk sikerességéről Cselekvés: a tanuló megvalósít egy állapotátmenetet (legalábbis megpróbálja) Cél: a jutalom hosszú távú maximalizálása Értékfüggvény: az egyes állapotokhoz rendelt hasznosság Értékfüggvény reprezentációja: Táblázattal (machine learningben) Általános függvényapproximátorral pl. előrecsatolt neurális hálózat Beágyazhatunk egy felügyelt rendszert a megerősítésesbe a háló tanítására
46 Temporal difference learning Prediction error felhasználása a tanuláshoz Az állapotérték frissítése neurális reprezentációban: w w t u t t = r t v t A prediction error kiszámítása A teljes jövőbeli jutalom kellene hozzá Egylépéses lokális közelítést alkalmazunk r t v t r t v t 1 Ha a környezet megfigyelhető, akkor az optimális stratégiához konvergál A hibát visszaterjeszthetjük a korábbi állapotokra is (hasonlóan a backpropagation algoritmushoz) Akciókiválasztás: exploration vs. exploitation
47 TD tanulás neurális hálózattal Gerald Tesauro: TD-Gammon Bemenet: a lehetséges lépések nyomán elért állapotok Kimenet: állapotérték (nyerési valószínűség) Minden lépésben meg kell határozni a hálózat kimeneti hibáját Előrecsatolt hálózat Reward signal alapján Eredmény: a legjobb emberi játékosokkal összemérhető
48 The effect of reward in dopaminerg cell of basal ganglia An interpretation: Dopamine cells signals the difference between the expected and received reward.
49 Problémák tanulórendszerekben Bias-variance dilemma Strukturális hiba: a modell optimális paraméterekkel is eltérhet a közelítő függvénytől (pl lineáris modellt illesztünk köbös adatra) Közelítési hiba: a paraméterek pontos hangolásához végtelen tanítópontra lehet szükség Pontosság vs. általánosítás A sokparaméteres modellek jól illeszkednek, de rosszul általánosítanak: túlillesztés A magyarázó képességük is kisebb (lehet): Ockham borotvája
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Tanulás az idegrendszerben
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Funkcióvezérelt modellezés Abból indulunk ki, hogy milyen feladatot valósít meg a rendszer Horace Barlow: "A
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Az idegrendszeri memória modelljei
Az idegrendszeri memória modelljei A memória típusai Rövidtávú Working memory - az aktuális feladat Vizuális, auditórikus,... Prefrontális cortex, szenzorikus területek Kapacitás: 7 +-2 minta Hosszútávú
Az idegrendszeri memória modelljei
Az idegrendszeri memória modelljei A memória típusai Rövidtávú Working memory - az aktuális feladat Vizuális, auditórikus,... Prefrontális cortex, szenzorikus területek Kapacitás: 7 +-2 minta Hosszútávú
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Megerősítéses tanulás
Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:
Stratégiák tanulása az agyban
Statisztikai tanulás az idegrendszerben, 2019. Stratégiák tanulása az agyban Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Kortárs MI thispersondoesnotexist.com
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79
Megerősítéses tanulás
Megerősítéses tanulás 2 Múltbeli események Tudás A világ tanult szabályosságai Tudatosság? A konkrét megfigyelésből kikövetkeztetett információ Döntéshozás Érzékelés Izomvezérlés How to build a decision
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái -hálók 306/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.
: Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
I. LABOR -Mesterséges neuron
I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
Visszacsatolt (mély) neurális hálózatok
Visszacsatolt (mély) neurális hálózatok Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Sima előrecsatolt neurális hálózat Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Pl.: kép feliratozás,
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Bevezetés a neurális számításokba Analóg processzortömbök,
Pannon Egyetem Villamosmérnöki és Információs Tanszék Bevezetés a neurális számításokba Analóg processzortömbök, neurális hálózatok Előadó: dr. Tömördi Katalin Neurális áramkörök (ismétlés) A neurális
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét
Neurális hálózatok.... a gyakorlatban
Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.
Intelligens Rendszerek Elmélete
Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
Intelligens orvosi műszerek VIMIA023
Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus
TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...
TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő
Lineáris regressziós modellek 1
Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák
Neura lis ha lo zatok
Komplex Rendszerek Szim. Mo dsz. Labor Neura lis ha lo zatok Nagy Da vid Gergely Fizika MSc. IV. beadando Fizikai Inte zet Eo tvo s Lora nd Tudoma nyegyetem Budapest 2013 1. Hopfield hálózat A Hopfield-hálózat
Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL
Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL TULICS@TMIT.BME.HU Példa X (tanult órák száma, aludt órák száma) y (dolgozaton elért pontszám) (5, 8) 80 (3, 5) 78 (5, 1) 82 (10, 2) 93 (4, 4)
NEURÁLIS HÁLÓZATOK 1. eloadás 1
NEURÁLIS HÁLÓZATOKH 1. eloadás 1 Biológiai elozmények nyek: az agy Az agy az idegrendszerunk egyik legfontosabb része: - képes adatokat tárolni, - gyorsan és hatékonyan mukodik, - nagy a megbízhatósága,
Megerősítéses tanulás 9. előadás
Megerősítéses tanulás 9. előadás 1 Backgammon (vagy Ostábla) 2 3 TD-Gammon 0.0 TD() tanulás (azaz időbeli differencia-módszer felelősségnyomokkal) függvényapproximátor: neuronháló 40 rejtett (belső) neuron
Megerősítéses tanulás 7. előadás
Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig
Principal Component Analysis
Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
Funkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
Adatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok
Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs
Hibadetektáló rendszer légtechnikai berendezések számára
Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
Gépi tanulás Gregorics Tibor Mesterséges intelligencia
Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat
Google Summer of Code Project
Neuronhálózatok a részecskefizikában Bagoly Attila ELTE TTK Fizikus MSc, 2. évfolyam Integrating Machine Learning in Jupyter Notebooks Google Summer of Code Project 2016.10.10 Bagoly Attila (ELTE) Machine
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
NEURONHÁLÓK ÉS TANÍTÁSUK A BACKPROPAGATION ALGORITMUSSAL. A tananyag az EFOP pályázat támogatásával készült.
NEURONHÁLÓK ÉS TANÍTÁSUK A BACKPROPAGATION ALGORITMUSSAL A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült. Neuron helyett neuronháló Neuron reprezentációs erejének növelése: építsünk
Dinamikus modellek szerkezete, SDG modellek
Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.
Neurális hálózatok MATLAB programcsomagban
Debreceni Egyetem Informatikai Kar Neurális hálózatok MATLAB programcsomagban Témavezető: Dr. Fazekas István Egyetemi tanár Készítette: Horváth József Programtervező informatikus Debrecen 2011 1 Tartalomjegyzék
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007 Az Előadások Témái -hálók Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus
2. Elméleti összefoglaló
2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges
Tanulás Boltzmann gépekkel. Reiz Andrea
Tanulás Boltzmann gépekkel Reiz Andrea Tanulás Boltzmann gépekkel Boltzmann gép Boltzmann gép felépítése Boltzmann gép energiája Energia minimalizálás Szimulált kifűtés Tanulás Boltzmann gép Tanulóalgoritmus
Megerősítéses tanulási módszerek és alkalmazásaik
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Megerősítéses tanulási módszerek és alkalmazásaik Tompa Tamás tanársegéd Általános Informatikai Intézeti Tanszék Miskolc, 2017. szeptember 15. Tartalom
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes)
6-7 ősz. gyakorlat Feladatok.) Adjon meg azt a perceptronon implementált Bayes-i klasszifikátort, amely kétdimenziós a bemeneti tér felett szeparálja a Gauss eloszlású mintákat! Rajzolja le a bemeneti
Debreceni Egyetem Informatikai Kar. Fazekas István. Neurális hálózatok
Debreceni Egyetem Informatikai Kar Fazekas István Neurális hálózatok Debrecen, 2013 Szerző: Dr. Fazekas István egyetemi tanár Bíráló: Dr. Karácsony Zsolt egyetemi docens A tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0103
Kovács Ernő 1, Füvesi Viktor 2
Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL
A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL Dr. Ludányi Lajos mk. alezredes egyetemi adjunktus Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti Rendszerek Tanszék
Biológiai és mesterséges neurális hálózatok
Biológiai és mesterséges neurális hálózatok Szegedy Balázs 2018. október 10. Hasonlóságok és külömbségek A mesterséges neurális hálózatok története 1957-ben kezdődött: perceptron (Frank Rosenblatt). 400
Csima Judit április 9.
