Az idegrendszeri memória modelljei
|
|
- Frigyes Szekeres
- 9 évvel ezelőtt
- Látták:
Átírás
1 Az idegrendszeri memória modelljei
2 A memória típusai Rövidtávú Working memory - az aktuális feladat Vizuális, auditórikus,... Prefrontális cortex, szenzorikus területek Kapacitás: minta Hosszútávú Epizodikus, szemantikus Technikailag: asszociatív Temporális lebeny, hippokampusz Interakció a rendszerek között
3 H. M. Súlyos epilepsziája volt, amit a hippokampusz egy részének eltávolításával orvosoltak 1953-ban. Ettől kezdve elvesztette az epizodikus memóriaformáció képességét a korábbi emlékei megmaradtak. A rövidtávú memóriája ép maradt, valamint a motoros tanulási képessége is. Megtanult pl. tükörben rajzolni. A térbeli memóriája erősen sérült. Bizonyítékot szolgáltatott a különböző memóriarendszerek létezésére.
4 Munkamemória modelljei Rekurrens hálózati modellek, serkentő-gátló populációkkal Perzisztens aktivitás A kódoló populáció a jel beírása után magasabb rátával tüzel Előfeszített állapot A sejtek a beíráskor facilitált állapotba kerülnek, a kiolvasáskor szinkron tüzelés valósul meg Oszcillációs modell (később) Disztrakció: kis zavaró jelet ignorálni szeretnénk, nagyra viszont elromlik a memória
5 Perzisztens aktivitás A majom prefrontális kérgében egyes sejtek megnövekedett aktivitást mutatnak bizonos stimulusok után a késleltetési szakaszban, ami meghatározza az adott választ is.
6 Szinaptikus modell Szinaptikus facilitáció és depresszió dinamikája integrate and fire neuronokban u j t = U u j t F x j t = 1 x j t D U [1 u j t ] k u j t x j t k t t k j t t k j Fixpont vagy oszcillációs dinamika m V i = V i I rec i t I ext i t I i rec t = j j J ij t t t k D ij k J ij t =J ij u j t D ij x j t D ij Több elem tárolása
7 Asszociatív memória Heteroasszociatív pl. hely-objektum Autoasszociatív Töredékes jelből az eredetit Különbség a számítógép memóriája és az AM között: címzés módja Kapacitás: hány mintát tudunk eltárolni úgy, hogy azok visszahívhatók legyenek (többféle definíció) Stabilitás: minden mintára a legközelebbi tárolt mintát szeretnénk visszakapni
8 Attraktorhálózatok Attraktorok típusai Pont Periodikus Kaotikus Vonzási tartományok Realizáció: rekurrens neurális hálózatok Attraktorok tárolása: szinaptikus súlyokon Offline tanulás Online tanulás One-shot learning Előhívás: konvergencia tetszőleges pontból egy fix pontba
9 Hopfield-hálózat Offline learning tanulandó minták: szabály {s 1 s N } W ij = 1 N n Asszociatív memória Bináris MCP-neuronok Minták tárolása: bináris vektorok Szimmetrikus súlymátrix Dale's law: egy sejt nem lehet egyszerre serkentő és gátló ezt most megsértjük Rekurrens (dominánsan) hálózatok az agyban: hippokampusz CA3 régió,... N si n s j n Hebbi x t 1 =sgn Wx t t Léptetési szabályok: szinkron és x 1 K k szekvenciális =sgn i W ik x t i k
10 A HN dinamikája Nemlineáris rendszerek stabilitás-analízise: Lyapunovfüggvény segítségével definiáljuk az állapotokhoz rendelhető energiát. Ha a függvény: Korlátos Belátható, hogy a léptetési dinamika mindig csökkenti (növeli) Akkor a rendszer minden bemenetre stabil fix pontba konvergál. Hopfield-hálózat Lyapunov-függvénye: E = 1 2 xt W x x Attraktorok az eltárolt mintáknál, de más helyeken is A HN használható kvadratikus alakra hozható problémák optimalizációjára is
11 A HN kapacitása Információelméleti kapacitás A tárolandó mintákat tekintsük Bernoulli-eloszlású változók halmazának P s i n =1 =P s i n =0 =0.5 Követeljük meg az egy valószínűségű konvergenciát lim n P s a =sgn Ws a =1 a=1 M Ekkor (sok közelítő lépéssel) megmutatható, hogy M N 2log Összehasonlítás a CA3-mal 2 N Kb sejt, kb minta tárolható Más becslések figyelembevéve a minták ritkaságát P s i n =1 = M N 1 log 2 1
12 Reprezentációs tanulás Valószínűségi leírás 3féle dolgot tanulhatunk: csak predikció, kimenetek valószínűsége, underlying rejtett változók/dinamika Explicit rejtett változós modellek Implicit rejtett változós modellek Modellösszehasonlítás Becslési algoritmusok: EM
13 Rejtett változós modellek ẋ= f (x,u,θ u )+ϵ ϵ=ρ (0, Σ ϵ ) y=g (x,θ x )+ν ν=ρ (0,Σ ν ) posterior likelihood p (θ y, M )= p( y θ, M ) p (θ M ) p( y M ) prior Evidence (marginal likelihood) Predictive distribution: p (y ' θ, y, M )
14 A Boltzmann-gép architektúrája P(s i =1)= 1 1+e b i j s j w ij P(v, h)= v ',h ',h) e E(v E (v ',h ' ) e P(v )= h v ',h' E(v,h) e E(v ',h ') e E(v,h)= i s i v b i + j> i + m >n s v i s v j w + ij k s m v s n h w mn s k h b k + l >k s k h s l h w kl + Geoffrey Hinton, Terry Sejnowski
15 Mintavételezés A normalizációs tagok kiszámolása exponenciális komplexitású Markov Chain Monte Carlo mintavételezés Elindítjuk a gépet véletlenszerű állapotból, és megvárjuk, hogy beálljon a hőmérsékleti egyensúly Mintavételezés csak a rejtett egységekből: a látható egységeket az adatvektorhoz rögzítjük A rejtett egységek az adatvektor magyarázatát adják, a jobb magyarázatokhoz alacsonyabb energia tartozik
16 Tanulás Bolzmann-géppel Maximum Likelihood tanulás argmax W p(v W )= v V Gradiens-módszer p (v W )= v V log p (v W ) Pozitív fázis p(v) = s s s s w i j v i j rand ij A látható egységeket fixálva várjuk meg az egyensúlyt, minden tanulóvektorra átlagoljuk a statisztikát A Boltzmann-valószínűség számlálóját növeli Negatív fázis Véletlen kiindulópontból várjuk meg az egyensúlyt jó sokszor, aztán átlagoljunk A Boltzmann-valószínűség nevezőjét csökkenti
17 Restricted Boltzmann Machine Egy látható és egy rejtett réteg Rétegen belül nincsenek kacsolatok független rejtett egységek A rejtett rétegben egylépéssel elérjük az egyensúlyt A negatív statisztikához indítsuk a hálózatot ebből az állapotból
18 Contrastive divergence Δw ij s i s j 0 s i s j 1 Az adattól távolabbi minimumokat nem látja Miután valamennyire rátanult a hálózat az adatra, többlépéses CD-re térünk át: CD3, CD6,...
19 DBM létrehozása előre tanított RBM-ekből Az első RBM a bemenet feature-eit tanulja A második a feature-ök feature-eit Öszzeillesztjük a rétegeket, és együtt finomítjuk a tanult reprezentációt Ruslan Salakhutdinov
20 Absztrakciós hierarchia a látórendszerben James DiCarlo Rufin VanRullen
Az idegrendszeri memória modelljei
Az idegrendszeri memória modelljei A memória típusai Rövidtávú Working memory - az aktuális feladat Vizuális, auditórikus,... Prefrontális cortex, szenzorikus területek Kapacitás: 7 +-2 minta Hosszútávú
RészletesebbenTanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
RészletesebbenModellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
RészletesebbenAz idegrendszeri memória modelljei
Az idegrendszeri memória modelljei A memória típusai Rövidtávú Working memory - az aktuális feladat Vizuális, auditórikus,... Prefrontális cortex, szenzorikus területek Kapacitás: 7 +-2 minta Hosszútávú
RészletesebbenTanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
RészletesebbenTanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
RészletesebbenTanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
RészletesebbenEgy csodálatos elme modellje
Egy csodálatos elme modellje A beteg és az egészséges agy információfeldolgozási struktúrái Bányai Mihály1, Vaibhav Diwadkar2, Érdi Péter1 1 RMKI, Biofizikai osztály 2 Wayne State University, Detroit,
RészletesebbenTanulás az idegrendszerben
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Funkcióvezérelt modellezés Abból indulunk ki, hogy milyen feladatot valósít meg a rendszer Horace Barlow: "A
RészletesebbenMit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
RészletesebbenTanulás Boltzmann gépekkel. Reiz Andrea
Tanulás Boltzmann gépekkel Reiz Andrea Tanulás Boltzmann gépekkel Boltzmann gép Boltzmann gép felépítése Boltzmann gép energiája Energia minimalizálás Szimulált kifűtés Tanulás Boltzmann gép Tanulóalgoritmus
RészletesebbenLátórendszer modellezése
Statisztikai tanulás az idegrendszerben, 2015. Látórendszer modellezése Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ A látórendszer felépítése Prediktálhatóság
RészletesebbenStratégiák tanulása az agyban
Statisztikai tanulás az idegrendszerben, 2019. Stratégiák tanulása az agyban Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Kortárs MI thispersondoesnotexist.com
RészletesebbenMesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái -hálók 306/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
RészletesebbenBudapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79
RészletesebbenFunkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
RészletesebbenMonte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte
RészletesebbenKeresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
RészletesebbenIntelligens Rendszerek Gyakorlata. Neurális hálózatok I.
: Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3
RészletesebbenI. LABOR -Mesterséges neuron
I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,
RészletesebbenMegerősítéses tanulás
Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:
RészletesebbenNeurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
RészletesebbenProbabilisztikus modellek II: Inferencia. Nagy Dávid
Probabilisztikus modellek II: Inferencia Nagy Dávid Statisztikai tanulás az idegrendszerben, 2015 előző előadás előző előadás az agy modellt épít a világról előző előadás az agy modellt épít a világról
RészletesebbenMesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés
RészletesebbenKÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
RészletesebbenMegerősítéses tanulás 7. előadás
Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig
RészletesebbenSzámítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
RészletesebbenNeurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL
Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL TULICS@TMIT.BME.HU Példa X (tanult órák száma, aludt órák száma) y (dolgozaton elért pontszám) (5, 8) 80 (3, 5) 78 (5, 1) 82 (10, 2) 93 (4, 4)
RészletesebbenKÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
RészletesebbenSzekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
RészletesebbenFELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét
RészletesebbenCHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.
CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés
RészletesebbenMagasabb idegrendszeri folyamatok
Magasabb idegrendszeri folyamatok Viselkedés A szenzoros bemenetekre adott (motoros) válasz. Az ember és állat viselkedését genetikusan kódolt, az egész szervezet szintjén érvényesülő idegi és kémiai faktorok
RészletesebbenMarkov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
RészletesebbenVéges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit
RészletesebbenVisszacsatolt (mély) neurális hálózatok
Visszacsatolt (mély) neurális hálózatok Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Sima előrecsatolt neurális hálózat Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Pl.: kép feliratozás,
RészletesebbenNeura lis ha lo zatok
Komplex Rendszerek Szim. Mo dsz. Labor Neura lis ha lo zatok Nagy Da vid Gergely Fizika MSc. IV. beadando Fizikai Inte zet Eo tvo s Lora nd Tudoma nyegyetem Budapest 2013 1. Hopfield hálózat A Hopfield-hálózat
Részletesebben2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához
XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput
RészletesebbenMesterséges Intelligencia I.
Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a
RészletesebbenLegyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }.
. Markov-láncok. Definíció és alapvető tulajdonságok Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0,,,..., N}, {0,,,... }.. definíció. S értékű valószínűségi
RészletesebbenAdatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus
RészletesebbenIntelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
RészletesebbenKettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
Részletesebben5. Hét Sorrendi hálózatok
5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő
RészletesebbenTanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok
Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs
RészletesebbenGépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
RészletesebbenVÁLTOZHATOK A TERÁPIÁBAN?!