Osztályozókról még pár dolog Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. április 9. Csima Judit Osztályozókról még pár dolog 1 / 19 SVM (support vector machine) ez is egy
Searching in an Unsorted Database
Searching in an Unsorted Database "Man - a being in search of meaning." Plato History of data base searching v1 2018.04.20. 2 History of data base searching v2 2018.04.20. 3 History of data base searching
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
Differenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
Nem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens
Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
Látórendszer modellezése
Statisztikai tanulás az idegrendszerben, 2015. Látórendszer modellezése Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ A látórendszer felépítése Prediktálhatóság
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 262/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás
Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 288/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.
CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés
Mikroelektródás képalkotó eljárások Somogyvári Zoltán
Somogyvári Zoltán Magyar Tudományos Akadémia Wigner Fizikai Kutatóközpont Részecske és Magfizikai Intézet Elméleti Osztály Elméleti Idegtudomány és Komplex Rendszerek Kutatócsoport Az agy szürkeállománya
Pletykaalapú gépi tanulás teljesen elosztott környezetben
Pletykaalapú gépi tanulás teljesen elosztott környezetben Hegedűs István Jelasity Márk témavezető Szegedi Tudományegyetem MTA-SZTE Mesterséges Intelligencia Kutatócsopot Motiváció Az adat adatközpontokban
Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása
Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása Bozóki Sándor 1,2, Fülöp János 1,3 1 MTA SZTAKI; 2 Budapesti Corvinus Egyetem 3 Óbudai Egyetem XXXI. Magyar Operációkutatási Konferencia
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0
I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)
Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök
Gyires-Tóth Bálint Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök http://smartlab.tmit.bme.hu Deep Learning Híradó Hírek az elmúlt 168 órából Deep Learning Híradó Google
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Teljesen elosztott adatbányászat pletyka algoritmusokkal. Jelasity Márk Ormándi Róbert, Hegedűs István
Teljesen elosztott adatbányászat pletyka algoritmusokkal Jelasity Márk Ormándi Róbert, Hegedűs István Motiváció Nagyméretű hálózatos elosztott alkalmazások az Interneten egyre fontosabbak Fájlcserélő rendszerek
A lineáris programozás alapjai
A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris
Az idegrendszeri memória modelljei
Az idegrendszeri memória modelljei A memória típusai Rövidtávú Working memory - az aktuális feladat Vizuális, auditórikus,... Prefrontális cortex, szenzorikus területek Kapacitás: 7 +-2 minta Hosszútávú
Megerősítéses tanulás 2. előadás
Megerősítéses tanulás 2. előadás 1 Technikai dolgok Email szityu@eotvoscollegium.hu Annai levlista http://nipglab04.inf.elte.hu/cgi-bin/mailman/listinfo/annai/ Olvasnivaló: Sutton, Barto: Reinforcement
Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton
Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés
Szemidenit optimalizálás és az S-lemma
Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte
Mérési struktúrák
Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést
Egy csodálatos elme modellje
Egy csodálatos elme modellje A beteg és az egészséges agy információfeldolgozási struktúrái Bányai Mihály1, Vaibhav Diwadkar2, Érdi Péter1 1 RMKI, Biofizikai osztály 2 Wayne State University, Detroit,
Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis
SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió
Szekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Megerősítéses tanulás Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Ágens tudása: Induláskor: vagy ismeri már a környezetet
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Osztályozási feladatok képdiagnosztikában. Orvosi képdiagnosztikai 2017 ősz
Osztályozási feladatok képdiagnosztikában Orvosi képdiagnosztikai 2017 ősz Osztályozás Szeparáló felületet keresünk Leképezéseket tanulunk meg azok mintáiból A tanuláshoz használt minták a tanító minták
Inferencia valószínűségi modellekben
Statisztikai tanulás az idegrendszerben, 2016. Inferencia valószínűségi modellekben Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Inferencia valószínűségi modellekben
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére
Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére Bányai Mihály! MTA Wigner FK! Computational Systems Neuroscience Lab!! KOKI-VIK szeminárium! 2014. február 11. Struktúra és funkció