VÁLTOZHATOK A TERÁPIÁBAN?! Fenyves Tamás Klinikai szakpszichológus Pszichoterapeuta TARTALOM Mi a pszichoterápia Idegtudományi vizsgálatok a pszichoterápia hatásosságában Reprezentációk és emlékezés mint
RészletesebbenGeorg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló
láttuk, hogy a Lorenz egyenletek megoldásai egy nagyon bonyolult halmazt alkottak a fázistérben végtelenül komplex felület fraktál: komplex geometriai alakzatok, melyeknek elemi kis skálán is van finomszerkezete
RészletesebbenKonjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
RészletesebbenA következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
RészletesebbenAlgoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
RészletesebbenMesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A
Részletesebben2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése
2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )
RészletesebbenMonte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás PI KISZÁMOLÁSI JÁTÉKOK A TENGERPARTON egy kört és köré egy négyzetet rajzolunk véletlenszerűen kavicsokat dobálunk megszámoljuk:
RészletesebbenE x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes)
6-7 ősz. gyakorlat Feladatok.) Adjon meg azt a perceptronon implementált Bayes-i klasszifikátort, amely kétdimenziós a bemeneti tér felett szeparálja a Gauss eloszlású mintákat! Rajzolja le a bemeneti
RészletesebbenProbabilisztikus funkcionális modellek idegrendszeri adatok elemzésére
Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére Bányai Mihály! MTA Wigner FK! Computational Systems Neuroscience Lab!! KOKI-VIK szeminárium! 2014. február 11. Struktúra és funkció
RészletesebbenVéges állapotú gépek (FSM) tervezése
Véges állapotú gépek (FSM) tervezése F1. Tervezzünk egy soros mintafelismerőt, ami a bemenetére ciklikusan, sorosan érkező 4 bites számok közül felismeri azokat, amelyek 3-mal vagy 5-tel oszthatók. A fenti
RészletesebbenANALÍZIS III. ELMÉLETI KÉRDÉSEK
ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
RészletesebbenLeast Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
RészletesebbenStatisztikus tanulás az idegrendszerben
Statisztikus tanulás az idegrendszerben ORBÁN GERGŐ http://golab.wigner.mta.hu Hierarchikus grafikus modellek Nehéz a nemlineáris optimalizálás hierarchikus rendszerekben: Amennyiben erős függéseket tételezek
RészletesebbenHumán emlékezeti fenntartási folyamatok oszcillációs. hálózatainak elektrofiziológiai analízise
Eötvös Loránd Tudományegyetem, Pedagógiai és Pszichológiai Kar Pszichológiai Doktori Iskola Kognitív Pszichológiai program Tóth Brigitta Humán emlékezeti fenntartási folyamatok oszcillációs hálózatainak
RészletesebbenLátás Nyelv - Emlékezet
Látás Nyelv - Emlékezet Az emlékezés folyamata, emlékezet & agy Szőllősi Ágnes aszollosi@cogsci.bme.hu HOSSZÚTÁVÚ EMLÉKEZET & EMLÉKEZETI RENDSZEREK Squire 2004 DEKLARATÍV (EXPLICIT) EMLÉKEZET: szándékos
RészletesebbenFraktál alapú képtömörítés p. 1/26
Fraktál alapú képtömörítés Bodó Zalán zbodo@cs.ubbcluj.ro BBTE Fraktál alapú képtömörítés p. 1/26 Bevezetés tömörítések veszteségmentes (lossless) - RLE, Huffman, LZW veszteséges (lossy) - kvantálás, fraktál
Részletesebben7.hét: A sorrendi hálózatok elemei II.
7.hét: A sorrendi hálózatok elemei II. Tárolók Bevezetés Bevezetés Regiszterek Számlálók Memóriák Regiszter DEFINÍCIÓ Tárolóegységek összekapcsolásával, egyszerű bemeneti kombinációs hálózattal kiegészítve
RészletesebbenInferencia. ADOTTAK:! generatív modell: például: DAG + prior(ok) + likelihood(ok) P(X 1,X 2,,X n ) megfigyelések: D = {X i = x i, X j = x j, }
Street1931 Falk1975 Falk1975 Inferencia ADOTTAK:! generatív modell: például: DAG + prior(ok) + likelihood(ok) P(X 1,X 2,,X n ) megfigyelések: D = {X i = x i, X j = x j, }! KISZÁMOLANDÓK:! normalizáció
RészletesebbenIntelligens Rendszerek Elmélete
Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html
RészletesebbenJelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
RészletesebbenZáróvizsgatételek Kognitív Tanulmányok mesterszak, Filozófia:
Záróvizsgatételek Kognitív Tanulmányok mesterszak, 2018 Filozófia: 1. Mi a kapcsolat az agyak a tartályban gondolatkísérlet és a szkepszis problémája között Wright, Crispin (1992) On Putnam's Proof That
RészletesebbenA Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában
A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában Horváth Gábor ghorvath@hit.bme.hu (Horváth András, Telek Miklós) - p. 1 Motiváció, problémafelvetés
RészletesebbenMegkülönböztetett kiszolgáló routerek az
Megkülönböztetett kiszolgáló routerek az Interneten Megkülönböztetett kiszolgálás A kiszolgáló architektúrák minősége az Interneten: Integrált kiszolgálás (IntServ) Megkülönböztetett kiszolgálás (DiffServ)
Részletesebbenminden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
RészletesebbenMikroelektródás képalkotó eljárások Somogyvári Zoltán
Somogyvári Zoltán Magyar Tudományos Akadémia Wigner Fizikai Kutatóközpont Részecske és Magfizikai Intézet Elméleti Osztály Elméleti Idegtudomány és Komplex Rendszerek Kutatócsoport Az agy szürkeállománya
RészletesebbenTöbbváltozós, valós értékű függvények
TÖ Többváltozós, valós értékű függvények TÖ Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza, n változós függvényeknek nevezzük. TÖ Példák:.
RészletesebbenValószínűségi modellek
Statisztikai tanulás az idegrendszerben, 2015. Valószínűségi modellek Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Hogyan kezeljük formálisan a bizonytalan
RészletesebbenPrincipal Component Analysis
Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták
RészletesebbenSzámításelmélet. Második előadás
Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi
RészletesebbenA sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex
A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az
Részletesebbenx, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
RészletesebbenAz agyi jelek adaptív feldolgozása MENTÁ LIS FÁ R A DT S ÁG MÉRÉSE
Az agyi jelek adaptív feldolgozása MENTÁ LIS FÁ R A DT S ÁG MÉRÉSE Bevezetés I. A fáradtság lehet fizikai: a normál testi funkciók hiánya mentális: csökkent agyi aktivitás vagy kognitív funkciók. Megjelenhet
RészletesebbenAgy a gépben gép az agyban:
Agy a gépben gép az agyban: Az agykéreg működésének számítógépes modellezése CA3 septum dentate gyrus familiarity entorhinal cortex sensory data Káli Szabolcs (MTA Kísérleti Orvostudományi Kutatóintézet)
RészletesebbenProbabilisztikus modellek V: Struktúra tanulás. Nagy Dávid
Probabilisztikus modellek V: Struktúra tanulás Nagy Dávid Statisztikai tanulás az idegrendszerben, 2015 volt szó a normatív megközelítésről ezen belül a probabilisztikus modellekről láttatok példákat az
RészletesebbenSzinkronizmusból való kiesés elleni védelmi funkció
Budapest, 2011. december Szinkronizmusból való kiesés elleni védelmi funkció Szinkronizmusból való kiesés elleni védelmi funkciót főleg szinkron generátorokhoz alkalmaznak. Ha a generátor kiesik a szinkronizmusból,
RészletesebbenIntelligens adatelemzés
Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az
RészletesebbenDIGITÁLIS TECHNIKA I
DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó,
RészletesebbenKészítette: Trosztel Mátyás Konzulens: Hajós Gergely
Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A
RészletesebbenMesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 324/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
RészletesebbenMesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 262/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Részletesebben12. előadás - Markov-láncok I.
12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R
RészletesebbenAmortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
RészletesebbenACM Snake. Orvosi képdiagnosztika 11. előadás első fele
ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x
RészletesebbenNEURÁLIS HÁLÓZATOK 1. eloadás 1
NEURÁLIS HÁLÓZATOKH 1. eloadás 1 Biológiai elozmények nyek: az agy Az agy az idegrendszerunk egyik legfontosabb része: - képes adatokat tárolni, - gyorsan és hatékonyan mukodik, - nagy a megbízhatósága,
Részletesebben3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK
3.6. AGYOMÁNYOS SZEKVENCIÁIS FUNKCIONÁIS EGYSÉGEK A fenti ismertető alapján elvileg tetszőleges funkciójú és összetettségű szekvenciális hálózat szerkeszthető. Vannak olyan szabványos funkciók, amelyek
RészletesebbenAz agykéreg és az agykérgi aktivitás mérése
Az agykéreg és az agykérgi aktivitás mérése Intrakortikális hálózatok Elektromos aktiváció, sejtszintű integráció Intracelluláris sejtaktivitás mérés Sejten belüli elektromos integráció 70 mv mikroelektrod
RészletesebbenIrányításelmélet és technika II.
Irányításelmélet és technika II. Modell-prediktív szabályozás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010 november
RészletesebbenTARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...
TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő
RészletesebbenBevezetés a neurális számításokba Analóg processzortömbök,
Pannon Egyetem Villamosmérnöki és Információs Tanszék Bevezetés a neurális számításokba Analóg processzortömbök, neurális hálózatok Előadó: dr. Tömördi Katalin Neurális áramkörök (ismétlés) A neurális
RészletesebbenNumerikus módszerek 1.
Numerikus módszerek 1. 11. előadás: A Newton-módszer és társai Lócsi Levente ELTE IK 2013. november 25. Tartalomjegyzék 1 A Newton-módszer és konvergenciatételei 2 Húrmódszer és szelőmódszer 3 Általánosítás
RészletesebbenMegerősítéses tanulás 9. előadás
Megerősítéses tanulás 9. előadás 1 Backgammon (vagy Ostábla) 2 3 TD-Gammon 0.0 TD() tanulás (azaz időbeli differencia-módszer felelősségnyomokkal) függvényapproximátor: neuronháló 40 rejtett (belső) neuron
RészletesebbenMODELLEK ÉS ALGORITMUSOK ELŐADÁS
MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így
Részletesebben